【発明の詳細な説明】
産業上の利用分野
本発明1上 半導体製造分野の半導体ウェハー表面の薬
液処理を行う装置に関するものであも従来の技術
従来の薬液処理装置の一例を第2図に示す。 lは薬液
処理を行う薬液槽本体であり、石英製の4面オーバーフ
ロー槽を使用していも 2は被処理物としての半導体ウ
ェハーであり、 3は半導体ウエハーを固定するキャリ
アであも 4は循環する薬液をウエハー2に均一に流す
スノコであり、 5は薬液を昇温する為のヒータであモ
12は薬液を循環させる循環ポンプであり、13は循環
中の薬液のダストを減少させるために設けられたフィル
ターであも 半導体ウエハーの薬液処理は通常1ロット
25枚でバッチ処理が行われていも 以上の様に構威さ
れた従来の薬液処理装置を用いて半導体ウエハーを洗浄
する場合、例えば アンモニア水(NH40H)と過酸
化水素水(N*(h)と純水( He O )の混合液
が用いられも この薬液の濃度と液量LL 混合時に
分量又は重量を所定の割合に調合するζとによって制御
されも 実際に&よ 配合比NHaOH:HtO*:H
*O−1:1二5または1:2:7等が用いられ最も効
果的な液温として70℃〜85℃で使用されていも発明
が解決しようとする課題
上記に示した混合液を70℃〜85℃で使用すると、過
酸化水素水の分解やアンモニアガスの発生により液中の
アンモニア及び過酸化水素水の濃度が低下すも さらに
水の蒸発東 半導体ウエハーとキャリアからの液の持
ち出しによって液量も変化すも 従って混合液を作った
微 実際のウエハー洗浄に使用できる時間は40分程度
が限界となっていも 処理液がこのように径時変化する
a 安定した処理効果が期待できないばかり力\ 処理
装置も安定稼働できなくなん 更&へ 半導体ウエハー
の大口径化に伴ない使用する薬液量は非常に多くなり、
薬液コストがかかん
課題を解決するための手段
本発明ζ上 水と1成分からなる薬液を混合し充填する
洗浄槽と、前記洗浄槽内にオゾン(O3)を導入する機
構と、前記薬液の成分濃度を測定するセンサa 所定の
成分濃度の変化に対して不足分の薬液を自動供給し薬液
濃度を一定にする機構とを備えた薬液処理装置であも
作用
本発明は 上述の構或により、混合液の濃度の径時変化
を無くし 最適な薬液処理を常時行なえも アンモニア
水と過酸化水素水と純水の混合液による洗浄を例にとる
a 1成分から戒る薬液g!アンモニア水であり、酸化
剤として使用している過酸化水素水の代用としてオゾン
が用いられもオゾンを洗浄槽底部から常時パブリングし
ておくことにより酸化剤としての効果を有し 過酸化水
素水のような分解による濃度変化は無くなも 又l成分
から或る薬液(上述の例の場合アンモニア水)の戊分濃
度をセンサにより常時測定し 所定の戊分濃度の変化に
対して不足分の薬液を自動供給することにより、薬液濃
度の径時変化を無くすことができも 再にオゾンを酸化
剤として使用しているA 例えば過酸化水素水とアンモ
ニア水の様に2種類の薬液濃度を測定する高度な技術あ
るいは高価な測定機器を使用しなくても良く、 l戊分
の濃度測定のみで良L\
実施例
第1図1友 本発明の一実施例における薬液処理装置の
構戒概略図であも 第1図において、 1は薬液処理を
行う薬液槽本体であり、石英製の4面オーバーフロー槽
であも 2は被処理物としての半導体ウエハーであり、
3は半導体ウエノ\一を固定する為のキャリアであも
4は循環される薬液を均一に流す為のスノコであも
5は薬液を昇温する為のヒータであり、指定した温度に
自動制御することができも 6は石英槽lの底部からオ
ゾンをバプリングする為に設けられたパブリングノズル
であも バプリングノズル6により薬液槽1内に均一に
細かいオゾンの気泡を発生させも 7はオゾンの発生器
であり、純水を電気分解する方式を採用していも この
方式により供給されるオゾンは窒素酸化物や金属不純物
の混入がなも1 又オゾン濃度は18重量%と高く、オ
ゾン発生量は30g/hrであも 8はオーバーフロー
槽の外槽の液面センサであも 9は液面センサ8のON
あるいは0.FFの信号によって、不足分の純水を自動
的に一定量供給させる純水供給制御器であモ10は純水
を供給させる純水ラインであ4 ttは純水供給制御
器9から制御された不足分の純水を導入する純水供給口
であも 純水供給口1 1 11 循環ラインのボン
ブl2とフィルター13の間に設けられていもl2は薬
液を循環させる循環ポンプであり、l3は循環中の薬液
のダストを減少させるフィルターであモ14は薬液濃度
を測定するセンサであり、本実施例においてg1 無
電極の導電率計を用いており、薬液のコンダクタンスを
測定していモ15は薬液濃度測定値により不足分の薬液
量を自動供給する薬液供給制御器であモ16は薬液を供
給させる薬液供給ラインであ,4 17は薬液供給制
御器l5から制御された不足分の薬液を導入する薬液供
給口であり、ボンプl2とフィルターl3の間に設けら
れていも 以上のように構威された本実施例の薬液処理
装置について、以下その動作を説明すも 例えばアンモ
ニア水と過酸化水素水と純水との混合液を本実施例に適
用した場合、過酸化水素水は使用せ哄 オゾンを使用す
ることになん 石英槽1内にアンモニア水と純水との混
合液を秤量装置にて導入すも アンモニア水の濃度は本
例において29±1%であも 槽内混合液の温度は70
℃に温度調整すも 循環ポンプを駆動し混合液を高温循
環してフィルタリングすることによって混合液中のダス
トを取も フィルターは0.1μmのフィルターを採用
している&0.1μm以上のダストは除去されa 一方
オゾン発生器7によって発生したオゾンはパブリングノ
ズル6から混合液中にパブリングされも オゾン濃度は
前述した様に18重量%と高く過酸化水素水の代用とし
ての酸化剤の効果を有す4a オゾンは水に溶解しに
くい物質であり、混合液の導電率あるいはPH等を大き
く変化させることは無(1 従って、混合液の濃度制御
はアンモニア濃度のみを測定しさえすれば良〜 本実施
例においては アンモニア濃度を無電極の導電率計を用
いてコンダクタンスを測定していも またその他のアン
モニア濃度のセンサとしてPHメー久 イオンメータ等
が使用できも 混合液の混合比がNH40H:ho−1
:5 ”’Q, 液温70℃の場合コンダクタンスI
re 2.60mscm−’となッf42. 60m
scm− ’以下になると、アンモニア水を薬液供給制
御器15から自動供給すも この制御によって常隊 混
合液の濃度を一定に保つことが可能とな7io! 薬
液供給口17力交 循環ボンプ12とフィルター13の
間に設けた理由GEL 供給されたアンモニア水を、
循環されている混合液と十分に速く混合させる為であり
、又 供給されるアンモニア水のダストをフィルターに
よってすぐに除去する目的もあ4 −X 以上の様
に70℃で装置を運転すると、水の蒸発及べキャリア3
の出し入れによって混合液の量が減少すも 従って純水
を供給する必要があん 液面センサ8によって石英槽1
内の混合液の量を測定しその不足分の純水を純水供給制
御器9によって供給すん 純水供給口11も薬液供給口
l7と同微 循環ボンプ12とフィルターl3の間に設
けられており、混合液と純水との混合を容易にすること
ができも以上の様に 本実施例によれば オゾンの導入
機構及べ 高温循環機構と薬液の成分濃度を測定するセ
ンサと、所定の戊分濃度の変化に対して不足分の薬液を
自動供給する機構と、洗浄槽内の混合液の液面を測定す
るセンサと、所定の液面に対して不足分の量の水を自動
供給する機構を設けることにより、薬液濃度の径時変化
を無くすことができも 従って、安定した薬液処理が可
能となり、薬液交換をほとんど行わなくても良く、薬液
コストを低減できるばかり力\ 薬液交換に有する時間
も必要なくなも 又 薬液l成分のみの濃度測定で良く
、安価にしかも安定した装置が実現でき、その信頼性も
高くな&K 本実施例において、使用薬液をアンモニ
ア水と純水にした力t 塩酸と純水等の水と1戊分から
なる薬液にも応用できも発明の効果
以上説明した様紙 本発明によれ(′L 薬液濃度の径
時変化を無くすことができ、安定した薬液処理が可能と
なも 又 薬液交換をほとんど行わなくても良く、薬液
コストを低減できるばかり力\薬液交換に有する時間も
必要なくなり、その実用的効果は大き賎DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention 1 relates to an apparatus for chemically treating the surface of a semiconductor wafer in the field of semiconductor manufacturing.Prior art An example of a conventional chemically treating apparatus is shown in FIG. . 1 is the main body of the chemical tank for chemical processing, even if a four-sided overflow tank made of quartz is used; 2 is the semiconductor wafer as the object to be processed; 3 is the carrier for fixing the semiconductor wafer; 4 is the circulation 5 is a heater for raising the temperature of the chemical solution, 12 is a circulation pump for circulating the chemical solution, and 13 is a drainboard for reducing the dust of the chemical solution during circulation. Chemical processing of semiconductor wafers is usually performed in batches of 25 wafers per lot. A mixed solution of aqueous ammonia (NH40H), hydrogen peroxide solution (N*(h), and pure water (HeO) may be used. Concentration and volume of this chemical solution LL When mixing, adjust the amount or weight to the specified ratio. Although it is controlled by ζ, it is actually &
*O-1:125 or 1:2:7 etc. are used, and the most effective liquid temperature is 70°C to 85°C. Problem to be solved by the invention When used at temperatures between ℃ and 85℃, the concentration of ammonia and hydrogen peroxide in the liquid decreases due to the decomposition of hydrogen peroxide and the generation of ammonia gas.In addition, water evaporation occurs due to the removal of the liquid from semiconductor wafers and carriers. Even though the amount of time that can be used for actual wafer cleaning is limited to about 40 minutes, if the processing solution changes over time, a stable processing effect cannot be expected. Processing equipment also cannot operate stably.As the diameter of semiconductor wafers becomes larger, the amount of chemical liquid used becomes extremely large.
Means for solving the problem of high chemical solution cost The present invention ζ A cleaning tank for mixing and filling a chemical solution consisting of water and one component, a mechanism for introducing ozone (O3) into the cleaning tank, and a component of the chemical solution. With the above-described structure, the present invention can be applied to a chemical solution processing apparatus equipped with a sensor a for measuring the concentration, and a mechanism that automatically supplies the insufficient amount of the drug solution in response to a change in the concentration of a predetermined component to keep the concentration of the drug solution constant. It is possible to eliminate time-varying changes in the concentration of the mixed solution and perform optimal chemical treatment at all times.Example of cleaning with a mixed solution of ammonia water, hydrogen peroxide solution, and pure water. Although ozone is used as a substitute for hydrogen peroxide, which is used as an oxidizing agent, it has the effect of being an oxidizing agent by constantly bubbling ozone from the bottom of the cleaning tank. Although there is no concentration change due to decomposition, the partial concentration of a certain chemical solution (in the above example, aqueous ammonia) from the component is constantly measured by a sensor, and the insufficient chemical solution is detected for a given change in the chemical solution. By automatically supplying ozone, it is possible to eliminate changes in chemical concentration over time.However, ozone is used as an oxidizing agent. There is no need to use advanced technology or expensive measuring equipment, and it is easy to just measure the concentration of one minute. In Fig. 1, 1 is the main body of the chemical tank for chemical processing, which is a four-sided overflow tank made of quartz, and 2 is the semiconductor wafer as the object to be processed.
3 is a carrier for fixing the semiconductor Ueno\1. 4 is a drainboard for uniformly flowing the circulating chemical solution.
5 is a heater to raise the temperature of the chemical solution, and can be automatically controlled to a specified temperature. 6 is a bubbling nozzle installed to bubble ozone from the bottom of the quartz tank. 6 is used to uniformly generate fine ozone bubbles in the chemical tank 1. 7 is an ozone generator, and even if a method of electrolyzing pure water is adopted, the ozone supplied by this method will generate nitrogen oxides, nitrogen oxides, etc. The ozone concentration is as high as 18% by weight, and the amount of ozone generated is 30 g/hr. 8 is the liquid level sensor in the outer tank of the overflow tank. 9 is the liquid level sensor 8 turned on.
Or 0. A pure water supply controller automatically supplies a certain amount of deficient pure water according to the FF signal, and 10 is a pure water line that supplies pure water. 4 tt is controlled by the pure water supply controller 9. Pure water supply port 1 1 11 Pure water supply port 1 1 11 In the circulation line, l2 is a circulation pump that circulates the chemical solution, and l3 is installed between bomb l2 and filter 13. 14 is a filter that reduces dust in the circulating chemical solution; 14 is a sensor that measures the concentration of the chemical solution; in this example, g1 is an electrodeless conductivity meter that measures the conductance of the chemical solution; is a chemical liquid supply controller that automatically supplies the insufficient amount of chemical liquid based on the measured value of the chemical liquid concentration; 16 is a chemical liquid supply line that supplies the chemical liquid; This is a chemical solution supply port for introducing ammonia water and a chemical solution provided between the bomb l2 and the filter l3. When a mixture of hydrogen oxide and pure water is applied to this example, hydrogen peroxide is not used; ozone is used.Weigh the mixture of ammonia water and pure water in the quartz tank 1 Although the ammonia water concentration is 29±1% in this example, the temperature of the mixed liquid in the tank is 70.
The temperature is adjusted to ℃ The dust in the mixed liquid is removed by driving the circulation pump to circulate the mixed liquid at high temperature and filtering.The filter uses a 0.1 μm filter & removes dust larger than 0.1 μm. On the other hand, the ozone generated by the ozone generator 7 is bubbled into the mixed liquid from the bubbling nozzle 6, but the ozone concentration is as high as 18% by weight, as described above, and has the effect of an oxidizing agent as a substitute for hydrogen peroxide. 4a Ozone is a substance that is difficult to dissolve in water, and it does not significantly change the conductivity or pH of the mixed liquid (1. Therefore, to control the concentration of the mixed liquid, you only need to measure the ammonia concentration. In the example, although the ammonia concentration was measured by conductance using an electrodeless conductivity meter, it was also possible to use a PH meter, ion meter, etc. as a sensor for other ammonia concentration. 1
:5'''Q, conductance I when liquid temperature is 70℃
re 2.60mscm-' f42. 60m
scm-' or less, ammonia water is automatically supplied from the chemical supply controller 15. This control makes it possible to keep the concentration of the mixed solution constant. Chemical solution supply port 17 power exchange Reason for providing between circulation pump 12 and filter 13 GEL Supplied ammonia water,
This is to mix the ammonia water sufficiently quickly with the circulating liquid mixture, and also to quickly remove dust from the supplied ammonia water using a filter. Evaporation and carrier 3
The amount of mixed liquid decreases when the liquid is taken in and out of the quartz tank 1.Therefore, there is no need to supply pure water.
The amount of the mixed liquid in the tank is measured and the deficient amount of pure water is supplied by the pure water supply controller 9.The pure water supply port 11 is also the same as the chemical solution supply port 17. Therefore, it is possible to easily mix the mixed liquid and pure water.As described above, according to this embodiment, an ozone introduction mechanism, a high temperature circulation mechanism, a sensor for measuring the component concentration of the chemical liquid, and a predetermined A mechanism that automatically supplies the insufficient amount of chemical solution in response to changes in the concentration, a sensor that measures the liquid level of the mixed liquid in the cleaning tank, and an automatic supply of the insufficient amount of water to a predetermined liquid level. By providing a mechanism to do this, it is possible to eliminate changes in the concentration of the chemical solution over time. Therefore, stable chemical processing is possible, and there is almost no need to replace the chemical solution, which reduces the cost of the chemical solution. In addition, it is sufficient to measure the concentration of only one component of the chemical solution, making it possible to realize an inexpensive and stable device with high reliability.&K In this example, ammonia water and pure water were used as the chemical solutions. It can also be applied to chemical liquids consisting of water such as hydrochloric acid and pure water. In addition, the chemical solution hardly needs to be replaced, which not only reduces the cost of the chemical solution but also eliminates the need for labor and time required for chemical solution exchange, and its practical effects are great.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は本発明における一実施例の薬液処理装置の構戒
概略は 第2図は従来の薬液処理装置の構或概略図であ
も
1・・・・石英権 2・・・・シリコンウエハー、 3
・・・・キャリア、 4・・・・スノコ、 5・・・・
ヒーター、 6・・・・バプリングノズ/k 7・・
・・オゾン発生銖 8・・・・液面センサ、 9・・・
・純水供給制Ij徴10・・・・純水ライン、l1・・
・・純水供給口12・・・・循環ボンズ 13・・・・
フィルター、14・・・・薬液濃度センサ、15・・・
・薬液供給制御al6・・・・薬液ライン、l7・・・
・薬液供給四Fig. 1 is a schematic diagram of the structure of a chemical liquid processing apparatus according to an embodiment of the present invention, and Fig. 2 is a schematic diagram of the structure of a conventional chemical liquid processing apparatus. , 3
...Carrier, 4...Drainboard, 5...
Heater, 6... Bubbling nozzle/k 7...
・・Ozone generator 8・・Liquid level sensor 9・・・・
・Pure water supply control Ij indication 10...Pure water line, l1...
...Pure water supply port 12...Circulation bong 13...
Filter, 14... Chemical concentration sensor, 15...
・Medical solution supply control al6...Medical solution line, l7...
・Medical solution supply 4