JPS63131575A - Mos transistor and manufacture thereof - Google Patents

Mos transistor and manufacture thereof

Info

Publication number
JPS63131575A
JPS63131575A JP27795386A JP27795386A JPS63131575A JP S63131575 A JPS63131575 A JP S63131575A JP 27795386 A JP27795386 A JP 27795386A JP 27795386 A JP27795386 A JP 27795386A JP S63131575 A JPS63131575 A JP S63131575A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
silicon film
gate electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27795386A
Other languages
Japanese (ja)
Inventor
Masaki Momotomi
正樹 百冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27795386A priority Critical patent/JPS63131575A/en
Publication of JPS63131575A publication Critical patent/JPS63131575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T

Abstract

PURPOSE:To obtain a MOS transistor having high current supply capacity and high breakdown strength by forming a gate electrode to an inverted projecting shape and making the thickness of a gate insulating film at the side end section of a drain region in a gate region thicker than that of the central section of the gate region. CONSTITUTION:A gate electrode 3 is shaped to a p-type Si substrate 1 through a gate oxide film 2. The gate electrode 3 is constituted of the laminated films of a first layer polycrystalline silicon film 31, to which phosphorus is doped in high concentration, and a second layer polycrystalline silicon film 32 to which phosphorus is doped in concentration lower than the film 31. The gate electrode 3 is formed to an inverted projecting shape in such a manner that it is thermally oxidized after the laminated films are shaped to a pattern and the side surface of the first layer polycrystalline silicon film 31 is oxidized in the lateral direction in size deeper than the side surface of the second layer polycrystalline silicon 32. That is, the gate oxide film 2 is thickened substantially at end sections. Accordingly, high surface breakdown strength can be acquired.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高耐圧のMOSトランジスタおよびその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high voltage MOS transistor and a method for manufacturing the same.

(従来の技術) 電気的に消去および書込みが可能な不揮発性半導体メモ
リ(E2PROM)が知られている。
(Prior Art) Electrically erasable and programmable nonvolatile semiconductor memories (E2PROMs) are known.

E” FROMでは、薄い絶縁膜に高電界を印加してト
ンネル電流により浮遊ゲートに電子または正孔を注入す
ることにより、情報の書込みまたは消去が行なわれる。
In E'' FROM, information is written or erased by applying a high electric field to a thin insulating film and injecting electrons or holes into the floating gate by a tunnel current.

このE2PROMの書込み、消去の動作には、約20V
程度の高電圧が用いられるから、カラムゲートなどの周
辺回路あるいはメモリセルの選択ゲートに使われるMO
Sトランジスタの高耐圧化が必要である。MOSトラン
ジスタの高耐圧化で最も問題になるのは、表面ブレーク
ダウンである。これは、ドレイン電位が高電位(20V
)でゲート電位が接地電位(OV)のとき、ドレイン領
域のゲート近傍において強電界による表面ブレークダウ
ンを生じるからである。
The writing and erasing operations of this E2PROM require approximately 20V.
MOs used for peripheral circuits such as column gates or memory cell selection gates
It is necessary to increase the withstand voltage of the S transistor. The biggest problem with increasing the breakdown voltage of MOS transistors is surface breakdown. This means that the drain potential is at a high potential (20V
), when the gate potential is the ground potential (OV), surface breakdown occurs near the gate in the drain region due to a strong electric field.

この様なドレイン近傍での表面ブレークダウン耐圧を向
上させるMOSトランジスタ構造として、L D D 
(L ightly  D 0ped  D rain
)構造が知られている。これは、ドレイン領域のチャネ
ル側に低不純物濃度層を設けるものである。このLDD
構造では、ドレイン領域のゲート近傍で空乏層が伸び易
いために電界の集中が緩和され、この結果表面ブレーク
ダウン耐圧が向上する。
As a MOS transistor structure that improves the surface breakdown voltage near the drain, LDD
(Lightly D 0ped Drain
) structure is known. This is to provide a low impurity concentration layer on the channel side of the drain region. This LDD
In this structure, the depletion layer easily extends in the vicinity of the gate in the drain region, which alleviates the concentration of electric field, and as a result, the surface breakdown voltage is improved.

しかしながら、LDD構造においては、低不純物濃度層
のためにドレイン領域の電極コンタクト部とチャネル領
域の間の直列抵抗が大きくなる。
However, in the LDD structure, the series resistance between the electrode contact portion of the drain region and the channel region increases due to the low impurity concentration layer.

・  これは、MOSトランジスタの電流供給能力を小
さくする原因となる。また高不純物濃度のドレイン領域
と別にそのチャネル領域側に低不純物濃度層を設ける必
要があるため、MOS トランジスタの微細化が難しい
- This causes a reduction in the current supply capability of the MOS transistor. Furthermore, it is difficult to miniaturize the MOS transistor because it is necessary to provide a low impurity concentration layer on the channel region side of the drain region with high impurity concentration.

(発明が解決しようとする問題点) 以上のように、LDDII造の導入によりMOSトラン
ジスタの高耐圧化を図ろうとすると、電流供給能力が低
下し、また微細化が難しくなる、という問題があった。
(Problems to be Solved by the Invention) As described above, when attempting to increase the withstand voltage of MOS transistors by introducing the LDD II structure, there were problems in that the current supply capacity decreased and miniaturization became difficult. .

本発明は、この様な問題を解決したMOSトランジスタ
とその製造方法を提供することを目的とする。
An object of the present invention is to provide a MOS transistor and a method for manufacturing the same that solves such problems.

[発明の構成] (問題点を解決するための手段) 本発明にかかるMOS トランジスタは、ゲート電極を
逆凸型とし、ゲート領域のドレイン領域側端部でのゲー
ト絶縁膜厚をゲート領域中央部のそれより厚くしたこと
を特徴とする。具体的には、ゲート電極を高不純物濃度
の第1層多結晶シリコン膜と低不純物濃度の第2層多結
晶シリコン膜の積Saとし、この積層膜の第1層多結晶
シリコン膜の側面部分が第2層多結晶シリコン膜のそれ
より深く横方向に酸化された状態とする。
[Structure of the Invention] (Means for Solving the Problems) The MOS transistor according to the present invention has a gate electrode of an inverted convex shape, and the thickness of the gate insulating film at the end of the gate region on the drain region side is equal to that at the center of the gate region. It is characterized by being thicker than that of . Specifically, the gate electrode is a product Sa of a first-layer polycrystalline silicon film with a high impurity concentration and a second-layer polycrystalline silicon film with a low impurity concentration, and the side surface portion of the first-layer polycrystalline silicon film of this laminated film is is laterally oxidized to be deeper than that of the second layer polycrystalline silicon film.

この様なMOSトランジスタを製造する本発明の方法は
、半導体基板にゲート絶縁膜を形成し、この上に高不純
物濃度の第1層多結晶シリコン膜と低不純物濃度の第2
1多結晶シリコン膜を積層形成し、この積層膜を選択エ
ツチングしてゲート電極パターンを形成した後、その少
なくともドレイン側側面を熱酸化して第1層多結晶シリ
コン膜の側面に第2層多結晶シリコン膜の側面より厚く
酸化膜を形成し、次いでゲート電極をマスクとして不純
物をイオン注入してソース、ドレイン拡散層を形成する
The method of the present invention for manufacturing such a MOS transistor involves forming a gate insulating film on a semiconductor substrate, and depositing a first polycrystalline silicon film with a high impurity concentration and a second polycrystalline silicon film with a low impurity concentration on top of the gate insulating film.
1. After forming a stack of polycrystalline silicon films and selectively etching the stacked film to form a gate electrode pattern, at least the side surface on the drain side is thermally oxidized to form a second polycrystalline silicon film on the side surface of the first layer polycrystalline silicon film. An oxide film is formed thicker than the side surfaces of the crystalline silicon film, and then impurity ions are implanted using the gate electrode as a mask to form source and drain diffusion layers.

(作用) 本発明によれば、ゲート絶縁膜がゲート領域の端部で厚
くなっているために、ゲート・ドレイン間の電界が小さ
くなり、ゲート電位がOVでドレインに高電位が印加さ
れた時にドレイン側から伸びる空乏層が広くなり、従っ
てこの空乏層にかかる電界が小さくなる結果、表面ブレ
ークダウン耐圧が高くなる。
(Function) According to the present invention, since the gate insulating film is thick at the edge of the gate region, the electric field between the gate and drain becomes small, so that when the gate potential is OV and a high potential is applied to the drain, The depletion layer extending from the drain side becomes wider, and the electric field applied to this depletion layer becomes smaller, resulting in a higher surface breakdown voltage.

また本発明の方法によれば、多結晶シリコン膜の不純物
濃度の差により酸化速度に差が生じることを利用して、
不純物濃度の異なる多結晶シリコン膜の積層、バターニ
ングと熱酸化によってゲート領域端部のゲート絶縁膜を
中央部より厚くすることが容易にでき、高耐圧MOSト
ランジスタを簡単な方法で実現することができる。また
LDD構造のようにドレイン領域のゲート側端部に低不
純物濃度層を設ける方法と異なり、微細化が容易である
Further, according to the method of the present invention, by taking advantage of the difference in oxidation rate caused by the difference in impurity concentration of the polycrystalline silicon film,
By stacking polycrystalline silicon films with different impurity concentrations, buttering, and thermal oxidation, it is possible to easily make the gate insulating film at the edge of the gate region thicker than at the center, making it possible to easily realize a high voltage MOS transistor. can. Further, unlike the LDD structure in which a low impurity concentration layer is provided at the end of the drain region on the gate side, miniaturization is easy.

〈実施例) 以下、一本発明の詳細な説明する。<Example) Hereinafter, one aspect of the present invention will be explained in detail.

第1図は一実施例のnチャネルMOSトランジスタの構
造を示す断面図である。p型Si基板1にゲート酸化膜
2を介してゲート電極3が形成されている。ゲート電極
3は、高濃度にリンをドープした第1層多結晶シリコン
膜31とこれより低濃度にリンをドープした第2層多結
晶シリコンll32の積層膜により構成されている。こ
のゲート電極3は、積層膜をパターン形成した後に熱酸
化して、第1層多結晶シリコン膜3!の側面を第2層多
結晶シリコン1132の側面より深く横方向に酸化する
ことにより、逆凸型としている。即ちゲート酸化膜2が
実質的に端部で厚くなっている。
FIG. 1 is a cross-sectional view showing the structure of an n-channel MOS transistor according to one embodiment. A gate electrode 3 is formed on a p-type Si substrate 1 with a gate oxide film 2 interposed therebetween. The gate electrode 3 is composed of a laminated film of a first layer polycrystalline silicon film 31 doped with phosphorus at a high concentration and a second layer polycrystalline silicon 1132 doped with phosphorus at a lower concentration. This gate electrode 3 is formed by thermally oxidizing the laminated film after patterning the first layer polycrystalline silicon film 3! By oxidizing the side surfaces of the second layer polycrystalline silicon 1132 deeper and laterally than the side surfaces of the second layer polycrystalline silicon 1132, an inverted convex shape is formed. That is, the gate oxide film 2 is substantially thicker at the ends.

4.5はゲート電極3をマスクとして不純物をイオン注
入して形成されたドレイン、ソースとなるn+型型数散
層ある。6はCVD酸化膜であり、これにコンタクト孔
が開けられ、n1型拡散層4゜5にコンタクトするオー
ミック電極7,8が形成されている。
Reference numeral 4.5 denotes an n+ type scattered layer which becomes the drain and source and is formed by ion-implanting impurities using the gate electrode 3 as a mask. Reference numeral 6 denotes a CVD oxide film, in which a contact hole is formed, and ohmic electrodes 7 and 8 are formed in contact with the n1 type diffusion layer 4.5.

第2図(a)〜(e)はこのMOSトランジスタの製造
工程を説明するための断面図である。これを用いて具体
的な製造工程を説明すると、先ずp型3i基板1に必要
な素子分離領域(図示せず)を形成した後、MOSトラ
ンジスタ領域にボロンをイオン注入してチャネル・イオ
ン注入層9を形成し、その後熱酸化により400人のゲ
ート酸化112を形成する。次いでこの上に第1層多結
晶シリコン膜31を1000人堆積し、900℃のリン
雰囲気中でリン拡散を行なう。第1層多結晶シリコン1
I31中のリン濃度は1X1020/α3の高濃度とす
る。このとき第1層多結晶シリコン[13+表面は酸化
されて酸化膜10が形成される(第2図(a))。次に
酸化1110を希フッ酸によりエツチング除去し、第1
層多結晶シリコン膜31に重ねて3000人の第2層多
結晶シリコン1132を堆積する。この後900℃のリ
ン雰囲気中で5分のリン拡散を行ない、第2の多結晶シ
リコン+1132中のリン濃度を2X1012 /α3
とする。このとき第2層多結晶シリコン膜32表面に酸
化膜11が形成される(第2図(b))。
FIGS. 2(a) to 2(e) are cross-sectional views for explaining the manufacturing process of this MOS transistor. To explain the specific manufacturing process using this, first, a necessary element isolation region (not shown) is formed on the p-type 3i substrate 1, and then boron ions are implanted into the MOS transistor region to form a channel ion-implanted layer. 9 and then a 400 gate oxide 112 is formed by thermal oxidation. Next, 1000 layers of the first polycrystalline silicon film 31 are deposited thereon, and phosphorus is diffused in a phosphorus atmosphere at 900°C. First layer polycrystalline silicon 1
The phosphorus concentration in I31 is set to a high concentration of 1×1020/α3. At this time, the surface of the first layer of polycrystalline silicon [13+] is oxidized to form an oxide film 10 (FIG. 2(a)). Next, the oxidized 1110 is removed by etching with dilute hydrofluoric acid, and the first
A second polycrystalline silicon layer 1132 of 3,000 layers is deposited overlying the polycrystalline silicon film 31. After that, phosphorus was diffused for 5 minutes in a phosphorus atmosphere at 900°C, and the phosphorus concentration in the second polycrystalline silicon +1132 was reduced to 2X1012/α3.
shall be. At this time, an oxide film 11 is formed on the surface of the second layer polycrystalline silicon film 32 (FIG. 2(b)).

この後、第1層多結晶シリコン膜3Iと第2層多結晶シ
リコン膜32の積層膜を異方性ドライエツチングにより
バターニングしてゲート電極を形成する(第2図(C)
)。続いて1000℃で熱酸化を行なう。このときリン
濃度の高い第1層多結晶シリコンl13tがリン濃度の
低い第2層多結晶シリコン1132より酸化速度が速い
ために、第1層、多結晶シリコンI!03の側面の酸化
1112tは第2層多結晶シリコン膜32の側面の酸化
膜122より厚くなる(第2図(d))。結果的にゲー
ト電極3は、逆凸型となる。これは言替えれば、ゲート
酸化膜2が実質的に中央部より周辺部で厚くなったこと
になる。
Thereafter, the laminated film of the first layer polycrystalline silicon film 3I and the second layer polycrystalline silicon film 32 is patterned by anisotropic dry etching to form a gate electrode (FIG. 2(C)).
). Subsequently, thermal oxidation is performed at 1000°C. At this time, since the first layer polycrystalline silicon l13t with a high phosphorus concentration has a faster oxidation rate than the second layer polycrystalline silicon 1132 with a lower phosphorus concentration, the first layer polycrystalline silicon I! The oxide film 1112t on the side surface of 03 is thicker than the oxide film 122 on the side surface of the second layer polycrystalline silicon film 32 (FIG. 2(d)). As a result, the gate electrode 3 has an inverted convex shape. In other words, the gate oxide film 2 is substantially thicker at the periphery than at the center.

この後、通常の工程に従ってゲート電極3をマスクとし
てAsをイオン注入してドレイン、ソース領域にn+型
型数散層45を形成し、CVD酸化fi16を堆積して
これにコンタクト孔を開け、ARによるオーミック電極
7.8を形成する(第2図(e))。
After that, according to the usual process, using the gate electrode 3 as a mask, As is ion-implanted to form an n+ type scattering layer 45 in the drain and source regions, CVD oxide fi 16 is deposited, a contact hole is made in this, and an AR The ohmic electrodes 7.8 are formed by (FIG. 2(e)).

以上のようにしてこの実施例によれば、ゲート絶縁膜を
ゲート電極端部で中央部より厚(することにより、高い
表面ブレークダウン耐圧を得ることができる。また、L
DD構造のようにドレイン領域またはこれとソース領域
に高濃度層とこれに隣接した低濃度層を形成する場合に
比べて、MOSトランジスタの電流供給能力の低下がな
く、MOSトランジスタの微細化も容易である。更にこ
の実施例によれば、不純物濃度の異なる二層の多結晶シ
リコン躾によるゲート電極バターニングと熱酸化によっ
て、格別複雑な加工工程を要せずゲート絶縁膜に上記の
ような膜厚分布をもたせることができる。
As described above, according to this embodiment, the gate insulating film is made thicker at the end of the gate electrode than at the center, thereby making it possible to obtain a high surface breakdown voltage.
Compared to the case where a high concentration layer and an adjacent low concentration layer are formed in the drain region or the source region as in the DD structure, there is no reduction in the current supply capability of the MOS transistor, and it is easy to miniaturize the MOS transistor. It is. Furthermore, according to this embodiment, by gate electrode buttering and thermal oxidation using two layers of polycrystalline silicon with different impurity concentrations, the above film thickness distribution can be created in the gate insulating film without the need for particularly complicated processing steps. It can be made to stand.

上記実施例では、二層の多結晶シリコン膜のリン濃度に
差をつけるのに、リン拡散時間の差を利用したが、リン
供給IIr!1に差をつけるようにしてもよい。また本
発明は、LDD構造と組合わせても有効である。即ち、
LDD構造を用いると微細化という利点は得られないが
、本発明をLDD構造と組合わせれば、単純なLDD構
造のみの場合に比べてより高耐圧化を図ることができる
In the above embodiment, the difference in phosphorus diffusion time was used to differentiate the phosphorus concentration between the two polycrystalline silicon films, but the phosphorus supply IIr! It may be possible to make a difference between 1 and 1. The present invention is also effective in combination with an LDD structure. That is,
If an LDD structure is used, the advantage of miniaturization cannot be obtained, but if the present invention is combined with an LDD structure, a higher breakdown voltage can be achieved than in the case of a simple LDD structure alone.

[発明の効果] 以上述べたように本発明によれば、電流供給能力の高い
高耐圧のMOSトランジスタを得ることができる。また
本発明の方法によれば、特別なゲート絶縁膜の膜厚分布
を複雑な工程を要せず、制御性よく形成することができ
る。
[Effects of the Invention] As described above, according to the present invention, a MOS transistor with high current supply capability and high breakdown voltage can be obtained. Further, according to the method of the present invention, a special thickness distribution of a gate insulating film can be formed with good controllability without requiring complicated steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のMo8 )−ランジスタを
示す断面図、第2図(a)〜(e)はそのMOSトラン
ジスタの製造工程を説明するための断面図である。 1・・・p型SiN板、2・・・ゲート酸化膜、3・・
・ゲート電極、31・・・第1層多結晶シリコン膜、3
2・・・第2層多結晶シリコン膜、4.5・・・n+型
抵拡散層6・・・CVD!!化膜、7.8・・・オーミ
ック電極、9・・・イオン注入層、10.11・・・酸
化膜。 出願人代理人 弁理士 鈴江武彦 第1回 第 2図 (1) 第2図(2)
FIG. 1 is a sectional view showing a Mo8)-transistor according to an embodiment of the present invention, and FIGS. 2(a) to 2(e) are sectional views for explaining the manufacturing process of the MOS transistor. 1... p-type SiN plate, 2... gate oxide film, 3...
・Gate electrode, 31...first layer polycrystalline silicon film, 3
2...Second layer polycrystalline silicon film, 4.5...n+ type resistive diffusion layer 6...CVD! ! 7.8... Ohmic electrode, 9... Ion implantation layer, 10.11... Oxide film. Applicant's agent Patent attorney Takehiko Suzue 1st issue Figure 2 (1) Figure 2 (2)

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート電極が高不純物濃度の第1層多結晶シリコ
ン膜と低不純物濃度の第2層多結晶シリコン膜の積層膜
をパターン形成して構成され、この積層膜の第1層多結
晶シリコン膜部分が第2層多結晶シリコン膜部分より深
く横方向に酸化されていることを特徴とするMOSトラ
ンジスタ。
(1) The gate electrode is formed by patterning a laminated film of a first layer polycrystalline silicon film with a high impurity concentration and a second layer polycrystalline silicon film with a low impurity concentration, and the first layer polycrystalline silicon of this laminated film A MOS transistor characterized in that a film portion is laterally oxidized deeper than a second layer polycrystalline silicon film portion.
(2)半導体基板にゲート絶縁膜を形成し、この上に高
不純物濃度の第1層多結晶シリコン膜と低不純物濃度の
第2層多結晶シリコン膜を積層形成する工程と、形成さ
れた積層膜を選択エッチングしてゲート電極パターンを
形成する工程と、形成されたゲート電極の少なくとも側
面を熱酸化して前記第1層多結晶シリコン膜部分に第2
層多結晶シリコン膜部分より厚く酸化膜を形成する工程
と、前記ゲート電極をマスクとして不純物をイオン注入
してソース、ドレイン拡散層を形成する工程とを備えた
ことを特徴とするMOSトランジスタの製造方法。
(2) A step of forming a gate insulating film on a semiconductor substrate, and laminating a first layer polycrystalline silicon film with a high impurity concentration and a second layer polycrystalline silicon film with a low impurity concentration thereon, and the formed laminated layer. A process of selectively etching the film to form a gate electrode pattern, and thermally oxidizing at least the side surfaces of the formed gate electrode to form a second polycrystalline silicon film on the first layer polycrystalline silicon film.
Manufacturing a MOS transistor characterized by comprising a step of forming an oxide film thicker than a layered polycrystalline silicon film portion, and a step of ion-implanting impurities using the gate electrode as a mask to form source and drain diffusion layers. Method.
JP27795386A 1986-11-21 1986-11-21 Mos transistor and manufacture thereof Pending JPS63131575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27795386A JPS63131575A (en) 1986-11-21 1986-11-21 Mos transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27795386A JPS63131575A (en) 1986-11-21 1986-11-21 Mos transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63131575A true JPS63131575A (en) 1988-06-03

Family

ID=17590572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27795386A Pending JPS63131575A (en) 1986-11-21 1986-11-21 Mos transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63131575A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471080A (en) * 1988-09-08 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with a shaped gate electrode
US5543646A (en) * 1988-09-08 1996-08-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with a shaped gate electrode
US5962889A (en) * 1995-07-31 1999-10-05 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory with a floating gate that has a bottom surface that is smaller than the upper surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471080A (en) * 1988-09-08 1995-11-28 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with a shaped gate electrode
US5543646A (en) * 1988-09-08 1996-08-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with a shaped gate electrode
US5834817A (en) * 1988-09-08 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with a shaped gate electrode
US5962889A (en) * 1995-07-31 1999-10-05 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory with a floating gate that has a bottom surface that is smaller than the upper surface

Similar Documents

Publication Publication Date Title
JPH06112501A (en) Nonvolatile semiconductor memory device and its manufacture
JPS61179568A (en) Manufacture of semiconductor memory device
JPH08255846A (en) Semiconductor device and manufacture thereof
JPH1041403A (en) Semiconductor device and manufacture thereof
JPH11330280A (en) Manufacture of flash memory cell structure by erasing/ writing channel and its operation method
JP2913817B2 (en) Method for manufacturing semiconductor memory
JPH02222174A (en) Mos type semiconductor device
JPS60160169A (en) Mos transistor and manufacture thereof
JP3876390B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH0334578A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPS63131575A (en) Mos transistor and manufacture thereof
JPS6329979A (en) Semiconductor memory device
JPS6251216A (en) Manufacture of semiconductor device
US6501147B1 (en) Process for manufacturing electronic devices comprising high voltage MOS transistors, and electronic device thus obtained
JPH04334067A (en) Semiconductor integrated circuit device and its manufacture
JPS6272171A (en) Semiconductor memory
JPS60134477A (en) Nonvolatile memory and manufacture thereof
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JPH10261726A (en) Semiconductor device and its manufacture
JPS6244700B2 (en)
JPH03136348A (en) Manufacture of non-volatile memory element
JPH03233974A (en) Manufacture of nonvolatile semiconductor memory
JPH01143357A (en) Semiconductor device and manufacture thereof
JPH1084051A (en) Semiconductor integrated circuit device and its manufacturing method
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device