JPH04122033A - 電界効果トランジスタの製造方法 - Google Patents

電界効果トランジスタの製造方法

Info

Publication number
JPH04122033A
JPH04122033A JP24362790A JP24362790A JPH04122033A JP H04122033 A JPH04122033 A JP H04122033A JP 24362790 A JP24362790 A JP 24362790A JP 24362790 A JP24362790 A JP 24362790A JP H04122033 A JPH04122033 A JP H04122033A
Authority
JP
Japan
Prior art keywords
layer
high concentration
forming
electrode
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24362790A
Other languages
English (en)
Inventor
Shigeru Nakajima
中島 成
Kenji Otobe
健二 乙部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24362790A priority Critical patent/JPH04122033A/ja
Publication of JPH04122033A publication Critical patent/JPH04122033A/ja
Priority to CA002089583A priority patent/CA2089583A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波回路素子等に使用される高速の電界効
果トランジスタ(FET)の製造方法に関するものであ
る。
〔従来の技術〕
従来、この種の高周波用FETのゲート電極部にはリセ
ス構造が採られている。このリセス構造FETは第4図
の断面図に示される。半絶縁性GaAs基板1上には、
エピタキシャル成長法や直接イオン注入法などにより、
GaAsバッファ層2およびGaAs活性層3が形成さ
れる。活性層3にはさらにエツチングにより掘り込み(
リセス)が形成され、ゲート電極4がこのりセスに形成
される。また、ソース電極5およびドレイン電極6は活
性層3の平坦部に形成される。このようなリセス構造F
ETはソース電極部の寄生抵抗が低減され、高速動作に
適した素子になっている。
また、高周波特性に優れた素子として、異種接合を利用
した高電子移動度トランジスタ(HEMT)がある。こ
の異種接合の材料には、最近、Al1GaAs/GaA
sやANGaAs/InGaAsなどが用いられ、より
高性能なFETが開発されつつある。前者の異種接合を
利用したHEMTは第5図の断面図に示される。半絶縁
性GaAs基板11上に、エピタキシャル成長法により
、GaAsからなるバッファ層12およびn−ANGa
Asからなる電子供給層13が形成される。電子供給層
13にはさらにリセスが形成され、ゲート電極14がこ
のリセスに形成される。
また、ソース電極15およびドレイン電極16は電子供
給層13の平坦部に形成される。このようなHEMTに
おいても、リセス構造によってソース電極部の寄生抵抗
の低減化が図られている。
〔発明が解決しようとする課題〕
しかしながら、上記従来の高周波用FETの製造方法に
おいては、ゲート電極部にリセスを形成するため、次の
ような課題が有った。つまり、リセスを形成するための
エツチングにはバラツキがあり、しかも、このエツチン
グの制御性はそれ程良くない。このため、ゲート電極が
形成されるリセス底面の深さにはバラツキが生じてしま
う。また、このエツチングにより形成されたりセス底面
内の均一性はそれ程良くない。この結果、完成されるF
ETの特性にはバラツキが生じてしまう。
〔課題を解決するための手段〕
本発明はこのような課題を解消するためになされたもの
で、不純物を高濃度に含む層厚の薄い高濃度薄層化層を
半導体基板上に形成する工程と、高濃度薄層化層と同じ
材料からなり不純物を低濃度に含むまたは全く含まない
表面が平坦な低濃度層を高濃度薄層化層上に形成する工
程と、低濃度層の平坦な表面上にゲート電極を形成する
工程と、ゲート電極をマスクとするイオン注入法により
高濃度層を形成する工程と、高濃度層を短時間でアニー
ル処理する工程と、高濃度層上にオーミック電極を形成
する工程とからFETを製造するものである。
また、半導体基板上に不純物を高濃度に含む層厚の薄い
高濃度薄層化層を形成する工程と、高濃度薄層化層と同
じ材料からなり不純物を低濃度に含むまたは全く含まな
い表面が平坦な低濃度層を高濃度薄層化層上に形成する
工程と、低濃度層の平坦な表面上にダミーゲートを形成
する工程と、ダミーゲートをマスクとするイオン注入法
により高濃度層を形成する工程と、高濃度層を短時間で
アニール処理する工程と、高濃度層上にオーミック電極
を形成する工程と、ダミーゲート跡の反転パターンにゲ
ート電極を形成する工程とからFETを製造するもので
ある。
〔作用〕
ゲート電極はりセスエツチングを施さない平坦な低濃度
層上に形成され、ゲート電極下に形成されるチャネルの
厚さは高濃度薄層化層の厚さによって決定される。
〔実施例〕
第1図は、本発明の第1の実施例による製造方法でショ
ットキバリア形FET (MESFET)が完成される
までの各製造工程を示している。
まず、半絶縁性GaAs半導体基板21上に、アンドー
プGaAsからなるバッファ層22、GaAsからなる
高濃度薄層化層23およびアンドープGaAsからなる
低濃度層24を結晶成長する(第1図(a)参照)。こ
の結晶成長はエピタキシャル成長によって行われ、分子
線エピタキシ法(MBC)や有機金属気相成長法(MO
VPE)などを用いた結晶成長装置が使用される。高濃
度薄層化層23はドナー不純物濃度が4×1018個/
cm3と高く、また、層厚が100Aと薄く形成されて
いる。また、低濃度層24には不純物が含まれておらず
、層厚は300Aに形成されている。
次に、フォトリソグラフィ技術を用いて低濃度層24上
に素子間分離のためのマスクパターンヲ形成する。そし
て、このマスクパターンを利用したメサエッチングによ
り、バッファ層22.高濃度薄層化層23および低濃度
層24を選択的に除去し、各素子間を電気的に分離する
(同図(b)参照)。分離後、低濃度層24上のマスク
パターンを除去する。
次に、同様なフォトリソグラフィ技術を用いて、低濃度
層24上に有機材料または絶縁物からなるダミーゲート
25のパターンを形成する。そして、このダミーゲート
25をマスクにし、イオン注入技術によって基板上に8
1イオンを高濃度に注入する。このイオン注入により、
高濃度薄層化層23および低濃度層24にn 形の高濃
度層26が形成される(同図(c)参照)。この高濃度
層26は、ダミーゲート25に対して自己整合的に形成
されている。
次に、ダミーゲート25を含む基板全体上に絶縁物を堆
積し、この後、ダミーゲート25をリフトオフする。こ
の結果、ダミーゲート25の跡に反転パターンを有する
絶縁膜27が形成される(同図(d)参照)。この後、
タングステン・ハロゲンランプを光源に用いて、900
℃の温度下で短時間(2秒間)のアニール処理を施し、
注入されたSiイオンの活性化を行う。
次に、フォトリソグラフィ技術により、絶縁膜27上に
オーミック電極パターンを形成し、ソースおよびドレイ
ン電極に位置する絶縁膜27を選択的に除去し、高濃度
層26を部分的に露出させる。そして、露出した高濃度
層26および電極パターン上に金属を蒸着し、蒸着後、
電極パターンをり、フトオフする。引き続いて合金化処
理を施し、蒸着した金属と高濃度層26とのオーミック
接触を取る。この結果、ソース電極28およびドレイン
電極29が形成される(同図<e>参照)。
次に、同様なフォトリングラフィ技術により基板表面に
ゲート電極パターンを形成し、さらに、この電極パター
ン上に金属を蒸着する。そして、蒸着後、ゲート電極パ
ターンをリフトオフし、ゲート電極30を形成する。
以上の各製造工程を経ることにより、第2図に示される
構造のMESFETが完成される。なお、同図において
第1図と同一部分については同符号を用いである。
このような構造において、ソース電極28およびドレイ
ン電極29間の電流の通り道であるチャネルは、不純物
が高濃度に含まれたn形の高濃度薄層化層23に形成さ
れる。従って、チャネル厚は高濃度薄層化層23の厚さ
に比例し、薄く形成される。しかも、本実施例によるF
ETはゲート部がリセス構造ではなく、ブレーナ構造に
なっており、ゲート電極30はリセスエッチングを施さ
ない平坦な低濃度層24上に形成されている。従って、
ゲート領域部を従来のようにエツチングする必要はなく
なり、エツチングのバラツキに起因する素子特性のバラ
ツキがなくなって製造歩留まりは向上する。
また、高濃度層26はゲート電極30に対して自己整合
的に形成されている。このため、ゲート電極30のショ
ットキ接合部の端部からソース電極28およびドレイン
電極29までの一帯が高濃度になり、ソース寄生抵抗が
十分に低減される。
従って、高周波特性に優れた素子が得られる。また、高
濃度層26は短時間でアニール処理されるため、高濃度
層26から他の層への不純物の拡散は少ない。
また、チャネルが形成される活性層は高濃度薄層化して
いるため、FETで問題となる短チヤネル効果は少なく
、ゲート長を短縮していっても素子特性は劣化しない。
また、活性層である高濃度薄層化層23上に不純物が含
まれていない低濃度層24を設け、この低濃度層24上
にゲート電極30を形成しているため、ショットキ特性
は劣化しない。また、FETの各層はGaAsを同一材
料として形成されているため、各層の界面での構成原子
の拡散といった問題もなく、制御性の良い層が得られる
。高濃度層26と低濃度層24との界面でも、それぞれ
の構成原子の拡散がほとんどなく、界面の劣化は生じな
い。
第3図は、本発明の第2の実施例による製造方法によっ
て製造されたMESFETの断面を示している。本実施
例によるMESFETはゲート電極の形状が上記の第1
の実施例と相違しており、その製造方法は以下のようで
ある。
まず、半絶縁性のGaAs半導体基板31上にGaAs
からなるバッファ層32をエピタキシャル成長する。次
に、不純物を高濃度に含む層厚の薄い高濃度薄層化層3
3をバッファ層32上にエピタキシャル成長する。引き
続いて、この高濃度薄層化層33と同じGaAs材料か
らなり、不純物を低濃度に含む、表面が平坦な低濃度層
34を高濃度薄層化層33上にエピタキシャル成長する
次に、フォトリソグラフィ技術を用いて、低濃度層34
の平坦な表面上にゲート電極35を形成する。そして、
このゲート電極35をマスクとするイオン注入法により
、ゲート電極35に対して自己整合的に高濃度層36を
形成する。この後、この高濃度層36を短時間でアニー
ル処理する。そして、フォトリングラフィ技術を用いて
この高濃度層36上にソース電極37およびドレイン電
極38を形成する。
本実施例による製造方法によって製造されたFETも、
平坦な低濃度層34上にゲート電極35が形成され、リ
セス・エツチングに起因する従来の問題は生じない。そ
の他、上記第1の実施例と同様な効果を奏する。
〔発明の効果〕
以上説明したように本発明によれば、ゲート電極はリセ
スエッチングを施さない平坦な低濃度層上に形成され、
ゲート電極下に形成されるチャネルの厚さは高濃度薄層
化層の厚さによって決定される。
このため、従来のように、リセス・エツチングのバラツ
キに基づいて素子特性がバラツクといったことがなくな
り、製造歩留まりは向上する。しかも、FETの各層は
同一材料で形成されているため、簡素な構造でかつ制御
性の良い層が得られる。また、高濃度層はゲート電極に
対して自己整合的に形成されているため、ソース寄生抵
抗が小さくなる。
従って、本発明によれば高性能なFETが再現性、制御
性良く得られるため、MMIC(マイクロ波モノリシッ
クIC)などの基本素子として利用すると効果的である
【図面の簡単な説明】
第1図は本発明の第1の実施例による製造方法によって
ME S F ETが製造されるまでの各工程における
FET断面図、m2図は第1図に示された製造方法によ
って製造されたMESFETの構造を示す断面図、第3
図は本発明の第2の実施例による製造方法によって製造
されたMESFETの構造を示す断面図、第4図はりセ
ス構造を採用した従来のMESFETの構造を示す断面
図、第5図はリセス構造を採用した従来のHEMTの構
造を示す断面図である。 21・・・半絶縁性半導体基板(GaAs)、22・・
・バッファ層(アンドープGaAs)、23・・・高濃
度薄層化層(GaAs) 、24・・・低濃度層(アン
ドープG a A s ) 、26・・・高濃度層、2
7・・・絶縁膜、28・・・ソース電極、29・・・ド
レイン電極、30・・・ゲート電極。

Claims (1)

  1. 【特許請求の範囲】 1、不純物を高濃度に含む層厚の薄い高濃度薄層化層を
    半導体基板上に形成する工程と、この高濃度薄層化層と
    同じ材料からなり不純物を低濃度に含むまたは全く含ま
    ない表面が平坦な低濃度層を前記高濃度薄層化層上に形
    成する工程と、前記低濃度層の平坦な表面上にゲート電
    極を形成する工程と、このゲート電極をマスクとするイ
    オン注入法により前記ゲート電極に対して自己整合的に
    高濃度層を形成する工程と、この高濃度層を短時間でア
    ニール処理する工程と、前記高濃度層上にオーミック電
    極を形成する工程とを備えたことを特徴とする電界効果
    トランジスタの製造方法。 2、不純物を高濃度に含む層厚の薄い高濃度薄層化層を
    半導体基板上に形成する工程と、この高濃度薄層化層と
    同じ材料からなり不純物を低濃度に含むまたは全く含ま
    ない表面が平坦な低濃度層を前記高濃度薄層化層上に形
    成する工程と、前記低濃度層の平坦な表面上にダミーゲ
    ートを形成する工程と、このダミーゲートをマスクとす
    るイオン注入法により前記ダミーゲートに対して自己整
    合的に高濃度層を形成する工程と、この高濃度層を短時
    間でアニール処理する工程と、前記高濃度層上にオーミ
    ック電極を形成する工程と、前記ダミーゲート跡の反転
    パターンにゲート電極を形成する工程とを備えたことを
    特徴とする電界効果トランジスタの製造方法。
JP24362790A 1990-09-13 1990-09-13 電界効果トランジスタの製造方法 Pending JPH04122033A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24362790A JPH04122033A (ja) 1990-09-13 1990-09-13 電界効果トランジスタの製造方法
CA002089583A CA2089583A1 (en) 1990-09-13 1993-02-16 Field-effect transistor and process for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24362790A JPH04122033A (ja) 1990-09-13 1990-09-13 電界効果トランジスタの製造方法

Publications (1)

Publication Number Publication Date
JPH04122033A true JPH04122033A (ja) 1992-04-22

Family

ID=17106641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24362790A Pending JPH04122033A (ja) 1990-09-13 1990-09-13 電界効果トランジスタの製造方法

Country Status (1)

Country Link
JP (1) JPH04122033A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837510A2 (en) * 1996-10-16 1998-04-22 Sanyo Electric Co. Ltd Field effect transistor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837510A2 (en) * 1996-10-16 1998-04-22 Sanyo Electric Co. Ltd Field effect transistor and manufacturing method thereof
EP0837510A3 (en) * 1996-10-16 1999-07-21 Sanyo Electric Co. Ltd Field effect transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
US5336626A (en) Method of manufacturing a MESFET with an epitaxial void
JP2746482B2 (ja) 電界効果型トランジスタ及びその製造方法
US5159414A (en) Junction field effect transistor of a compound semiconductor
US5837570A (en) Heterostructure semiconductor device and method of fabricating same
US5514606A (en) Method of fabricating high breakdown voltage FETs
JPH0260222B2 (ja)
JPH04122033A (ja) 電界効果トランジスタの製造方法
JPH0523497B2 (ja)
JPH0212927A (ja) Mes fetの製造方法
JPH04122032A (ja) 電界効果トランジスタ
KR100261461B1 (ko) 비대칭 리쎄스 구조를 갖는 화합물반도체 소자의 제조 방법
GB2239557A (en) High electron mobility transistors
JPH05129345A (ja) マイクロ波集積回路の製造方法
JP2728427B2 (ja) 電界効果型トランジスタとその製法
KR100279250B1 (ko) 화합물 반도체 소자 및 그 제조방법
JP2682032B2 (ja) 半導体装置の製造方法
JP2867422B2 (ja) 電界効果型トランジスタ及びその製造方法
JPH06163602A (ja) 高電子移動度トランジスタ及びその製造方法
KR960000384B1 (ko) 에미터 재성장을 이용한 hbt소자의 제조방법
JPS6143443A (ja) 半導体装置の製造方法
JPH06232168A (ja) 電界効果トランジスタおよびその製造方法
JPH07254614A (ja) 化合物半導体装置
JPS60136264A (ja) 半導体装置の製造方法
JPS6223175A (ja) 半導体装置の製造方法