JPH04120228A - InとPが添加された耐腐食性に優れる黄銅 - Google Patents

InとPが添加された耐腐食性に優れる黄銅

Info

Publication number
JPH04120228A
JPH04120228A JP24075190A JP24075190A JPH04120228A JP H04120228 A JPH04120228 A JP H04120228A JP 24075190 A JP24075190 A JP 24075190A JP 24075190 A JP24075190 A JP 24075190A JP H04120228 A JPH04120228 A JP H04120228A
Authority
JP
Japan
Prior art keywords
brass
corrosion
corrosive
weight
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24075190A
Other languages
English (en)
Inventor
Keizo Kazama
風間 敬三
Toshihiro Kato
敏弘 加藤
Iwao Sato
巌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24075190A priority Critical patent/JPH04120228A/ja
Publication of JPH04120228A publication Critical patent/JPH04120228A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、復水器、加水加熱器、蒸留器、冷却器、遣水
装置等の熱交換器用の材料として、特に、自動車等に用
いられるラジェーターのチューブ材として好適な、耐腐
食性に優れた黄銅に関するものである。
[従来の技術] 従来、ラジェーターのチューブ材としては、黄銅、ある
いはこれに微量のPが添加された銅合金が一般的に利用
されて来ており、特に、機械的性質や成型性の面で優れ
た特性を発揮すると共に、他の銅合金に比較して安価に
て入手出来る事から、黄銅が広く用いられて来た。
しかし乍、近年に於ける様に、上記の機器を利用する領
域の拡大と、これを利用する環境の悪化が進展して行く
のに伴って、機器に使用されている材料は塩分濃度の高
い海浜の大気や排気ガス濃度の高い都市近郊の大気中で
使用される機会が多くなり、熱交換器の主要部で、材料
の腐食による機能の劣化が頻繁に認められる様になって
来た為、従来に増した耐腐食強度を有する材料の出現が
待たれる様になって来た。
[発明が解決しようとする課題] 通常の黄銅は、価格的には手頃であるものの、腐食雰囲
気で応力のかけられた場合に発生して来る応力腐食割れ
現象には極めて敏感であり、特に、軽量を要求される熱
交換器用の材料としては、薄物化が要求される為、ます
ます腐食環境に耐えやすい素材の供給が望まれる様にな
って来て居る。
本発明は、熱交換器用の素材に要求される性能を満足さ
せるものとして、熱伝導性や電気伝導性を低下させるこ
となく、素材価格もさほど高騰させずに、耐腐食性に優
れるという銅合金を提供する事を目的とするものである
[課題を解決するための手段] 本発明者等は、黄銅の脱亜鉛腐食性の改良を検討してい
る段階で、Cu−Zn合金にInとPとを含有させる事
によって黄銅の脱亜鉛腐食性の著しい改良が認められる
事を見出だすと共に、更に、この合金の結晶粒度を調整
する事によって、黄銅の耐腐食性を大幅に改善する事が
可能である事を見出だし、本発明に至ったものである。
即ち、本発明は、重量%でZnを25〜38%と、In
を0.05〜0.5%と、Pを0.005〜0.05%
含み、残部がCuおよび不可避不純物からなる黄銅であ
ると共に、その平均結晶粒径が2〜10μmに調整され
た素材を利用する事によって、上記の課題を解決出来る
事を開示せんとしたものである。
[作用コ 本発明に於いて、ZnはCuに固溶して材料強度を向上
させる機能を持たせる為のものであり、ここに、Znの
含有量を25〜38重量%と限定した理由は、Znの含
有量が25重量%未満では材料強度が十分でなくなると
共に、銅分が高くなる事から、価格の上昇を招く為であ
り、また、Znの含有量が38重量%を超えた場合には
β相の析出量が多量になり、材料の加工性が劣化して来
るためである。
次いで、Inは合金素地に固溶して黄銅の腐食形態を部
分的な脱亜鉛腐食から、全面的な腐食形態に移行させる
と共に、その腐食減量を軽減させる作用を為すものであ
るが、ここに、Inの含有量を0.05〜0.5重量%
と限定した理由は、Inの含有量が0.05重量%未満
では材料の脱亜鉛腐食を抑制する効果の向上が認められ
ず、更に、Inの含有量が0.5重量%を超えて含有さ
れる様になると、材料の全面腐食量が増加して来る為、
逆に腐食深さを軽減するという特性の向上効果が悪化し
て来る為である。
次いで、Pは、脱亜鉛腐食の形態を栓状から層状に変化
させる事によって、黄銅の腐食形態を部分的な脱亜鉛腐
食から、全面的な腐食形態に移行させると共に、その腐
食減量を軽減させる作用を為すものであるが、ここに、
Pの含有量を0.005〜0.05重量%と限定した理
由は、Pの含有量が0.005重量%未満では材料の脱
亜鉛腐食の形態を変化させる効果が認められず、更に、
Pの含有量が0.05重量%を超えて含有される様にな
ると、結晶粒界にPが偏析して来るようになり、結果的
に、粒界部分が優先的に腐食されてしまう為である。
最後に、材料の結晶粒度を調整する事は、材料の深さ方
向に向かって展開していく腐食進行力を抑制する為に必
要なものであるが、この場合、材料の平均結晶粒径を2
〜10μmに調整するのは、・平均結晶粒径が2μm未
満では加工組織が残存し易くなり、かえって、材料の耐
腐食性が悪化して来る為であり、平均結晶粒径が10μ
mを超える場合には、材料の全面腐食現象として認られ
る最大腐食深さを減少させる効果が失われる様になって
来る為である。
尚、材料の平均結晶粒径は、通常、最終焼鈍工程を終了
した状態で測定されるものであるが、ラジェーターのチ
ューブ材は、仕上げ工程に於ける圧延率が低い為、最終
の冷間圧延の前後に於いて平均結晶粒径に変化が認めら
れない事もあって、本明細書に於いて記述された平均結
晶粒径の値は、全て、最終冷間加工を終了した材料につ
いて測定されている。
[実施例コ 実施例1 電気銅3472gと、電気亜鉛1515gと、In12
gと、15%P−Cu母合金7gとを原料とし、分析値
としてZn30.3重量%と、Ino、24重量%と、
Po、019%と、残部CUとからなる銅合金を大気溶
解炉で溶製し、厚さ・30mm、幅100mm、長さ1
50mmのインゴットを得た。
得られたインゴットは表面を片側2mmづつ面側りした
後、温度850°Cにて熱間圧延して厚さ10mmの中
間材とし、さらに、この中間材の表面を片側1mmづつ
面側した後、3 m mの厚さまで冷間圧延を施し、あ
らためて温度600°Cにて1時間の中隔焼鈍を窒素雰
囲気中で行った。
中隔焼鈍を施した材料について、引き続いて冷間圧延を
施して厚さ0.4mmの条材とした後、温度450°C
にて1時間にわたる最終焼鈍を窒素雰囲気中で行い、条
材の平均結晶粒径を6μmに調整した後、さらに、冷間
加工を施して厚さ03mmの条材とし、この条材から幅
25 m m、長さ100mmの試験片を切り出し、結
晶粒度並びに耐腐食性の試験に供した。
材料の結晶粒度を測定する場合には、JISH0501
に規定された伸銅品結晶粒度試験方法の比較法に従って
測定すると共に、材料の耐腐食性を調べる試験方法とし
ては、JIS  Z2371に規定された塩水噴霧試験
方法を採用した。
この場合、試験片に対する塩水噴霧の処理時間は連続1
50時間とし、塩水噴霧処理の終了した試験片は幅方向
に6等分して切断された後、試験片の各切断面について
光学顕微鏡による腐食深さの測定を実施し、試験に供し
た幅25mmの試料の全長に亘っての計測を5箇所、都
合125mmについて行い、この間にあって、最も深く
腐食されている部分の深さをもって、その試料の最大腐
食深さとした。
以上の様にして計測された試料の最大腐食深さは4μm
であった。
実施例2 電気銅3545gと、電気亜鉛1445gと、I n9
gと、15%P−Cu母合金7gとを原料とし、分析値
としてZn28.9重量%と−In0.18重量%と、
Po、015%と、残部Cuとからなる銅合金を得、平
均結晶粒径を4μmとした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は5μmであった。
実施例3 電気銅3217gと、電気亜鉛1770gと、In7g
と、15%P−Cu母合金6gとを原料とし、分析値と
してZn35.4重量%と、In0.13重量%と、P
o、016%と、残部Cuとからなる銅合金を得、その
平均結晶粒径を7μmとした以外は、実施例1と同様な
方法にて処理された結果、計測された試料の最大腐食深
さは5μmであった。
実施例4 電気#i3235 gと、電気亜鉛1740gと、In
17gと、15%P−Cu母合金9gとを原料とし、分
析値としてZn34.8重量%と、■no、33重量%
と、Po、022%と、残部CUとからなる銅合金を得
、その平均結晶粒径を5μmとした以外は、実施例1と
同様な方法にて処理された結果、計測された試料の最大
腐食深さは6μmであった。
比較例1 平均結晶粒径が5μmに調整されたZn含有量30.5
重量%の黄銅を試料とした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は75μmであった。
比較例2 分析値としてZn35.5重量%と、I no。
02重量%と、Po、020%と、残部Cuとからなる
銅合金を得、その平均結晶粒径を7μmとした以外は、
実施例1と同様な方法にて処理された結果、計測された
試料の最大腐食深さは33μmであった。
比較例3 分析値としてZn35−6重量%と、I no。
10重量%と、残部Cuとからなる銅合金を得、その平
均結晶粒径を6μmとした以外は、実施例1と同様な方
法にて処理された結果、計測された試料の最大腐食深さ
は13μmであった。
比較例4 分析値としてZn30.6重量%と、I nO。
22重量%と、Po、068%と、残部Cuとからなる
銅合金を得、その平均結晶粒径を8μmとした以外は、
実施例1と同様な方法にて処理された結果、計測された
試料の最大腐食深さは70μmであった。
比較例5 分析値としてZn30.3重量%と、I no。
64重量%と、Po、018%と、残部Cuとからなる
銅合金を得、その平均結晶粒径を7μmとした以外は、
実施例1と同様な方法にて処理された結果、計測された
試料の最大腐食深さは25μmであった。
比較例6 分析値としてZn35.4重量%と、I no。
15重量%と、Po、015%と、残部Cuとからなる
銅合金を得、その平均結晶粒径を15μmとした以外は
、実施例1と同様な方法にて処理された結果、計測され
た試料の最大腐食深さは44μmであった。
以上の如く、本発明の実施による場合には、腐食環境に
あっても、高度な耐食性が示される素材を容易に入手す
る事が可能になった。
以上の計測結果を第1表として示す。
又、平均結晶粒径を変化させた同一組成の合金について
、材料の最大腐食深さを測定した結果を纏めて第2表に
示す。
(この頁以下余白) [発明の効果] 本発明の実施により、復水器、加水力n熱器、蒸留器、
冷却器、遣水装置等の熱交換器用の材料として、特に、
自動車等に用ν)られるラジェーターのチューブ材とし
て好適な、耐腐食性C二優れた黄銅を容易に入手する事
を可能にした為、斯業界(こ寄与するところ大なるもの
がある。

Claims (1)

  1. 【特許請求の範囲】 1)重量%でZnを25〜38%と、Inを0.05〜
    0.5%と、Pを0.005〜0.05%含み、残部が
    Cuおよび不可避不純物からなる事を特徴とするInと
    Pが添加された耐腐食性に優れる黄銅。 2)平均結晶粒径が2〜10μmである事を特徴とする
    請求項1記載のInとPが添加された耐腐食性に優れる
    黄銅。
JP24075190A 1990-09-10 1990-09-10 InとPが添加された耐腐食性に優れる黄銅 Pending JPH04120228A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24075190A JPH04120228A (ja) 1990-09-10 1990-09-10 InとPが添加された耐腐食性に優れる黄銅

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24075190A JPH04120228A (ja) 1990-09-10 1990-09-10 InとPが添加された耐腐食性に優れる黄銅

Publications (1)

Publication Number Publication Date
JPH04120228A true JPH04120228A (ja) 1992-04-21

Family

ID=17064168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24075190A Pending JPH04120228A (ja) 1990-09-10 1990-09-10 InとPが添加された耐腐食性に優れる黄銅

Country Status (1)

Country Link
JP (1) JPH04120228A (ja)

Similar Documents

Publication Publication Date Title
WO2001090430A1 (en) Corrosion resistant aluminium alloy
CZ2007615A3 (cs) Pájecí plech ze slitin hliníku a trubka výmeníku tepla ze slitin hliníku
JP5105389B2 (ja) アルミニウム合金の製造法
WO2019150822A1 (ja) 強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材および熱交換器
JP2003520295A5 (ja)
WO2019171951A1 (ja) 銅合金板材およびその製造方法
KR20210088670A (ko) 6xxx 알루미늄 합금
US4828936A (en) Aluminum alloy sheet excellent in high-temperature sagging resistance and sacrificial anode property and having high room-temperature strength
JP3347001B2 (ja) 耐熱性銅基合金
JP5952995B2 (ja) 熱交換器用アルミニウム合金フィン材
JP3728697B2 (ja) かしめ加工用アルミニウム合金板及びその製造方法
JP2005139530A (ja) 成形加工用アルミニウム合金板の製造方法
JPH04120228A (ja) InとPが添加された耐腐食性に優れる黄銅
JPH04236734A (ja) Sn、Mg及びPが添加された耐腐食性に優れる黄銅
Lee et al. Effects of cold rolling parameters on sagging behavior for three layer Al− Si/Al− Mn (Zn)/Al− Si brazing sheets
JPH04120229A (ja) Inが添加された耐腐食性に優れる黄銅
JPH04120230A (ja) InとSbが添加された耐腐食性に優れる黄銅
JPH04120231A (ja) InとSbとPが添加された耐腐食性に優れる黄銅
JP4807484B2 (ja) 成形加工用アルミニウム合金板およびその製造方法
JPH04236735A (ja) In、Mg及びPが添加された耐腐食性に優れる黄銅
JPH04128332A (ja) Teが添加された耐腐食性に優れる黄銅
JPH04128335A (ja) TeとSbとPが添加された耐腐食性に優れる黄銅
JPH04128333A (ja) TeとPが添加された耐腐食性に優れる黄銅
JPH04128334A (ja) TeとSbが添加された耐腐食性に優れる黄銅
JP3253823B2 (ja) 熱交換器用アルミニウム合金製高強度高耐熱性フィン材の製造方法