JPS60110167A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60110167A
JPS60110167A JP21904383A JP21904383A JPS60110167A JP S60110167 A JPS60110167 A JP S60110167A JP 21904383 A JP21904383 A JP 21904383A JP 21904383 A JP21904383 A JP 21904383A JP S60110167 A JPS60110167 A JP S60110167A
Authority
JP
Japan
Prior art keywords
gate electrode
region
electrode
oxide film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21904383A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21904383A priority Critical patent/JPS60110167A/en
Publication of JPS60110167A publication Critical patent/JPS60110167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)

Abstract

PURPOSE:To enhance the performance and the integration of a semiconductor device by forming a low density region only one of regions to become source and drain regions, thereby preventing the deterioration of the characteristics of an element. CONSTITUTION:The first gate oxide film 37, a floating gate electrode 38, the second gate oxide film 39 and a control gate electrode 40 are sequentially formed on a substrate 31. Then, with the electrode 40 as a mask As ions are implanted vertically directly from above, and with the electrode 40 as a mask As ions are implanted in high dosage. Subsequently, the impurity is activated by a heat treatment, an n type region 41 made of a low density diffused layer 41a near a channel region is formed on one side of the surface of the substrate 31, and an n<+> type region 42 made of a high density diffused layer is formed on the other side. Finally, electrodes 44, 45 are formed, and an EPROM cell is manufactured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にソース領域
あるいはドレイン領域のいずれか一方にのみチャネール
領域近傍に低711度領域が形成されたMO8半導体装
置の製造方法に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to an MO8 semiconductor device in which a low 711 degree region is formed in the vicinity of a channel region only in either the source region or the drain region. It pertains to the manufacturing method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年1MO8半導体装置の微細加工技術の進歩は著しく
、特にスイッチングスピードの改善という観点からチャ
ネル長の短縮化が図られ。
In recent years, there has been remarkable progress in microfabrication technology for 1MO8 semiconductor devices, and efforts have been made to shorten the channel length, particularly from the viewpoint of improving switching speed.

高集積化が推し進められている。High integration is being promoted.

しかしながら、チャネル長が短かくなるにつれ、ソース
、J−″レイン間に印加される電圧が低い場合でもチャ
ネル領域で電界集中が起こり。
However, as the channel length becomes shorter, electric field concentration occurs in the channel region even when the voltage applied between the source and the J-'' layer is low.

素子特性の点で種々の問題が発生している。Various problems have arisen in terms of device characteristics.

例えば、情報の再書換え可能な読出し専用半導体メモリ
(E P ROM 、 ErasableProgra
mmable Read 0nly Memory )
のメモリセルとしては、従来、第1図に示すような構造
のものが知られている。すなわち1図中1は例えばp型
シリコン基板であり、この基板1表面にはフィールド酸
化膜2が形成されている、このフィールド酸化族2によ
って囲まれた基板lの素子@肱表面には互いに磁気的に
分離してn十型ソース、ドレイン領域3,4が形成され
ている。また、ソース、ドレイン領域3゜4間のチャネ
ル領域上には第lのゲート酸化膜5を介してフローティ
ングゲート′岨極6が、更にこのフローティングゲート
電極6上には第2のゲート酸化膜7を介してコントロー
ルゲート電極8が形成されている。更に、全面には層間
絶縁膜9が堆積されており、この層間絶縁膜9上にはそ
れぞれコンタクトホールな介して前記ソース領域3と接
続するソース電極10及び前記ドレイン領域4と接続す
るドレイン電極11が形成されている。
For example, rewritable read-only semiconductor memory (EPROM, Erasable Program
mmable Read Only Memory)
Conventionally, a memory cell having a structure as shown in FIG. 1 is known. In other words, 1 in the figure is, for example, a p-type silicon substrate, and a field oxide film 2 is formed on the surface of this substrate 1. Elements of the substrate 1 surrounded by this field oxide group 2 have mutual magnetic fields. N+ type source and drain regions 3 and 4 are formed separately from each other. Furthermore, a floating gate electrode 6 is formed on the channel region between the source and drain regions 3.4 through a first gate oxide film 5, and a second gate oxide film 7 is further formed on this floating gate electrode 6. A control gate electrode 8 is formed through the gate. Further, an interlayer insulating film 9 is deposited on the entire surface, and on this interlayer insulating film 9, a source electrode 10 is connected to the source region 3 through a contact hole, and a drain electrode 11 is connected to the drain region 4, respectively. is formed.

こうした構成のメモリセルにおいて、情報の書込みはド
レイン電極11及びコントロールゲート電極8に例えば
+20V以上の高電圧を印加し、チャネル領域を流れる
電子によりドレイン領域4の近傍でアバランシェ現象を
起こさせ。
In the memory cell having such a configuration, information is written by applying a high voltage of, for example, +20 V or more to the drain electrode 11 and the control gate electrode 8, and causing an avalanche phenomenon near the drain region 4 by electrons flowing through the channel region.

一部の電子を第lのゲート酸化膜5を通してフローティ
ングゲートN極6に証人してトラップさせることにより
行なう。また、情報の読出しはドレイン゛電極11及び
コントロールゲート電極8に例えば+5V程度の電圧を
印加し、書込みが行なわれているか否かによるしきい値
電圧の変化に伴うトランジスタのオンあるいはオフによ
り判断する。
This is done by trapping some of the electrons through the first gate oxide film 5 to the floating gate N pole 6. Further, for reading information, a voltage of, for example, about +5V is applied to the drain electrode 11 and the control gate electrode 8, and judgment is made by turning on or off the transistor as the threshold voltage changes depending on whether writing is being performed or not. .

ところが、チャネル長が短くなると読み出し時に比較的
低いドレイン電圧(+5V程度)を印加した場合でもチ
ャネル領域に電界集中が起こり、電子は充分加速され、
アバランシェ現象を起こし得るようになる。このため1
本来情報が書込まれていないメモリセルのフローティン
グゲート電極6にも電子がトラップされて情報が書込ま
れたと同様な状態(情報の誤書込み)が発生する。
However, when the channel length becomes short, electric field concentration occurs in the channel region even when a relatively low drain voltage (about +5 V) is applied during readout, and electrons are sufficiently accelerated.
It becomes possible to cause an avalanche phenomenon. For this reason 1
A situation similar to that in which electrons are trapped in the floating gate electrode 6 of a memory cell to which information is originally not written and information is written (erroneous writing of information) occurs.

また、従来のMOS)ランジスタは第2図に示すような
構造を有している。すなわち1図中21は例えばp型シ
リコン基板であり、この基板21表面にはフィールド酸
化膜22が形成されている。このフィールド酸化膜22
によって囲まれた基板21の素子領域表面には互いに電
気的に分離してn+型ソース、ドレイン領域23.24
間のチャネル領域上にはゲート酸化膜25を介してゲー
ト電極26が形成されている。更に、全面には層間絶縁
膜27が堆積されており、この層間絶縁膜27上にはそ
れぞれコンタクトホールな介して前記ソース領域23と
接続するソース電@42B及び前記ドレイン領域24と
接続するドレイン電極29が形成されている。
Further, a conventional MOS transistor has a structure as shown in FIG. That is, 21 in FIG. 1 is, for example, a p-type silicon substrate, and a field oxide film 22 is formed on the surface of this substrate 21. This field oxide film 22
On the surface of the element region of the substrate 21 surrounded by
A gate electrode 26 is formed on the channel region between them with a gate oxide film 25 interposed therebetween. Further, an interlayer insulating film 27 is deposited on the entire surface, and on this interlayer insulating film 27, a source electrode @42B is connected to the source region 23 through a contact hole, and a drain electrode is connected to the drain region 24, respectively. 29 is formed.

こうした構造の従来のMOS )ランジスタにおいても
、チャネル長が短くなると、比較的低いドレイン電圧を
印加した場合でもドレイン領域24近傍のチャネル領域
における電界集中によりアバランシェ現象が起こり易く
なる。この結果、ゲート酸化膜25に電子がトラップさ
れてしきい値電圧が敦動する等素子特性の点で問題が生
じる。
Even in a conventional MOS transistor having such a structure, when the channel length becomes short, an avalanche phenomenon tends to occur due to electric field concentration in the channel region near the drain region 24 even when a relatively low drain voltage is applied. As a result, electrons are trapped in the gate oxide film 25, causing problems in device characteristics such as fluctuations in threshold voltage.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであり、ソース
、ドレイン領域となる領域のいずれか一方にのみ低濃度
領域を設けることにより、チャネル長の短縮に伴うチャ
ネル領域における電界集中を緩和させ素子特性の劣化を
防止できる高性能かつ高集積度の半導体装置を製造し得
る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and by providing a low concentration region only in either the source or drain region, the electric field concentration in the channel region due to the shortening of the channel length can be alleviated. The present invention aims to provide a method for manufacturing a high-performance, highly integrated semiconductor device that can prevent deterioration of characteristics.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は、第1導電型の半導体
基板上にゲート絶縁膜を介して少なくとも一層のゲート
電極を形成した後、ゲート電極をマスクとする鉛直上方
からの第2導電型不純物の低ドーズイオン注入及びゲー
ト電極をマスクとする斜め方向からの第2導電型不純物
の高ドーズイオン注入を行ない、更に熱処理によりソー
ス、ドレイン領域となる領域の一方にのみチャネル領域
近傍に低濃度拡散層が設けられた半導体装置を製造する
ものである。
The method for manufacturing a semiconductor device of the present invention includes forming at least one layer of a gate electrode on a semiconductor substrate of a first conductivity type via a gate insulating film, and then applying an impurity of a second conductivity type from vertically above using the gate electrode as a mask. Low-dose ion implantation and high-dose ion implantation of the second conductivity type impurity from an oblique direction using the gate electrode as a mask, followed by heat treatment to diffuse low concentration near the channel region only in one of the regions that will become the source and drain regions. This method manufactures a semiconductor device provided with layers.

こうした方法によれば、マスク合わせ等の煩雑な工程を
追加する必要なしに簡便な工程でソース、ドレイン領域
となる領域のいずれか一方にのみチャネル領域近傍に低
濃度拡散層が設けらnた半導体装置を製造することがで
きる。このような半導体装置ではチャネル領域における
電界集中を有効に防止することができるので。
According to this method, a low concentration diffusion layer is provided in the vicinity of the channel region only in one of the regions that will become the source and drain regions in a simple process without the need for additional complicated steps such as mask alignment. The device can be manufactured. In such a semiconductor device, electric field concentration in the channel region can be effectively prevented.

例えばEPROMセルにおける誤書込みやMOSトラン
ジスタにおけるしきい値電圧の変動等の菓子特性の劣化
を防止することができる。
For example, it is possible to prevent deterioration of confectionery characteristics such as erroneous writing in EPROM cells and fluctuations in threshold voltage in MOS transistors.

〔発明の実施例〕[Embodiments of the invention]

実施例1 以下1本発明なEPROMセルの製造に適用した実施例
を第31伸)〜(dlを参照して説明する。
Example 1 An example applied to the manufacture of an EPROM cell according to the present invention will be described below with reference to the 31st section) to (dl).

まず、p型シリコン基板31表面に選択酸化法によりフ
ィールド酸化v32を形成する。次に、フィールド酸化
膜32によって囲まれた基板31の素子領域表面に第1
の熱酸化膜33を形成した後、全面にフローティングゲ
ート電極となる第1の多結晶シリコン膜34を堆積し。
First, field oxidation v32 is formed on the surface of the p-type silicon substrate 31 by selective oxidation. Next, a first layer is formed on the surface of the element region of the substrate 31 surrounded by the field oxide film
After forming a thermal oxide film 33, a first polycrystalline silicon film 34, which will become a floating gate electrode, is deposited on the entire surface.

その一部を選択的にエツチングする。つづいて。Part of it is selectively etched. Continuing.

熱酸化を行ない第1の多結晶シリコン膜34の表面に第
2の熱酸化膜35を形成した後、全面にコントロールゲ
ート電極となる第2の多結晶シリコン膜36を堆積する
(第3は1(a)図示)。
After performing thermal oxidation to form a second thermal oxide film 35 on the surface of the first polycrystalline silicon film 34, a second polycrystalline silicon film 36 that will become a control gate electrode is deposited on the entire surface (the third (a) As shown).

次いで、第2の多結晶シリコン膜36、第2の熱酸化膜
35、第lの多結晶シリコン膜34及び第lの熱酸化膜
33を順次パターニングすることにより、基板3ノ上に
第1のゲート酸化膜37を介してフローティングゲート
電極38を、更にフローティングゲート電極38上に第
2のゲート酸化膜39を介してコントロールゲート電極
40を形成する。つづいて、基板31上り二積層された
コントロールゲート電極40等をマスクとして鉛直上方
からリン又は砒素を約5 X 10”CM”−’程度の
低ドーズ量でイオン注入する(同図(b)図示)。
Next, by patterning the second polycrystalline silicon film 36, the second thermal oxide film 35, the lth polycrystalline silicon film 34, and the lth thermal oxide film 33 in sequence, a first polycrystalline silicon film 36 is formed on the substrate 3. A floating gate electrode 38 is formed via a gate oxide film 37, and a control gate electrode 40 is further formed on the floating gate electrode 38 via a second gate oxide film 39. Next, ions of phosphorus or arsenic are implanted from vertically above at a low dose of about 5 x 10"CM" using the control gate electrode 40 and the like stacked on top of the substrate 31 as a mask (as shown in FIG. 3(b)). ).

次いで、基板31上に積層されたコントロールゲート電
極40等をマスクとしてソース、ドレイン形成のために
砒素を3 X 10” an−”程度。
Next, using the control gate electrode 40 etc. stacked on the substrate 31 as a mask, arsenic is applied in an amount of about 3 x 10"an-" to form a source and a drain.

の高ドーズbtでイオン注入する(同図(C1図示)。Ion implantation is performed at a high dose bt (shown in the same figure (C1)).

次いで、B処理により不純物を活性化し、フローティン
グゲート電極38等の一側方の基板31表曲にチャネル
領域近傍の低湿度(n型)拡散層41a(不純物Q U
’約i o t ’I Crn”−” )とこれに隣接
する高a度(n 型)拡散層IJb(不純物濃度10”
 〜10”Cm−’)とからなるn型領域41を、フロ
ーティングゲート電極38等の他側方の基板31表面に
高a度(n 型)拡散層(不純物濃II I O” 〜
10” cr:t −’ )からなるn+型領領域42
それぞr、形成する。つづいて。
Next, the impurity is activated by B treatment, and a low humidity (n-type) diffusion layer 41a (impurity Q U
'I o t 'I Crn"-") and the adjacent high-a degree (n-type) diffusion layer IJb (impurity concentration 10")
A high a degree (n type) diffusion layer (impurity concentration II IO") is formed on the surface of the substrate 31 on the other side of the floating gate electrode 38, etc..
n+ type region 42 consisting of 10"cr:t-')
Each r, form. Continuing.

全面に欺4間絶縁膜43を堆積した後、コンタクトホー
ルを開孔する。つづいて、全面にへ!膜を蒸着した後、
パターニングして′電極44゜45を形成し、HF R
OMセルを製造する(同図(d)図示)− 第3図(d1図示のEPROMセルにおいて、情モ 報の■)込みを行なう場合には一方の11 型領域42
をドレイン領域、他方のn型領域41をソース領域とし
てそれぞれ使用する。すなわち。
After depositing the interlayer insulating film 43 on the entire surface, contact holes are opened. Next, go to the entire surface! After depositing the film,
Patterning is performed to form electrodes 44 and 45, and HF R
Manufacturing an OM cell (as shown in FIG. 3(d)) - When performing the information insertion in the EPROM cell shown in FIG. 3 (d1), one of the 11-type regions 42
is used as a drain region, and the other n-type region 41 is used as a source region. Namely.

?L「;極44をドレイン電オシ、電極45をソース電
極とし、(ドレイン)′電極44及びコントロールゲー
ト弗:極40に高電圧を印加する。この場合、チャネル
領域における゛電位はソース領域すなわちn型領域41
の°電位と”Jしいか、もしくは極めて近い値の電位に
なる。このため、ソース、ドレイン間の電界は集中的に
ドレイン領域すなわち!1+型領域42の近傍のチャネ
ル領域で強くなり、この部分でアバランシェ現象による
ホットキャリア(電子、ポール対)の発生及びフローテ
インググー) ?4極38への電子の注入が起こり、情
報の書込みが行なわれる。
? The electrode 44 is used as a drain electrode, the electrode 45 is used as a source electrode, and a high voltage is applied to the (drain) electrode 44 and the control gate electrode 40. In this case, the potential in the channel region is equal to the source region, that is, n Mold area 41
Therefore, the electric field between the source and the drain is concentrated in the drain region, that is, the channel region near the !1+ type region 42, and the electric field in this region is (Generation of hot carriers (electrons, pole pairs) and floating goo due to avalanche phenomenon) - Electrons are injected into the four poles 38, and information is written.

一方、情報の読出しを行なう場合には、情報書込み時と
は逆に一方のn 型領域42をソース領域、他方のn型
領域41をドレイン領域としてそれぞれ使用する。すな
わち、電極44をソース電極、電極45をドレイン電極
とし、ソース、ドレイン間に例えば+5■を印加すると
ともにコントロールゲート電極4oに例えは+5Vを印
加してしきい値電圧VTRの変化に伴うトランジスタの
オン、オフにより情報が読出される。このとき、ドレイ
ン領域となるn型領域4ノにはチャネル領域近傍に低濃
度(n型)拡散層41Bが設けられているので、ソース
On the other hand, when reading information, one n-type region 42 is used as a source region and the other n-type region 41 is used as a drain region, contrary to when writing information. That is, the electrode 44 is used as a source electrode and the electrode 45 is used as a drain electrode, and a voltage of +5V, for example, is applied between the source and drain, and +5V, for example, is applied to the control gate electrode 4o to control the transistor as the threshold voltage VTR changes. Information is read by turning on and off. At this time, since a low concentration (n type) diffusion layer 41B is provided near the channel region in the n type region 4 which becomes the drain region, it becomes the source region.

ドレイン間に印加される電圧の一部をこの領域で受け持
つことができる。このためドレイン領域近傍のチャネル
領域に集中する電界を著しく弱めることができる。
This region can take charge of part of the voltage applied between the drains. Therefore, the electric field concentrated in the channel region near the drain region can be significantly weakened.

第4図及び第5図(a) 、 fb)をi照して更に詳
細に上記実施例及び従来のE P ROMセルの読出し
時におけるドレイン領域近傍のチャネル領域での電界を
比較する。
Referring to FIGS. 4 and 5(a) and 5(fb), the electric field in the channel region near the drain region during reading of the above embodiment and the conventional EP ROM cell will be compared in more detail.

第4図は情報読出し時にドレイン領域付近に発生する空
乏層を示す説明図である。図中斜線を施した領域が上記
実施例のE P ROMセルで発生する空乏層46であ
り、低ari′(n型)拡散層41aとチャネル領域と
の境界面の両側に延びた状態となる。この際、電界の分
布状態は第5図(a)に示すようになる。
FIG. 4 is an explanatory diagram showing a depletion layer generated near the drain region during information reading. The shaded region in the figure is the depletion layer 46 generated in the E P ROM cell of the above embodiment, which extends on both sides of the interface between the low ari' (n-type) diffusion layer 41a and the channel region. . At this time, the distribution state of the electric field becomes as shown in FIG. 5(a).

これに対して、低濃度(n型)拡散層41aを設けない
場合(’41図に示す従来のEFROMセルに対応する
)、空乏層は?44図中一点鎖線に示す領域、すなわち
チャネル領域側にのみ発+ 生する。これは高m度<n 型)拡散層4Jbの濃度が
高く、はぼ金属と同じ性質をもっためである。この際、
電界の分布状態は第5図(blに示すようになる。
On the other hand, if the low concentration (n-type) diffusion layer 41a is not provided (corresponding to the conventional EFROM cell shown in Figure '41), what about the depletion layer? It occurs only in the area shown by the dashed line in Figure 44, that is, on the channel area side. This is because the concentration of the high m degree < n type) diffusion layer 4Jb is high and has the same properties as metal. On this occasion,
The distribution state of the electric field is as shown in FIG. 5 (bl).

第5図(al及び(blより、ソース、ドレイン間の電
位差が同じであれは、電界のピーク値は分布の広い同図
(alの方が同図(b)のものより低くなることは明ら
かである。すなわち、ドレイン領域の一部として紙製i
(n型)拡散W141aを設7けることによって、ドレ
イン領域近傍のチャネル領域に集中する電界を著しく弱
めることができる。したがって、この領域におけるアバ
ランンエ現象によるホットキャリアの発生が抑制され、
情報の誤書込みを防止することができる。
From Figure 5 (al and (bl), it is clear that if the potential difference between the source and drain is the same, the peak value of the electric field will be lower in Figure 5 (al), which has a wider distribution, than in Figure (b). i.e. paper i as part of the drain region.
By providing the (n-type) diffusion W141a, the electric field concentrated in the channel region near the drain region can be significantly weakened. Therefore, the generation of hot carriers due to the avalanche phenomenon in this region is suppressed,
Erroneous writing of information can be prevented.

また、情報読出し時に誤書込みの起こるおそれがないた
め、チャネル長を充分に短くすることができ、これによ
って情報1込み時の書込み効率が高められる。したがっ
て、情報書込み時に印加すべきドレイン電圧、コントロ
ールゲート電圧等の書込み電圧の値を従来よりも低減化
することができ1例えば情報書込み時に印加する電圧及
び情報読出し時に印加する電圧をともに+5V程度とす
ることができる、 以上説明したように本発明方法では、第3図(b)の工
程におけるコントロールゲート電極40等をマスクとす
る鉛直方向からの低ドーズイオン注入と、同図(C1の
工程におけるコントロールゲー)M極4θ等をマスクと
する斜め方向からの高ドーズイオン注入とにより、写真
蝕刻法のマスク合わせ等煩雑な工程を追加することなく
、上記のような高性能かつ高集M度のEFROMセルを
製造することができる。
Furthermore, since there is no possibility of erroneous writing occurring when reading information, the channel length can be made sufficiently short, thereby increasing the writing efficiency when writing one piece of information. Therefore, the values of write voltages such as drain voltage and control gate voltage that should be applied when writing information can be reduced compared to conventional ones.1 For example, the voltage applied when writing information and the voltage applied when reading information can both be about +5V. As explained above, in the method of the present invention, low-dose ion implantation from the vertical direction using the control gate electrode 40 etc. as a mask in the step of FIG. Control game) By performing high-dose ion implantation from an oblique direction using an M-pole 4θ etc. as a mask, it is possible to achieve high performance and high concentration of M as described above without adding complicated processes such as mask alignment in photolithography. EFROM cells can be manufactured.

実施例2 以下1本発明なnチャネルMOSトランジスタの製造に
適用した実施例を第6図(a)〜(C1を参照して説明
する。
Embodiment 2 An embodiment in which the present invention is applied to the manufacture of an n-channel MOS transistor will be described below with reference to FIGS. 6(a) to (C1).

まず、p型シリコン基板51表面に選択酸化法によりフ
ィールド酸化膜52を形成した後、常法に従い、フィー
ルド酸化膜52によって囲まれた基板51の素子領域上
にゲート酸化膜53を介してゲート電極54を形成する
。次に。
First, a field oxide film 52 is formed on the surface of a p-type silicon substrate 51 by selective oxidation, and then a gate electrode is formed on the element region of the substrate 51 surrounded by the field oxide film 52 via a gate oxide film 53 according to a conventional method. form 54. next.

ゲート電極54をマスクとして例えば砒素を鉛直方向か
らドーズ量的5xlOC1rL 程度の低ドーズ量でイ
オン注入する(第6図(a)図示)。
Using the gate electrode 54 as a mask, ions of arsenic, for example, are implanted from the vertical direction at a low dose of about 5xlOC1rL (as shown in FIG. 6(a)).

つづいて、ゲート電極54をマスクとしてソース、ドレ
イン形成のために例えは砒素を斜め方向からドーズ量的
3 X l O” cm”程度の高ドーズ量でイオン注
入する(同図(b1図示)。
Next, using the gate electrode 54 as a mask, ions of arsenic, for example, are implanted obliquely at a high dose of about 3.times.1 O"cm" (as shown in FIG. 1B) to form a source and a drain.

次いで、熱処理により不純物を活性化し、ゲ−ト電極5
4の一側方の基板5Z表面にチャネル領域近傍の低濃度
(n型)拡散層55a(不純物7s度約10 cm)と
これに隣接する高温+ 度(n 型)拡散層55b(不純物濃度1019〜1O
crrL)とからなるn型ドレイン領域55を、ゲート
電極54の他側方の基板51表面に+ 高fM度(n 型)拡散層(不純@濃度lo 19〜t
om)からなるn 型ソース領域56をそれぞれ形成す
る。つづいて、全面に層間絶縁膜57を罹積した後、コ
ンタクトホールを開孔する。つづいて、全面にAA膜を
蒸着した後、パターニングしてソース9 @ 5 g及
びドレイン電極59を形成し、nチャネルMO8)ラン
ジスタを製造する(同図(C)図示)。
Next, the impurities are activated by heat treatment to form the gate electrode 5.
On the surface of the substrate 5Z on one side of 4, there are a low concentration (n-type) diffusion layer 55a (impurity concentration: about 10 cm) near the channel region and an adjacent high-temperature + degree (n-type) diffusion layer 55b (impurity concentration: 10 cm). ~1O
crrL) on the surface of the substrate 51 on the other side of the gate electrode 54.
n-type source regions 56 made of .om) are respectively formed. Subsequently, after depositing an interlayer insulating film 57 on the entire surface, contact holes are formed. Subsequently, after depositing an AA film on the entire surface, it is patterned to form a source 9@5g and a drain electrode 59, thereby manufacturing an n-channel MO8 transistor (as shown in FIG. 5C).

第6図(C) IJ示のMOS)ランジスタでは、上記
実施例1について第4図及び第5図(al 、 (bl
を用いて説明したのと間柱に、ドレイン領域55のチャ
ネル領域近傍に低濃度(n型)拡散層558を設けてい
るので、ドレイン領域55近傍のチャネル領域における
電界集中を防止することができ、微細MO8)ランジス
タのしきい値電圧の変動等の素子特性の劣化を防止する
ことができる。
In the MOS transistor shown in FIG. 6(C) IJ, FIGS. 4 and 5 (al, (bl)
Since the low concentration (n-type) diffusion layer 558 is provided in the vicinity of the channel region of the drain region 55 in the stud as explained using the above, electric field concentration in the channel region in the vicinity of the drain region 55 can be prevented. Fine MO8) It is possible to prevent deterioration of element characteristics such as fluctuations in threshold voltage of transistors.

また、ソース、ドレイン領域を両方ともチャネル領域近
傍の低濃度拡散層とこれに隣接する高濃度拡散層とで構
成したいわゆるL D D(Liglltly Dop
ed Drain and 5ource )構造のM
OS)ランジヌタではソース領域側の低濃度拡散層が相
互コンダクタンス(i!−m)を低下させる原因となる
が、第6図(C) lff1示のMO8トランジスタで
はソース領域56にはチャネル領域近傍に低濃度拡散層
が形成されていないので、相互コンダクタンス()m 
)の低下を回避することができる。
In addition, the so-called LDD (Liglltly Dop
ed Drain and 5source) Structure of M
In the case of an OS) range nut, the low concentration diffusion layer on the source region side causes a decrease in mutual conductance (i!-m), but in the MO8 transistor shown in FIG. Since no low concentration diffusion layer is formed, the mutual conductance ()m
) can be avoided.

以上説明したように本発明方法では写真蝕刻法のマスク
合わせ等の煩雑な工程を追加することなく、高性能かつ
高集積度のMOS)ランジスタを製造することができる
As explained above, according to the method of the present invention, a high-performance and highly integrated MOS transistor can be manufactured without adding complicated steps such as mask alignment using photolithography.

なお、上記実施例1及び2では先に低ドーズイオン注入
を行ない後から高ドーズイオン注入を行なったが、この
順序は逆でもよい。
Note that in Examples 1 and 2, low-dose ion implantation was first performed and then high-dose ion implantation was performed, but this order may be reversed.

また1以上の説明ではnチャネルのEFROMセル及び
MOS)ランジスタについて述べたが。
In addition, in the above explanation, an n-channel EFROM cell and a MOS transistor were described.

pチャネルのものでも同様な効果を得ることができる。A similar effect can be obtained with a p-channel one.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の半導体装置の製造方法によれ
ば、チャネル長の短縮化に伴う素子特性の劣化のない高
性能かつ高集積度の半導体装置を製造できるものである
As described in detail above, according to the method of manufacturing a semiconductor device of the present invention, it is possible to manufacture a high performance and highly integrated semiconductor device without deterioration of device characteristics due to shortening of channel length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のEP ROMセルの…1面図、第2図は
従来のMOS)ランジスタの断面図、第3図(al〜(
dlは本発明の実施例1におけるh:FROMセルの製
造方法を示1−断面図、第4図は本発明の実施例1にお
いて製造されるM P ROMセルの読出し時に発生す
る空乏層の説明図、第5図(al及び(blはそれぞれ
本発明の実施例1及び従来のE F ROMセルの電界
の分布状態図、第6図(al〜(C1は本発明の実施例
2におけるMOS)ランジスタの製造方法を示−12面
図である。 31.51・・・p型シリコン基板、32,52 。 ・・・フィールド酸化膜、33・・・54 lの熱酸化
膜。 34・・・第1の多結晶シリコン膜、35・・・第2の
熱酸化膜、36・・・第2の多結晶シリコン膜。 3−7・・・第1のゲート酸化膜、38・・・フローテ
ィングゲート電極、39・・・第2のゲート酸化膜。 40・・・コントロールゲート電極、41a・・・低濃
度(n型)拡散層、4zb・・・高濃度(n+型)+ 拡散層、41・・・n型領域、42・・・n 型領域。 43・・・層間絶縁膜、44.45・・・電極、46・
・・空乏層、53・・・ゲート酸化膜、54・・・ゲー
ト電−極、55a・・・低濃度(n型)拡散層、55b
・・・+ 高温1i(n 型)拡散層、55・・・ドレイン領域。 56・・・ソース領域、57・・・層間絶縁膜、58・
・・ソース電極、59・・・ドレイン電極。
Figure 1 is a front view of a conventional EP ROM cell, Figure 2 is a cross-sectional view of a conventional MOS transistor, and Figure 3 (al~(
dl is h in Example 1 of the present invention: A 1-cross-sectional view showing the manufacturing method of the FROM cell, and FIG. 4 is an explanation of a depletion layer generated during reading of the MP ROM cell manufactured in Example 1 of the present invention. Figure 5 (al and (bl) are the electric field distribution diagrams of the first embodiment of the present invention and the conventional E F ROM cell, respectively, and Figure 6 (al~ (C1 is the MOS in the second embodiment of the present invention) It is a -12 side view showing the manufacturing method of a transistor. 31. 51... P-type silicon substrate, 32, 52... Field oxide film, 33... 54 L thermal oxide film. 34... First polycrystalline silicon film, 35... Second thermal oxide film, 36... Second polycrystalline silicon film. 3-7... First gate oxide film, 38... Floating gate. Electrode, 39... Second gate oxide film. 40... Control gate electrode, 41a... Low concentration (n type) diffusion layer, 4zb... High concentration (n+ type) + diffusion layer, 41. ... n-type region, 42 ... n-type region. 43 ... interlayer insulating film, 44. 45 ... electrode, 46 ...
... Depletion layer, 53... Gate oxide film, 54... Gate electrode, 55a... Low concentration (n type) diffusion layer, 55b
... + high temperature 1i (n type) diffusion layer, 55... drain region. 56... Source region, 57... Interlayer insulating film, 58...
...Source electrode, 59...Drain electrode.

Claims (3)

【特許請求の範囲】[Claims] (1) 第1導電型の半導体基板上にゲート絶縁膜を介
して、少なくとも一層のゲート電極を形成する工程と、
該ゲート電極をマスクとして鉛直方向から低ドーズ量で
第2導電型の不純物をイオン注入する工程と、該ゲート
電極をマスクとして斜め方向から高ドーズ量で第2導電
型の不純物をイオン注入する工程と、熱処理により不純
物を活性化し、前記ゲート電極の一側方の基板表面にチ
ャネル領域近傍の低濃度拡散層とこれに隣接する高濃度
拡散層とからなる第2導電型領域を、前記ゲート電極の
他側方の基板表面に高濃度拡散層からなる第2導電型領
域をそれぞれ形成する工程とを具備したことを特徴とす
る半導体装置の製造方法。
(1) forming at least one layer of gate electrode on a first conductivity type semiconductor substrate via a gate insulating film;
A step of ion-implanting a second conductivity type impurity from a vertical direction at a low dose using the gate electrode as a mask, and a step of ion-implanting a second conductivity type impurity at a high dose from an oblique direction using the gate electrode as a mask. Then, the impurities are activated by heat treatment, and a second conductivity type region consisting of a low concentration diffusion layer near the channel region and a high concentration diffusion layer adjacent thereto is formed on the substrate surface on one side of the gate electrode. 1. A method of manufacturing a semiconductor device, comprising the step of forming second conductivity type regions each comprising a highly doped diffusion layer on the other side of the substrate surface.
(2)半導体基板上にゲート絶縁膜を介してゲート電極
を形成し、MOS)ランジスタを製造すること、を特徴
とする特許請求の範囲m1項記載の半導体装置の製造方
法。
(2) A method for manufacturing a semiconductor device according to claim m1, characterized in that a gate electrode is formed on a semiconductor substrate via a gate insulating film to manufacture a MOS transistor.
(3)半導体基板上に第1のゲート絶縁膜を介して第1
のゲート電極を形成し、更に該第1のゲート電極上に第
2のゲート絶縁膜を介して第2のゲート電極を形成し、
FROMセルを製造することを特徴とする特許請求の範
囲第1項記載の半導体装置の製造方法、
(3) The first gate insulating film is placed on the semiconductor substrate via the first gate insulating film.
forming a gate electrode, further forming a second gate electrode on the first gate electrode with a second gate insulating film interposed therebetween;
A method for manufacturing a semiconductor device according to claim 1, characterized in that a FROM cell is manufactured;
JP21904383A 1983-11-21 1983-11-21 Manufacture of semiconductor device Pending JPS60110167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21904383A JPS60110167A (en) 1983-11-21 1983-11-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21904383A JPS60110167A (en) 1983-11-21 1983-11-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60110167A true JPS60110167A (en) 1985-06-15

Family

ID=16729361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21904383A Pending JPS60110167A (en) 1983-11-21 1983-11-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60110167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159023A (en) * 1988-12-13 1990-06-19 Toshiba Corp Manufacture of semiconductor device
US5780893A (en) * 1995-12-28 1998-07-14 Nippon Steel Corporation Non-volatile semiconductor memory device including memory transistor with a composite gate structure
EP1548831A1 (en) * 2002-08-30 2005-06-29 Spansion LLC Semiconductor storage device and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159023A (en) * 1988-12-13 1990-06-19 Toshiba Corp Manufacture of semiconductor device
US5780893A (en) * 1995-12-28 1998-07-14 Nippon Steel Corporation Non-volatile semiconductor memory device including memory transistor with a composite gate structure
US6232182B1 (en) 1995-12-28 2001-05-15 Nippon Steel Corporation Non-volatile semiconductor memory device including memory transistor with a composite gate structure and method of manufacturing the same
EP1548831A1 (en) * 2002-08-30 2005-06-29 Spansion LLC Semiconductor storage device and its manufacturing method
EP1548831A4 (en) * 2002-08-30 2008-05-21 Fujitsu Ltd Semiconductor storage device and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0193841B1 (en) Semiconductor device and method of manufacturing the same
KR930007195B1 (en) Semiconductor device and its manufacturing method
JP3490746B2 (en) Semiconductor memory device and method of manufacturing the same
JPH02129968A (en) Semiconductor integrated circuit device
JPH01248670A (en) Nonvolatile semiconductor storage device, and operation and manufacture thereof
JPH04211178A (en) Manufacture of semiconductor device
JPH0992729A (en) Semiconductor device and fabrication thereof
JPH0391262A (en) Manufacture of semiconductor device
JPS60110167A (en) Manufacture of semiconductor device
US6501147B1 (en) Process for manufacturing electronic devices comprising high voltage MOS transistors, and electronic device thus obtained
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0147905B2 (en)
JPS62265765A (en) Semiconductor device and manufacture thereof
JPS60110171A (en) Manufacture of semiconductor memory
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JPS6037778A (en) Mos non-volatile memory cell
JPS60110169A (en) Manufacture of semiconductor device
JPH04137558A (en) Manufacture of nonvolatile semiconductor storage device
JPH0642547B2 (en) Nonvolatile semiconductor memory and manufacturing method thereof
JPS60110168A (en) Manufacture of semiconductor device
JPS63131575A (en) Mos transistor and manufacture thereof
JPH0493086A (en) Semiconductor device and manufacture thereof
JPH0697695B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6151875A (en) Semiconductor device
JP2770416B2 (en) Semiconductor storage device