JPH0399474A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0399474A
JPH0399474A JP23626889A JP23626889A JPH0399474A JP H0399474 A JPH0399474 A JP H0399474A JP 23626889 A JP23626889 A JP 23626889A JP 23626889 A JP23626889 A JP 23626889A JP H0399474 A JPH0399474 A JP H0399474A
Authority
JP
Japan
Prior art keywords
conductivity type
substrate
impurity
drain
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23626889A
Other languages
Japanese (ja)
Inventor
Akira Ando
安東 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23626889A priority Critical patent/JPH0399474A/en
Publication of JPH0399474A publication Critical patent/JPH0399474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a semiconductor device which is excellent in write efficiency and readout characteristics and densely integrated by a method wherein impurity is of the same conductivity type as the substrate is diffused into the substrate at the same time when impurity whose conductivity type is opposite to that of a semiconductor substrate is diffused into the substrate to form a source and a drain region. CONSTITUTION:Impurity such as boron 14 whose conductivity type is the same as that of a silicon substrate 1 is injected into the substrate 1. At this point, a high impurity concentration layer 15 whose conductivity type is the same as that of the substrate 1 is formed on the regions of the surface of the substrate 1 which are to serve as a source and a drain. Then, impurity such as arsenic 16 whose conductivity type is opposite to that of the substrate 1 is injected into the substrate 1 to form injected layers 17 which serve as a drain and source region later. Next, impurity injected into the injected layers 17 is diffused by a thermal treatment to form a source region 7 and a drain region 8. A impurity concentration layer 15 whose conductivity type is the same as that of the silicon substrate is formed outside the source region 7 and the drain region 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特にアバランシェ注入を用いてデータを書
き込む不揮発性メモリー半導体装置の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention particularly relates to a method of manufacturing a nonvolatile memory semiconductor device in which data is written using avalanche injection.

〔従来の技術〕[Conventional technology]

従来のこの種の装置として、最も一般的に採用されてい
るものとして第5図に示す2層ゲート構造を有するNチ
ャネル型E F ROM (Electrically
 Promable Read 0nly Memor
y)装置がある。第5図aはこのEPROM装置の平面
図であり、第5図すは第5図aのI−I線での断面図、
第5図Cは第5図aの■−■線での断面図である。
The most commonly used conventional device of this type is an N-channel type E F ROM (Electrically
Promable Read Only Memory
y) There is a device. FIG. 5a is a plan view of this EPROM device, and FIG.
FIG. 5C is a sectional view taken along the line ■--■ in FIG. 5a.

図において、1はP型のシリコン基板、2は素子分離用
のフィールド酸化膜、3は第1ゲート酸化膜、4は浮遊
ゲートである第1多結晶シリコン膜、5は第2ゲート酸
化膜、6は制御ゲートである第2多結晶シリコン膜、7
および8はそれぞれ第2多結晶シリコン膜6およびフィ
ールド酸化膜2をマスクにしてシリコン基板1中に形成
されたソース領域、およびドレイン領域である。また、
9は眉間絶縁膜であるPSG膜、lOはアルミ配線であ
る。
In the figure, 1 is a P-type silicon substrate, 2 is a field oxide film for element isolation, 3 is a first gate oxide film, 4 is a first polycrystalline silicon film which is a floating gate, 5 is a second gate oxide film, 6 is a second polycrystalline silicon film serving as a control gate; 7
and 8 are a source region and a drain region formed in silicon substrate 1 using second polycrystalline silicon film 6 and field oxide film 2 as masks, respectively. Also,
9 is a PSG film which is an insulating film between the eyebrows, and lO is an aluminum wiring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように構成されたEPROM装置において、シリコ
ン基板1表面付近のチャネル領域11にP型不純物拡散
層12を設けて、ホットエレクトロンの発生を促進し書
き込み効率を向上させることは、特公昭64−3072
号公報に示されている通り良く知られている。
In the EPROM device configured as described above, it is disclosed in Japanese Patent Publication No. 64-3072 that the P-type impurity diffusion layer 12 is provided in the channel region 11 near the surface of the silicon substrate 1 to promote the generation of hot electrons and improve the writing efficiency.
It is well known as shown in the publication.

この第5図に示したEPROM装置では、チャネル領域
!!全体に、レジストをマスクにしてP型不純物拡散層
12を形成した場合を示しているが、この場合書き込み
効率を向上させる目的で、P型不純物拡散層!2の不純
物濃度を上げると、初期(浮遊ゲートにエレクトロンが
ない状態)のしきい値電圧も大幅に上がり、ROMとし
ての読み出し特性が悪くなる。
In the EPROM device shown in FIG. 5, the channel region! ! The overall figure shows the case where a P-type impurity diffusion layer 12 is formed using a resist as a mask. When the impurity concentration of 2 is increased, the initial threshold voltage (when there are no electrons in the floating gate) also increases significantly, and the read characteristics as a ROM deteriorate.

そこで、特公昭64−3072号公報に示されているよ
うに、ホットエレクトロンが発生するのはドレイン領域
8近傍のチャネル領域であることから、ドレイン領域8
近傍のチャネル領域にのみレジストを開孔してP型不純
物拡散層!2を形成させる方法が考えられるが、この方
法だと制御ゲート6とのマスク合せ余裕を採る必要があ
り、微細化が困難であるという問題が生じる。
Therefore, as shown in Japanese Patent Publication No. 64-3072, hot electrons are generated in the channel region near the drain region 8.
A P-type impurity diffusion layer is formed by opening a resist hole only in the nearby channel region! 2 is considered, but this method requires a margin for mask alignment with the control gate 6, causing the problem that miniaturization is difficult.

一方、マスクを必要とせずチャネル領域11の一部にの
みP型不純物拡散層12を設ける方法として、米国特許
第4114255号に示されたものがある。ここでは、
素子分離の目的でフィールド酸化WA2の下に形成され
るシリコン基板1と同一導電型不純物層を、横方向にも
充分拡散させてチャネル領域に達しせしめたものである
。この場合ドレイン領域8とソース領域7との間にチャ
ネル領域の不純物濃度の異なるトランジスタが2個並列
に並んだ状態となる0通常のEPROMは、各々のメモ
リトランジスタのドレイン領域8と制御ゲート6が共通
でマトリックス状に配置されている0例えばLM EF
ROMでは1本のアルミ配1iioに512個又は10
24個のメモリ・トランジスタのドレインが接続される
のが普通である。EPROMの書き込みはドレインに7
〜lOV程度の比較的高い電圧を印加して行われるが、
前記の並列に並んだメモリトランジスタがパンチスルー
すればドレイン領域8の電圧が低下して書き込みの低下
を招く、前記米国特許第4114255号に示されてい
るメモリ・トランジスタはチャネル領域に不純物濃度の
低いトランジスタが並んでいるため以上のような問題が
起こりやすい。
On the other hand, as a method of providing P-type impurity diffusion layer 12 only in a part of channel region 11 without requiring a mask, there is a method shown in US Pat. No. 4,114,255. here,
An impurity layer of the same conductivity type as the silicon substrate 1, which is formed under the field oxidation WA2 for the purpose of element isolation, is sufficiently diffused in the lateral direction to reach the channel region. In this case, two transistors with different impurity concentrations in the channel regions are arranged in parallel between the drain region 8 and the source region 7. In a normal EPROM, the drain region 8 and control gate 6 of each memory transistor are arranged in parallel. 0 that are common and arranged in a matrix, for example LM EF
In ROM, there are 512 or 10 pieces on one aluminum 1iio.
Typically, the drains of 24 memory transistors are connected. When writing to EPROM, write 7 to the drain.
It is performed by applying a relatively high voltage of ~1OV,
If the memory transistors arranged in parallel are punched through, the voltage of the drain region 8 will drop, resulting in a decrease in write performance.The memory transistor shown in the above-mentioned U.S. Pat. No. 4,114,255 has a channel region with a low impurity concentration. Because the transistors are lined up side by side, the above problems are likely to occur.

この発明は上記のような従来の問題点を解消するために
なされたもので、書き込み効率と読み出し特性の良好な
高密度に集積された半導体装置を得るための製造方法を
提供することを目的とする。
This invention was made to solve the above-mentioned conventional problems, and its purpose is to provide a manufacturing method for obtaining a densely integrated semiconductor device with good write efficiency and read characteristics. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、半導体基板内
のチャネル領域上に浮遊ゲート電極および制御ゲート電
極がそれぞれ絶縁膜を介して形成され、アバランシェ注
入により書き込みが行われる不揮発性メモリの半導体装
置の製造方法であって; 第1導電型を有する半導体基板の一生面上に第1の絶縁
膜、第1の導体層、第2の絶縁膜、および第2の導体層
を形成し、前記不揮発性メモリ・トランジスタのソース
・ドレイン間隔を決定するようレジストをマスクに、順
次第2の導体層、第2の絶縁膜、および第1の導体層を
エツチングする工程と、 前記レジスト、第2の導体層又は第1の導体層をマスク
にして、前記半導体基板と同じ第1導電型の不純物を、
少なくともチャネル近傍のドレイン領域となる半導体基
板内に注入する工程と、前記レジスト、第2の導体層又
は第1の導体層をマスクにして、前記第1導電型と反対
導電型(第2導電型)の不純物を、ソースおよびドレイ
ンとなる領域の半導体基板内に注入する工程と、前記半
導体基板に注入された前記第1導電型の不純物および前
記第2導電型の不純物を拡散する工程とを備えたことを
特徴とする。
A semiconductor device manufacturing method according to the present invention is a nonvolatile memory semiconductor device in which a floating gate electrode and a control gate electrode are respectively formed on a channel region in a semiconductor substrate via an insulating film, and writing is performed by avalanche injection. A manufacturing method, comprising: forming a first insulating film, a first conductor layer, a second insulating film, and a second conductor layer on a whole surface of a semiconductor substrate having a first conductivity type, and etching a second conductor layer, a second insulating film, and a first conductor layer in sequence using a resist as a mask to determine the source-drain distance of the memory transistor; and etching the resist and the second conductor layer. Alternatively, using the first conductor layer as a mask, impurities of the same first conductivity type as the semiconductor substrate are added,
A step of implanting into the semiconductor substrate which will become a drain region at least near the channel, and a step of implanting a conductive material of a conductivity type opposite to the first conductivity type (a second conductivity type) using the resist, the second conductor layer, or the first conductor layer as a mask. ) into the semiconductor substrate in regions that will become sources and drains; and diffusing the first conductivity type impurity and the second conductivity type impurity implanted into the semiconductor substrate. It is characterized by:

〔作用〕[Effect]

この発明の半導体装置の製造方法においては、半導体基
板と反対導電型の不純物を拡散してソース領域およびド
レイン領域を形成する際に、同時に前記半導体基板と同
一導電型の不純物を拡散することにより、少なくともド
レイン領域の外側に前記半導体基板と同一導電型の高濃
度不純物拡散領域を形成することができる。
In the method for manufacturing a semiconductor device of the present invention, when forming a source region and a drain region by diffusing an impurity of a conductivity type opposite to that of the semiconductor substrate, at the same time, by diffusing an impurity of the same conductivity type as the semiconductor substrate, A high concentration impurity diffusion region having the same conductivity type as the semiconductor substrate can be formed at least outside the drain region.

これにより、例えばEPROM装置のメモリ・トランジ
スタのドレイン近傍のチャネル領域の不純物濃度を高く
して、書き込みの効率を向上させることができるととも
に、チャネル領域の一部(ドレイン近傍)のみ不純物濃
度を高くでき、しきい値電圧を抑えて読み出し特性を向
上させることができる。
As a result, for example, it is possible to increase the impurity concentration in the channel region near the drain of a memory transistor in an EPROM device to improve writing efficiency, and it is also possible to increase the impurity concentration only in a part of the channel region (near the drain). , it is possible to suppress the threshold voltage and improve read characteristics.

また、ドレイン領域とソース領域間に直列にチャネル領
域の不純物濃度の異なるトランジスタを配置でき、パン
チスルーの発生を抑えることができる。
Further, transistors having different impurity concentrations in the channel regions can be arranged in series between the drain region and the source region, and the occurrence of punch-through can be suppressed.

〔実施例〕〔Example〕

以下、この発明の一実施例をNチャネル浮遊ゲート型E
PROM装置を例に挙げて説明する。
Hereinafter, one embodiment of the present invention will be described as an N-channel floating gate type E.
This will be explained using a PROM device as an example.

第1図a〜eはこの実施例によるEPROM装置の製造
工程を示す断面図、第2図は前記EPROM装置の完成
断面図である。なお、第1図a〜eおよび第2図は前述
した第5図a(平面図)のI−I線方向の断面図を示し
ている。
1A to 1E are sectional views showing the manufacturing process of the EPROM device according to this embodiment, and FIG. 2 is a sectional view of the completed EPROM device. Note that FIGS. 1A to 1E and FIGS. 2A and 2B show cross-sectional views taken along the line I--I of FIG. 5A (plan view) described above.

まず、第1図aに示すように、P型のシリコン基板1の
一生面上の非活性領域に選択酸化法を用いて厚さ約0.
61Jj程度のフィールド酸化膜2を形成し、活性領域
には厚さ300人程堆積第1ゲート酸化膜3を熱酸化に
より形成する。
First, as shown in FIG. 1a, a non-active region on the entire surface of a P-type silicon substrate 1 is oxidized to a thickness of approximately 0.
A field oxide film 2 of about 61 Jj is formed, and a first gate oxide film 3 of about 300 layers thick is formed in the active region by thermal oxidation.

次に第1図すに示すように、浮遊ゲートとなる第1多結
晶シリコン膜4をCVD法を用いて約3000人堆積し
、これにリン等の不純物を熱拡散させる0次に、前記第
1多結晶シリコン膜4を浮遊ゲートの長さ(第5図aの
距離りを決定するように写真製版技術を用いてエツチン
グする。その後、第1多結晶シリコン膜4を熱酸化する
ことにより第2ゲート酸化膜5を形成し、さらにその上
に制御ゲートとなる第2多結晶シリコン膜6をCVD法
を用いて約4000人堆積し、これにリン等の不純物を
熱拡散させる0次に、写真製版技術を用いて、レジスト
!3をマスクにメモリ・トランジスタのソース・ドレイ
ン間隔を決めるように、順次、第2多結晶シリコン膜6
.第2ゲート酸化膜5.および第1多結晶シリコン膜4
をエツチングする。
Next, as shown in FIG. 1, a first polycrystalline silicon film 4, which will become a floating gate, is deposited by about 3,000 people using the CVD method, and then an impurity such as phosphorus is thermally diffused into the first polycrystalline silicon film 4. The first polycrystalline silicon film 4 is etched using photolithography to determine the length of the floating gate (the distance shown in FIG. 5a). Thereafter, the first polycrystalline silicon film 4 is thermally oxidized to A second polycrystalline silicon film 6, which will become a control gate, is deposited on the second gate oxide film 5 by approximately 4,000 people using the CVD method. Using photolithography, the second polycrystalline silicon film 6 is sequentially formed using the resist!3 as a mask to determine the source-drain distance of the memory transistor.
.. Second gate oxide film5. and first polycrystalline silicon film 4
etching.

次に、第1図Cに示すように、シリコン基板1と同−導
電型不純物例えばボロン14をイオン注入技術を用いて
、50K eVのエネルギーでI X 10”cm−’
注入する。この際、シリコン基板1表面のソース及びド
レインとなる領域に、シリコン基板1と同一導電型不純
物の高濃度層15が形成される。
Next, as shown in FIG. 1C, an impurity of the same conductivity type as that of the silicon substrate 1, such as boron 14, is implanted using an ion implantation technique at an energy of 50 K eV to I.times.10"cm.sup.-'
inject. At this time, a high concentration layer 15 of impurities of the same conductivity type as the silicon substrate 1 is formed on the surface of the silicon substrate 1 in regions that will become the source and drain.

次に、第1図dに示すように、ソース・ドレイン領域の
表面上の酸化膜3aとレジスト13を除去した後、シリ
コン基板1と反対導電型不純物例えば砒素16をイオン
注入技術を用いて50KeVのエネルギーにより4×1
01′cI11−2注入し、後にソース領域およびドレ
イン領域となる注入層17を形成する。
Next, as shown in FIG. 1d, after removing the oxide film 3a and resist 13 on the surfaces of the source/drain regions, an impurity of a conductivity type opposite to that of the silicon substrate 1, such as arsenic 16, is implanted at 50 KeV using ion implantation technology. 4×1 due to the energy of
01'cI11-2 implantation is performed to form an implantation layer 17 which will later become a source region and a drain region.

次に、第1図eに示すように、950℃、20分程度の
熱処理を施すことにより、前記注入層17に注入された
不純物が拡散され、ソース領域7とドレイン領域8を形
成する。また、このソース領域7とドレイン領域8の外
側にはシリコン基板1と同一導電型不純物の高濃度層1
5が形成される。
Next, as shown in FIG. 1e, heat treatment is performed at 950° C. for about 20 minutes to diffuse the impurities injected into the injection layer 17, forming a source region 7 and a drain region 8. Further, on the outside of the source region 7 and drain region 8, a high concentration layer 1 of impurities of the same conductivity type as the silicon substrate 1 is provided.
5 is formed.

その後、従来技術に述べたと同様に、眉間絶縁膜である
PSG膜9およびアルミ配線lOを形成して第2図に示
すEPROM装置を完成する。
Thereafter, in the same manner as described in the prior art, a PSG film 9, which is an insulating film between the eyebrows, and an aluminum wiring line 10 are formed to complete the EPROM device shown in FIG.

以上のように、上記実施例による半導体装置の製造方法
では、ソース・ドレイン領域に注入されたシリコン基板
1と同一導電型不純物のボロン14は、ソース領域7お
よびドレイン領域8の拡散層を形成するために注入され
た砒素16より拡散係数が大きいため、第1図e及び第
2図に示すようにソース領域7およびドレイン領域8の
外側に、シリコン基板1と同じ導電型不純物の高濃度層
15を、マスクを必要とせず自己整合的に形成すること
ができる。
As described above, in the method for manufacturing a semiconductor device according to the above embodiment, boron 14, which is an impurity of the same conductivity type as that of the silicon substrate 1, implanted into the source/drain regions forms the diffusion layers of the source region 7 and the drain region 8. As shown in FIG. 1e and FIG. 2, a high concentration layer 15 of an impurity of the same conductivity type as the silicon substrate 1 is formed outside the source region 7 and drain region 8, as shown in FIG. 1e and FIG. can be formed in a self-aligned manner without requiring a mask.

第3図はソース・ドレイン間のチャネル領域11の表面
付近での不純物濃度分布を示したものであり、実線aは
この発明の前記実施例による場合であり、点線すは従来
技術による場合である。従来技術(点線b)の場合およ
び前記実施例(実線a)のチャネル領域11中央での不
純物濃度は共に約4X IQ”am−ゝであるのに対し
て、前記実施例(実線a)のドレイン領域8近傍の不純
物濃度のピーク値は約7 X 10 * 6 cIll
−*である。
FIG. 3 shows the impurity concentration distribution near the surface of the channel region 11 between the source and drain, where the solid line a is for the case according to the embodiment of the present invention, and the dotted line is for the case according to the prior art. . The impurity concentration at the center of the channel region 11 in both the prior art (dotted line b) and the embodiment (solid line a) is approximately 4X IQ"am-", whereas the impurity concentration in the drain in the embodiment (solid line a) The peak value of impurity concentration near region 8 is approximately 7 x 10 * 6 cIll
−*.

また、チャネル領域!!中央よりドレイン領域8近傍の
不純物濃度を上げるなめには、ソース領域7およびドレ
イン領域8に注入するボロン14は50KeVのエネル
ギーにて2×10口cIn″2程度以上注入する必要が
あることが判った。
Also, the channel area! ! It has been found that in order to increase the impurity concentration near the drain region 8 from the center, the boron 14 to be implanted into the source region 7 and drain region 8 needs to be implanted at an energy of 50 KeV to approximately 2×10 cIn''2 or more. Ta.

また、前記実施例で示したように、ソース・ドレイン領
域7.8にボロン14を50K eVにてI X 10
”(至)−2注入した場合メモリ・トランジスタの制御
ゲートから見なしきい値電圧は約1,2■であったが、
チャネル領域ti全面を第2図の実線aのチャネル不純
物ピーク値(7X 10”cm−3)と同様の不純物濃
度にした場合、前記のしきい値電圧は約2.0〜2.2
Vとなった。
In addition, as shown in the above embodiment, boron 14 was applied to the source/drain region 7.8 at 50 K eV at I x 10
” (to) When −2 was implanted, the threshold voltage seen from the control gate of the memory transistor was about 1.2■,
When the entire surface of the channel region ti is made to have the same impurity concentration as the channel impurity peak value (7X 10" cm-3) indicated by the solid line a in FIG. 2, the threshold voltage is approximately 2.0 to 2.2.
It became V.

さらに、ソース領域7およびドレイン領域8の拡散層の
外側にシリコン基板1と同一導電型不純物の高濃度層1
5を形成しているため、従来の問題点で述べたパンチス
ルー電圧は当然向上する。
Furthermore, a high concentration layer 1 of impurities of the same conductivity type as the silicon substrate 1 is provided outside the diffusion layers of the source region 7 and drain region 8.
5, the punch-through voltage mentioned in the conventional problem is naturally improved.

なお、前記実施例ではソース領域7およびドレイン領域
8の外側にシリコン基板1と同一導電型不純物の高濃度
層15を形成した場合を示したが、第4図a、bに示す
ように、シリコン基板1と同一導電型不純物(ボロン1
4)を注入する際、少なくともチャネル領域に隣接した
ドレイン側の領域の一部に開口部16aを有したレジス
ト16を写真製版技術を用いて形成した後、前記レジス
ト16をマスクにしてドレイン側の領域にのみシリコン
基板1と同一導電型不純物の高濃度層15を形成しても
、前記実施例とほぼ同様の効果がある。
In the above embodiment, a high concentration layer 15 of impurities of the same conductivity type as that of the silicon substrate 1 was formed outside the source region 7 and drain region 8, but as shown in FIGS. Impurities of the same conductivity type as substrate 1 (boron 1
4), after forming a resist 16 having an opening 16a in at least a part of the region on the drain side adjacent to the channel region using a photolithography technique, implanting the resist 16 on the drain side using the resist 16 as a mask. Even if the high concentration layer 15 of impurities of the same conductivity type as the silicon substrate 1 is formed only in the region, substantially the same effect as in the embodiment described above can be obtained.

また、前記実施例においては、ゲートエツチング用のレ
ジスト13と第1ゲート用の酸化膜3aを残した状態で
、ボロン14のイオン注入を行ったが、レジスト13、
酸化r!A3aを除去した状態でイオン注入を行っても
よい。
Further, in the above embodiment, boron 14 ions were implanted with the resist 13 for gate etching and the oxide film 3a for the first gate left;
Oxidation r! Ion implantation may be performed with A3a removed.

また、シリコン基板1と同一導電型不純物(ボロン14
)を注入した後(第1図c)、所定の熱処理を行ってこ
の同一導電型不純物(ボロン14)の拡散を行ってから
、ソース領域7およびドレイン領域8の拡散層を形成し
ても良く、またPチャネルトランジスタに適用しても同
様の効果がある。
In addition, an impurity of the same conductivity type as the silicon substrate 1 (boron 14
) (FIG. 1c), the impurity of the same conductivity type (boron 14) is diffused by performing a predetermined heat treatment, and then the diffusion layers of the source region 7 and drain region 8 may be formed. , and a similar effect can be obtained even when applied to a P-channel transistor.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明の半導体装置の製造方法によれば
、EFROM装置等のメモリ・トランジスタのドレイン
近傍のチャネル領域の不純物濃度を高くすることができ
、書き込みの効率を向上させることができる。また、チ
ャネル領域の一部(ドレイン近傍)のみ不純物濃度を高
くすることができるので、しきい値電圧を抑えて読み出
し特性を向上させることができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the impurity concentration in the channel region near the drain of a memory transistor such as an EFROM device can be increased, and writing efficiency can be improved. Further, since the impurity concentration can be increased only in a portion of the channel region (near the drain), the threshold voltage can be suppressed and the read characteristics can be improved.

また、ドレイン領域とソース領域間に直列にチャネル領
域の不純物濃度の異なるトランジスタを配置でき、パン
チスルーの発生を抑えることができる効果がある。
Further, transistors having different impurity concentrations in the channel regions can be arranged in series between the drain region and the source region, which has the effect of suppressing the occurrence of punch-through.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a % eはこの発明の一実施例による半導体装
置の製造方法を示す工程断面図、第2図は前記製造方法
により作成された半導体装置、第3図はチャネル領域表
面の不純物濃度分布を示した図、第4図a〜bはこの発
明の他の実施例の半導体装置の製造方法を示す工程断面
図、第5図a −cはそれぞれ従来の半導体装置を示す
平面図、  I−I線断面図、m−1t線断面図である
。 図中、1はシリコン基板、3は第1ゲート酸化膜、4は
第1多結晶シリコン膜、5は第2ゲート酸化膜、6は第
2多結晶シリコン膜、7はソース領域、8はドレイン領
域、13.16はレジスト、14はボロン、15は高濃
度層、16は砒素である。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 a % e is a process cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a semiconductor device manufactured by the above manufacturing method, and FIG. 3 is an impurity concentration distribution on the surface of a channel region. 4a to 4b are process sectional views showing a method of manufacturing a semiconductor device according to another embodiment of the present invention, and FIGS. 5a to 5c are plan views showing a conventional semiconductor device, respectively. They are a sectional view taken along the I line and a sectional view taken along the m-1t line. In the figure, 1 is a silicon substrate, 3 is a first gate oxide film, 4 is a first polycrystalline silicon film, 5 is a second gate oxide film, 6 is a second polycrystalline silicon film, 7 is a source region, and 8 is a drain The regions 13 and 16 are resist, 14 is boron, 15 is a high concentration layer, and 16 is arsenic. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 半導体基板内のチャネル領域上に浮遊ゲート電極および
制御ゲート電極がそれぞれ絶縁膜を介して形成され、ア
バランシェ注入により書き込みが行われる不揮発性メモ
リの半導体装置の製造方法であって; 第1導電型を有する半導体基板の一主面上に第1の絶縁
膜、第1の導体層、第2の絶縁膜、および第2の導体層
を形成し、前記不揮発性メモリ・トランジスタのソース
・ドレイン間隔を決定するようレジストをマスクに、順
次第2の導体層、第2の絶縁膜、および第1の導体層を
エッチングする工程と、 前記レジスト、第2の導体層又は第1の導体層をマスク
にして、前記半導体基板と同じ第1導電型の不純物を、
少なくともチャネル近傍のドレイン領域となる半導体基
板内に注入する工程と、前記レジスト、第2の導体層又
は第1の導体層をマスクにして、前記第1導電型と反対
導電型(第2導電型)の不純物を、ソースおよびドレイ
ンとなる領域の半導体基板内に注入する工程と、前記半
導体基板に注入された前記第1導電型の不純物および前
記第2導電型の不純物を拡散することにより、ソースお
よびドレイン領域と、少なくともドレイン領域のチャネ
ル近傍外側に第1導電型の高濃度不純物拡散層を形成す
る工程を備えたことを特徴とする半導体装置の製造方法
[Scope of Claim] A method for manufacturing a semiconductor device of a nonvolatile memory in which a floating gate electrode and a control gate electrode are each formed on a channel region in a semiconductor substrate via an insulating film, and writing is performed by avalanche injection. forming a first insulating film, a first conductor layer, a second insulating film, and a second conductor layer on one main surface of a semiconductor substrate having a first conductivity type; etching a second conductor layer, a second insulating film, and a first conductor layer in sequence using a resist as a mask to determine a source-drain interval; Using the conductor layer as a mask, impurities of the same first conductivity type as the semiconductor substrate are added,
A step of implanting into the semiconductor substrate which will become a drain region at least near the channel, and a step of implanting a conductive material of a conductivity type opposite to the first conductivity type (a second conductivity type) using the resist, the second conductor layer, or the first conductor layer as a mask. ) into the semiconductor substrate in regions that will become sources and drains, and by diffusing the first conductivity type impurity and the second conductivity type impurity implanted into the semiconductor substrate. and a drain region, and a step of forming a first conductivity type high concentration impurity diffusion layer at least outside the drain region near a channel.
JP23626889A 1989-09-12 1989-09-12 Manufacture of semiconductor device Pending JPH0399474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23626889A JPH0399474A (en) 1989-09-12 1989-09-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23626889A JPH0399474A (en) 1989-09-12 1989-09-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0399474A true JPH0399474A (en) 1991-04-24

Family

ID=16998266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23626889A Pending JPH0399474A (en) 1989-09-12 1989-09-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0399474A (en)

Similar Documents

Publication Publication Date Title
KR930007195B1 (en) Semiconductor device and its manufacturing method
JPH04211178A (en) Manufacture of semiconductor device
JP2001308321A (en) Semiconductor device and its manufacturing method
US7161210B2 (en) Semiconductor device with source and drain regions
JPH01259560A (en) Semiconductor integrated circuit device
JPH01283956A (en) Semiconductor device and preparation thereof
JPH0234936A (en) Semiconductor device and its manufacture
JP2001007224A (en) Semiconductor device and manufacture thereof
JP3063051B2 (en) Method for manufacturing semiconductor device
US6501147B1 (en) Process for manufacturing electronic devices comprising high voltage MOS transistors, and electronic device thus obtained
JPH10163338A (en) Semiconductor device and its manufacturing method
JPH0399474A (en) Manufacture of semiconductor device
JPH0147905B2 (en)
JPS62265765A (en) Semiconductor device and manufacture thereof
JPS63142676A (en) Manufacture of semiconductor device
JPS63280458A (en) Manufacture of vertical mos semiconductor element
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH088430A (en) Mos transistor and its forming method
JPH0964193A (en) Manufacture of semiconductor device
JP2770416B2 (en) Semiconductor storage device
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JPS60110167A (en) Manufacture of semiconductor device
JPH05251712A (en) Manufacture of nonvolatile semiconductor memory
JPH06232153A (en) Semiconductor device and manufacture thereof
JP2003115585A (en) Method for manufacturing semiconductor device