JPH0395442A - Controlling system of sort discrimination of huller and the like - Google Patents

Controlling system of sort discrimination of huller and the like

Info

Publication number
JPH0395442A
JPH0395442A JP23311389A JP23311389A JPH0395442A JP H0395442 A JPH0395442 A JP H0395442A JP 23311389 A JP23311389 A JP 23311389A JP 23311389 A JP23311389 A JP 23311389A JP H0395442 A JPH0395442 A JP H0395442A
Authority
JP
Japan
Prior art keywords
light
grain
grains
sensor
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23311389A
Other languages
Japanese (ja)
Inventor
Shinji Ninomiya
伸治 二宮
Takashi Nagai
隆 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP23311389A priority Critical patent/JPH0395442A/en
Publication of JPH0395442A publication Critical patent/JPH0395442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PURPOSE:To enable automatic determination of the sort of a sampling grain according to the form of a grain distribution by transmittivity by a method wherein the grain distribution by transmittivity in each transmittivity division is prepared and controlled by an input obtained by a sensor light being transmitted through the sampling grain. CONSTITUTION:Sampling grains A of hulled rice are made to pass one by one across a light emitted from a light-emitting element 12 of a hulling rate sensor 7 to a light- sensing element 13 thereof, in a hulling rate control apparatus 6 having a microcomputer 11. The quantity of the light passing through the grain A is inputted and an arithmetic processing of a hulling rate is executed. A light quantity control device 15 being a part of this apparatus 6 regulates the quantity of light of the element 12 by a light quantity regulation output 18, detects 21 a signal obtained from the quantity of the passing light for each grain detected by the element 13, and adjusts automatically the quantity of light of the element 12 to be within a range set beforehand. The transmittivity of the quantity of light for each grain detected by the sensor 7 is plotted as a frequency distribution and thereby a grain distribution by transmittivity in each transmittivity division is prepared and controlled. Discrimination of the sort of grains is controlled according to the form of this distribution.

Description

【発明の詳細な説明】 (産業−ヒの利用分野) この発明は、籾摺機等の品種判別方式に関し、籾摺機の
脱ぷ率制御や選別制御、穀粒乾燥機等に利用して、らち
米やうるち米等の種別を判定制御するものである。
[Detailed description of the invention] (Field of application in industry) This invention relates to a type discrimination system for rice hullers, etc., and can be used for husking rate control and sorting control of rice hullers, grain dryers, etc. , to determine and control the type of rice, such as non-glutinous rice or non-glutinous rice.

(従来の技術、及び発明が解決しようとする課題) 発光素子と受光素子とを有してセンサ光をサンプリング
粒に透過させることによって、このセンサ光の透過状態
によってサンプリングが玄米か籾かを判別する判別制御
形態にあっては、粒の品種や種類等によって正確な判別
制御を維持し難いために、これらの各対象、乃至条件等
に応じて、発光素子の発光量を調節制御して、適正な判
別を行わせる必要がある。
(Prior art and problems to be solved by the invention) By having a light emitting element and a light receiving element and transmitting sensor light to the sampling grain, it is determined whether the sample is brown rice or paddy based on the transmission state of the sensor light. In the discrimination control mode, it is difficult to maintain accurate discrimination control depending on the type and type of grains, so the amount of light emitted by the light emitting element is adjusted and controlled according to each of these objects or conditions. It is necessary to make appropriate judgments.

このため、この発明は、センザ光によってザンプリング
粒を透過して検出するときの、センサ光の透過率の形態
によってこの穀粒の品種等の種別を判定し、この品種に
対応した作業の制御処理を行わせようとするものである
For this reason, the present invention determines the type of grain, etc. of the grain based on the form of the transmittance of the sensor light when the sensor light passes through and detects the sampled grain, and the control processing of the work corresponding to this variety is performed. It is intended to make the person do the following.

(課題を解決するための手段) この発明は、サンプリング粒にセンザ光を透過してこの
入力により透過率区分毎の透過率粒数分布を作成制御し
、この透過率粒数分布の形態によって粒の品種判別制御
を行うことを特徴とする籾摺機等の品種判別制御方式の
技術的手段を講じた。
(Means for Solving the Problems) This invention transmits sensor light through sampling grains, creates and controls a transmittance grain number distribution for each transmittance class based on this input, and controls the generation of transmittance grain number distribution for each transmittance class. We have devised a technical means for controlling the variety discrimination of rice hullers, etc., which is characterized by controlling the variety discrimination of rice hullers.

(作用) 発光素子から受光素子へ発振する一定光量のセンサ光に
よって、所定量のサンプリング粒を透過検出して、この
透過光量による受光出力によって透過率区分毎の透過率
粒数分布が作成制御される。
(Function) A predetermined amount of sampling grains are transmitted and detected by a constant amount of sensor light oscillated from the light emitting element to the light receiving element, and a transmittance grain number distribution for each transmittance category is created and controlled by the received light output based on the amount of transmitted light. Ru.

この透過率粒数分布の形態によってザンプリング粒の品
種が自動判定される。
The type of sampled grains is automatically determined based on the form of the transmittance grain number distribution.

(発明の効果) この発明は、前記のような技術的手段を講ずるのである
から、発光素子から発振される一定光量のセンサ光によ
る所定量のサンプリング粒の検出によって、透過率粒数
分布を作成しながら、この透過率粒数分布の形態によっ
て、サンプリング粒の品種等を判別制御することによっ
て、正確な品種判定を行うことができる。しかも、この
ような判別方式は、例えば、玄米と籾との判別を行いな
がら脱ぷ率を制御ずる脱ぶ率制御や、選別を制御する選
別制御等の玄米、籾の判別センサ、脱ぶ率センサ等とも
併用することが容易であり、制御を簡単化できる。
(Effects of the Invention) Since the present invention takes the above-mentioned technical means, a transmittance particle number distribution is created by detecting a predetermined amount of sampled particles using a constant amount of sensor light emitted from a light emitting element. However, by controlling the discrimination and control of the type of sampled grains based on the form of the transmittance grain number distribution, it is possible to accurately determine the type of grain. Moreover, such a discrimination method can be used, for example, to control the shedding rate while distinguishing between brown rice and paddy, to control the shedding rate, to control the sorting control, etc. It is easy to use together with sensors, etc., and control can be simplified.

実施例 以下この発明を脱ぶ率センザに利用した場合の実施例を
図面にもとづいて説明する。第2図において、籾摺機は
、機体の上部に、回転周速差を有する一対の脱ぷロール
からなる脱ぷ装置l、この脱ぶ装置1に籾を供給する籾
供給漏斗2、及び脱ぶ装置1で脱ぷされた摺出米を玄米
と籾とに選別する回転選別筒からなる選別装置3等を有
し、又、機体の下部には、該脱ぶ装置1による摺出米を
風選ずる風選装置4、及び該選別装置3による玄米を風
選する風選装置5等を設けている。
Embodiments Hereinafter, embodiments in which the present invention is applied to a rate sensor will be described based on the drawings. In Fig. 2, the hulling machine has a hulling device 1, which is made up of a pair of hulling rolls having a difference in rotational circumferential speed, on the top of the machine, a paddy supply funnel 2 that supplies paddy to the hulling device 1, and a hulling device 1, and a hulling device 1 that supplies paddy to the hulling device 1. It has a sorting device 3 consisting of a rotating sorting tube that sorts the polished rice that has been husked by the shedding device 1 into brown rice and paddy. A wind selection device 4 for wind selection, a wind selection device 5 for wind selection of brown rice by the sorting device 3, and the like are provided.

又、機体の一側には、籾摺制御を行う脱ぶ率制御装置6
を設けると共に、摺出米の一部のサンプリング粒を流下
させながら、このサンプリング粒から脱ぶ率を検出する
脱ぷ率センザ7を設けている。8は、摺出米揚穀機で、
脱ぷ装置1で脱ぶされた摺出米や、選別装置4で選別さ
れた戻り混合米等を受けて、この選別装置4へ揚穀する
構成である。9は、玄米揚穀機で、風選装置5で風選さ
れた玄米を受けて取出す構成である。lOは、排塵機で
、各風選装置4、5で風選した籾殻や塵埃等を吸引排出
するものである。
Also, on one side of the machine, there is a shedding rate control device 6 that controls the hulling.
At the same time, a shedding rate sensor 7 is provided which detects the shedding rate from the sampled grains while letting some of the sampled grains flow down. 8 is a rice grain frying machine.
It is configured to receive the crushed rice that has been husked by the husking device 1, the returned mixed rice that has been sorted by the sorting device 4, and to send the grain to the sorting device 4 for frying. Reference numeral 9 denotes a brown rice frying machine, which is configured to receive and take out the brown rice that has been wind-selected by the wind-selecting device 5. 1O is a dust extractor that sucks and discharges rice husks, dust, etc. that have been air-sorted by the wind-selecting devices 4 and 5.

第1図において、マイクロコンピュータ11を有した脱
ぶ率制御装置6において、脱ぷ率センサ7を構成する発
光素子12から受光素子l3へ照射される発光に、摺出
米のザンプリング粒Aを一粒毎横断通過させることによ
って、このサンプリング粒Aを照射したときの発光の透
過光量を入力して、脱ぶ率の演算処理を行うものである
In FIG. 1, in a shedding rate control device 6 having a microcomputer 11, sampling grains A of polished rice are added to the light emitted from the light emitting element 12 constituting the shedding rate sensor 7 to the light receiving element l3. By passing each grain across the grain, the amount of transmitted light emitted when the sampling grain A is irradiated is inputted, and the shedding rate is calculated.

光量制御装置15は、脱ぶ率制御装置6の一部として設
けられ、発光素子12の光量を調節制御する光量調節出
力18の出力回路1つを有し、又、受光素子13が検出
する一粒毎の透過光量を入力する入力回路20、及び一
粒毎の信号を検出する粒信号検出回路21を設け、発光
素子12による光量が予め設定された光量調節設定範囲
内に入るように自動調節される構成である。
The light amount control device 15 is provided as a part of the shedding rate control device 6, and has one output circuit for a light amount adjustment output 18 that adjusts and controls the light amount of the light emitting element 12. An input circuit 20 for inputting the amount of transmitted light for each grain and a grain signal detection circuit 21 for detecting a signal for each grain are provided, and the light amount from the light emitting element 12 is automatically adjusted so that it falls within a preset light amount adjustment setting range. This is the configuration that will be used.

第3図〜第6図において、脱ぷ率の演算処理の制御行程
を説明する。第3図は、脱ぶ率センサ7によって検出さ
れる所定粒数のサンプリング粒Aの一粒毎の光量の透過
率を度数分布としてグラフィック化した透過率粒数分布
(以下透過率曲線と云う)の一般的な形態を示すもので
ある。
3 to 6, the control process for calculating the skipping rate will be explained. FIG. 3 shows a transmittance grain number distribution (hereinafter referred to as a transmittance curve) in which the transmittance of the amount of light per grain of a predetermined number of sampled grains A detected by the shedding rate sensor 7 is graphically expressed as a frequency distribution. This shows the general form of

脱ぶ率制御装置6における脱ぷ率の算出処理は、(1)
このような透過率曲線のグラフイ・ソク処理制御を行う
The process of calculating the shedding rate in the shedding rate control device 6 is as follows (1)
This kind of graphic processing control of the transmittance curve is performed.

(2)この透過率曲線から玄米平均ブロック値のと籾平
均ブロック値■とを算出処理制御する。
(2) From this transmittance curve, calculate and control the brown rice average block value and the paddy average block value ■.

(3)透過率曲線における玄米と籾との境界位置である
境界ブロック値■(しきい値)を算出処理制御する。
(3) Calculate and control the boundary block value ■ (threshold), which is the boundary position between brown rice and paddy in the transmittance curve.

(4)この境界ブロック値を境として玄米側のサンプリ
ング粒数と籾側のサンプリング粒数によって脱ぶ率を算
出処理制御する。
(4) With this boundary block value as the boundary, the shedding rate is calculated and controlled based on the number of sampled grains on the brown rice side and the number of sampled grains on the paddy side.

の各行程の制御によって行われる。これを更に詳細に説
明する。
This is done by controlling each process. This will be explained in more detail.

第3図において、透過率は最大を1ブロックとし、最小
透過率のブロックをNとして区分している。例えば、一
回のサンプリング粒Aの粒数を2,000粒、脱ぶ率セ
ンサ7によって検出する時間を20秒、ブロック数Nを
64ブロックとし、1ブロックを6ビットとするように
分割設定する。又、全ブロック数N間の各平均透過光量
に相当する出力電圧を一粒信号電圧■として、0〜12
■(ボルト)として出力するように設定している。
In FIG. 3, the maximum transmittance is designated as one block, and the block with the minimum transmittance is designated as N. For example, the number of grains A sampled at one time is 2,000 grains, the time for detection by the shedding rate sensor 7 is 20 seconds, the number of blocks N is 64 blocks, and each block is divided into 6 bits. . In addition, the output voltage corresponding to each average amount of transmitted light among the total number of blocks N is defined as a single signal voltage ■, and is set from 0 to 12.
■It is set to be output as (volts).

玄米平均ブロック値のは、玄米の平均値であって、この
玄米平均ブロック値■の算出は、玄米粒数が第3図の山
線Bのピーク値のときの粒数を基準として、その粒数か
ら一定値M(例えば25粒)の範囲内にある粒数のブロ
ックの光量積算の加算値を粒数の加算値で割った値とす
る。即ち、山線B部分の一粒当りの平均透過光量を求め
る。この場合、ビーク粒数が25粒以上のブロックが例
えば10ブロック以上ないときは、上位10ブロックに
して上記と同様に計算を行うように制御する。
The brown rice average block value is the average value of brown rice, and the calculation of this brown rice average block value ■ is based on the number of grains when the number of brown rice grains is at the peak value of mountain line B in Figure 3. A value obtained by dividing the sum of light amounts of blocks whose number of grains is within a certain value M (for example, 25 grains) by the sum of the number of grains. That is, the average amount of transmitted light per grain at the peak line B portion is determined. In this case, if there are no blocks with a peak grain count of 25 or more, for example 10 or more, the calculation is performed in the same manner as above using the top 10 blocks.

籾平均ブロック値■は、籾の平均値であって、この籾ブ
ロック値■の算出は、総サンプリング粒数(2,000
粒)の籾側から例えば5粒をカットしたブロックを最大
ブロックとし、この籾側からnブロック(例えば]Oブ
ロック)の光量積算の加算値を粒数の加算値で割った値
とする。即ち、山線C部分の一粒当りの平均透過光量を
求める。
The paddy average block value ■ is the average value of paddy, and the calculation of this paddy block value ■ is based on the total number of sampled grains (2,000
A block obtained by cutting, for example, 5 grains from the paddy side of the paddy grains is set as the maximum block, and the sum of the light amount integration of n blocks (for example, O block) from this paddy side is divided by the sum of the number of grains. That is, the average amount of transmitted light per grain at the peak line C portion is determined.

このようにして、玄米平均ブロック値■の籾平均ブロッ
ク値■が求められると、これら各ブロック値の、■によ
って、境界ブロック値(しきい値)■を、次の式によっ
て算出する。
In this way, when the paddy average block value (■) of the brown rice average block value (■) is determined, the boundary block value (threshold) ■ is calculated using the following formula based on (■) of each of these block values.

■=(■一■)XK+の K:定数 この定数Kについては、籾ブロック値の算出を行った上
位nブロック(例えば10ブロック)の粒数により、次
のように規定する。
■=(■1■)K of XK+: Constant This constant K is defined as follows based on the number of grains in the top n blocks (for example, 10 blocks) for which the paddy block value was calculated.

100粒未満  ・・・K = 0.55100〜14
9粒・・・K = 0.47150粒以上  ・・・K
 = 0.40一般に脱ぶ率の高低によって、透過率曲
線の形態が第4図〜第6図のように作成される。第4図
は、脱ぶ率が高いとき(例えば90%以上)で、籾側に
山線Cが形成されないで、単純な傾斜線を形成する。こ
の形態ではK=0.55とする。
Less than 100 grains...K = 0.55100-14
9 grains...K = 0.47150 grains or more...K
= 0.40 In general, depending on the height of the shedding rate, the shape of the transmittance curve is created as shown in FIGS. 4 to 6. In FIG. 4, when the shedding rate is high (for example, 90% or more), the mountain line C is not formed on the side of the paddy, but a simple slope line is formed. In this form, K=0.55.

又、第5図は、脱ぷ率が普通のとき(例えば80〜90
%)で、籾側に低い山線Cが形或されるこの形態ではK
=0.47とずる。
Also, Figure 5 shows when the shedding rate is normal (for example, 80 to 90).
%), and in this form where a low mountain line C is formed on the rice side, K
=0.47.

又、第6図は、脱ぶ率が低いとき(例えば80%以下)
で、籾側に高い山線Cが形戒される。この形態ではK=
0.4とする。
Also, Figure 6 shows when the shedding rate is low (e.g. 80% or less)
Therefore, a high mountain line C is marked on the paddy side. In this form, K=
It is set to 0.4.

上記のように、籾側nブロックの粒数にて、Kの値を変
更し、境界ブロック値■を変更する。粒数の少いときは
、籾粒数が少く脱ぷ率が高いものとして境界ブロック■
を大きくシ(第4図)、又逆に粒数の多いときは、境界
ブロック値■を小さい方に(第6図)設定制御させる。
As mentioned above, the value of K is changed according to the number of grains in n blocks on the rice side, and the boundary block value ■ is changed. When the number of grains is small, the number of paddy grains is small and the dehulling rate is high and the boundary block is used.
When the number of grains is large (Fig. 4), or conversely, when the number of grains is large, the boundary block value (■) is set to a small value (Fig. 6).

摺出来サンプリング粒Aの分布により、脱ぶ率を算出す
るとき、脱ぶ率センサ7の発光の透過率に封ずる分布は
、玄米と籾で完全に分れた分布形態ではなく、両者が相
重合した部分をもつ分布となり、境界ブロック値(玄米
と籾との判定のしきい値)により計算脱ぶ率の精度が決
まる。実脱ぶ率の高低によって、籾側上位ブロックの粒
数が変ることを利用して、その粒数により境界ブロック
位置を調整することにより、実脱ぶ率に対する計算脱ぶ
率の精度を高めることができる。
When calculating the shedding rate based on the distribution of the sampled grains A, the distribution that is sealed in the transmittance of the emitted light from the shedding rate sensor 7 is not a completely separated distribution form for brown rice and paddy, but a distribution pattern in which both are compatible. The distribution has overlapping parts, and the accuracy of the calculation dropout rate is determined by the boundary block value (threshold value for determining brown rice and paddy). By taking advantage of the fact that the number of grains in the upper block on the paddy side changes depending on the grain shedding rate, and adjusting the position of the boundary block according to the number of grains, the accuracy of the calculated shedding rate relative to the fruit shedding rate can be improved. I can do it.

このようにして、境界ブロック値■が決ると、例えば、
次式のようにサンプリング全粒数(2,000粒)に対
する境界ブロック値■から玄米側にある総粒数(玄米粒
)の比を求めで脱ぶ率とずる。
In this way, once the boundary block value ■ is determined, for example,
As shown in the following equation, the ratio of the total number of grains on the brown rice side (brown rice grains) to the total number of grains sampled (2,000 grains) is determined from the boundary block value ■ and is calculated as the shedding rate.

脱ぶ率={(サンプリング全粒数一■以上のブロックに
ある総粒数)/サンプリング全粒数} XIOO (%
〕 脱ぶ率が算出されると、各種制御、例えば脱ぶ率制御が
行われる。算出された脱ぷ率が、設定脱ぶ率になるよう
に、脱ぷ装置1の脱ぷロールの間隙を、ザーボモータ1
4等により駆動して、開、閉出力制御する。
Shedding rate = {(total number of grains in blocks with sampled total number of 1 or more)/total number of sampled grains} XIOO (%
] Once the shedding rate is calculated, various controls, such as shedding rate control, are performed. The gap between the shedding rolls of the shedding device 1 is controlled by the servo motor 1 so that the calculated shedding rate becomes the set shedding rate.
4 etc. to control opening and closing output.

第7図を参照して光量調節制御を説明する。脱5率曲線
は、脱ぷ率センザ7の発光素子12の光量を変更するこ
とによって、水平方向へ移動される。玄米と籾との判別
に適する光量調節設定範囲Lを予め決めておき、脱ぷ率
曲線の玄米平均ブロック値のピーク値■が、この光量調
節設定範囲Lに入ったとき、脱ぶ率センサ7の光量調節
制御を終るように制御構成している。
Light amount adjustment control will be explained with reference to FIG. The de-5 rate curve is moved in the horizontal direction by changing the light amount of the light emitting element 12 of the rate-of-5 rate sensor 7. A light intensity adjustment setting range L suitable for distinguishing between brown rice and paddy is determined in advance, and when the peak value ■ of the brown rice average block value of the hulling rate curve falls within this light intensity adjustment setting range L, the hulling rate sensor 7 The control structure is configured to complete the light amount adjustment control.

実際に通過する摺出米のザンプリング粒Aの信号により
、脱ぶ率センサ7のセンサ光量を適正光量に調節する。
The sensor light amount of the shedding rate sensor 7 is adjusted to an appropriate light amount based on the signal of the sampling grains A of the polished rice that actually pass through.

サンプリング粒Aの信号を信号電圧(0〜12■)とし
てN区分し、各区分のブロック毎の度数を算出して度数
分布で表わし、最大度数(ピーク値■)の電圧を玄米の
平均信号電圧とみなす。この玄米電圧を適正な範囲I一
内に入るようにセンサ光量を前記脱ぷ率制御装置6と併
存する光量制御装置15により光量調節出力18を制御
する。
The signal of sampling grain A is divided into N divisions as signal voltages (0 to 12■), the frequency of each block in each division is calculated and expressed as a frequency distribution, and the voltage of the maximum frequency (peak value ■) is calculated as the average signal voltage of brown rice. regarded as. A light amount adjustment output 18 is controlled by a light amount control device 15 coexisting with the pulp removal rate control device 6 so that the brown rice voltage falls within an appropriate range I1.

この調節制御の概要については、脱ぶ率センサ7による
透過率曲線(のビーク値の)は、光量調節出力18によ
りセンザ光量を大きくして明るくする(FF→00)と
低電圧側へ移動し、センサ光量を小さくして暗くする(
00−’FF)と高電圧側へ移動する。
As for the outline of this adjustment control, the transmittance curve (of its peak value) by the shedding rate sensor 7 moves to the low voltage side when the sensor light intensity is increased and brightened by the light intensity adjustment output 18 (FF → 00). , decrease the sensor light intensity to make it darker (
00-'FF) and move to the high voltage side.

光量変更方法について、第7図、第8図、第9図を参照
し、初期設定は、光量データがクリアされているため、
光量ラダーは最も暗い側12■(FF)でスタートし、
その後の分布状態を見て下記のとおり、光量を変更して
いく。
Regarding how to change the light amount, please refer to Figures 7, 8, and 9.The initial setting is that the light amount data is cleared, so
The light intensity ladder starts at the darkest side 12■ (FF),
After that, the light intensity is changed as shown below based on the distribution state.

透過率粒数分布において、最大度数を示すブロック値を
Bmax.光量調節適正範囲をL(BO〜BILこのL
 ( B o−B l)の中心をBcとして、最大度数
のブロックのピーク値B maxと光量調節適正範囲の
中心値Bcとの差 ΔB=Bmax −Be によって、1回の変更調節量(bit)を第9図のよう
に設定する。
In the transmittance particle number distribution, the block value indicating the maximum frequency is defined as Bmax. Set the appropriate light amount adjustment range to L (BO~BIL)
With the center of (B o - B l) as Bc, the difference between the peak value B max of the block with the maximum power and the center value Bc of the appropriate light amount adjustment range ΔB = B max - Be is calculated as the amount of adjustment (bit) for one change. is set as shown in Figure 9.

このような透過率粒数分布にあっては、第10図のよう
にうるち米ともち米とによって透過率曲線の玄米平均ブ
ロック値■の位置が異なる。光量調節出力l8による発
光素子12における電圧及び光量を一定にした場合、も
ち米では、透過率が低いために、穀粒電圧の分布は高い
側となるのに対して、うるち米は、透過率が高いために
、穀粒電圧の分布は低い側となる。従って、この制御は
、第11図のようにして行われ、電圧の度数データであ
る透過率曲線の玄米ピーク値■が穀粒電圧の一定レベル
位置よりも高い側にあるときはもち米として判定して、
判別信号を出力し、又、一定レベル位置よりも低いff
ll+にあるときはうるち米と11 して判定して、判別信号を出力する。
In such a transmittance grain number distribution, as shown in FIG. 10, the position of the brown rice average block value ■ on the transmittance curve differs depending on non-glutinous rice and sticky rice. When the voltage and light amount in the light emitting element 12 by the light amount adjustment output l8 are held constant, the distribution of grain voltage is on the high side for glutinous rice because the transmittance is low, whereas for non-glutinous rice, the transmittance is low. Because of the high grain voltage distribution, it is on the low side. Therefore, this control is performed as shown in Figure 11, and when the brown rice peak value ■ of the transmittance curve, which is voltage frequency data, is on the higher side than the fixed level position of the grain voltage, it is determined as glutinous rice. do,
Outputs a discrimination signal and also outputs an ff lower than a certain level position.
When the rice is at ll+, it is judged as non-glutinous rice and a discrimination signal is output.

このような出力信号によって、例えば、前記のような光
量調節制御を行うときは、予め設定される光量調節設定
範囲Lを、もち米と、うるち米とで各別に設定しておき
、上記の判別に従ってもち米、又はうるち米の各光量調
節設定範囲Lに自動的に切換制御する。
For example, when performing the above-mentioned light amount adjustment control using such an output signal, the light amount adjustment setting range L is set in advance for glutinous rice and non-glutinous rice, and the control is performed according to the above determination. Automatic switching control is performed to each light intensity adjustment setting range L for glutinous rice or non-glutinous rice.

又、品種判定は、次のような制御によって行わせる制御
構成とするもよい。もち米とうるち米とでは、玄米の透
過光量が異なるため、同レベルの受光出力にするために
は、発光素子12による発光量が異なってくる。この結
果、第12図〜第14図において、光量調節制御では、
もち米(第12図)では、うるち米(第13図)におけ
るよりも光量調節の回数が多くなる。即ち、第12図、
第13図共に、発光素子12の光量調節を最も暗い位置
(FF)から明るい位置(00)へ行って、玄米ピーク
値のを、適正な光量調節設定範囲Lに入るまでの間の調
節回数を判別させて、うるち米が3回(第13図)であ
るのに対して5回(第1 2 l2図)であればもち米として判定する。
Further, the type determination may be performed using the following control. Since the amount of light transmitted through brown rice is different between glutinous rice and non-glutinous rice, the amount of light emitted by the light emitting element 12 must be different in order to achieve the same level of light reception output. As a result, in FIGS. 12 to 14, in the light amount adjustment control,
For glutinous rice (FIG. 12), the number of light intensity adjustments is greater than for non-glutinous rice (FIG. 13). That is, Fig. 12,
In both Figure 13, the light intensity of the light emitting element 12 is adjusted from the darkest position (FF) to the brightest position (00), and the number of adjustments is made until the brown rice peak value falls within the appropriate light intensity adjustment setting range L. It is determined that glutinous rice is glutinous rice if it is glutinous rice that has been eaten 5 times (Fig. 12l2), whereas non-glutinous rice has been eaten 3 times (Fig. 13).

又、このような脱ぷ率センザによる品種判定において、
サンプリング粒が脱51センサに流れていない状態にて
光量を変化さぜて、センサの受光出力レベルが一定値に
なるまでに何回光量を変更したかにより、品種判定回数
の補正を行うもよい。
In addition, in the variety determination using such a shedding rate sensor,
It is also possible to correct the number of product type determinations by changing the light intensity while the sampled grains are not flowing to the 51 sensor and depending on how many times the light intensity is changed until the sensor's light reception output level reaches a constant value. .

即ち、もち米とうるち米では、玄米の透過光量が異なる
ため、同レベルの受光出力にするためには、発光光量が
異なってくる。これを利用して品種の判定を行う際、セ
ンサの発光素子、受光素子のばらつきがあるので、この
ばらつきを考慮して正確な品種判定を行うものである。
That is, since the amount of light transmitted through brown rice is different between glutinous rice and nonglutinous rice, the amount of emitted light must be different in order to achieve the same level of light reception output. When determining the product type using this, since there are variations in the light emitting elements and light receiving elements of the sensor, this variation is taken into account to accurately determine the product type.

第15図のようにセンサの発光量を変化させて、玄米ピ
ーク値のが一定の光量調節設定範囲L内に入れば、調節
が終了したものとするとき、うるち米(実線)は発光量
Z(変更回数Q)にて終了したが、もち米(点線)はそ
の発光量ではまた範囲Lにはいっていない。このため更
に発光量を増やす必要がある。このように一定の光景調
節設定範囲に玄米ピーク値のが入ったときの発光量(変
更回数)にて、品種の判定を行うのであるが、しかしな
がら、第16図のようにセンサ自休のばらつきによって
、同一電圧(VO)にて発光素子12の出力は、一定に
はならない。そこで、上記のように判定する発光iz 
<変更回数Q)を第17図のように補正する。
As shown in Fig. 15, when the light emission amount of the sensor is changed and the peak value of brown rice falls within the fixed light amount adjustment setting range L, the adjustment is deemed to have been completed. Although the process ended after the number of changes Q), the amount of light emitted from sticky rice (dotted line) is still not within the range L. Therefore, it is necessary to further increase the amount of light emitted. In this way, the variety is determined based on the amount of light emitted when the peak value of brown rice falls within a certain sight adjustment setting range (number of changes). However, as shown in Figure 16, variations in sensor self-rest Therefore, the output of the light emitting element 12 does not become constant at the same voltage (VO). Therefore, the light emission iz determined as above
<Number of changes Q) is corrected as shown in FIG.

うるち米は発光量Z(変更回数Q)とし、もち米は発光
量Z+α(変更回数Q+2)の固定値として行うと、誤
差を生ずる。そこでセンサ単体の性能(ばらつき)を予
め測定しておき、補正することにより誤差を小さくし、
品種判定の精度を向上する。
If non-glutinous rice is set to the luminescence amount Z (number of changes Q), and glutinous rice is set to a fixed value of the luminescence amount Z+α (number of changes Q+2), an error will occur. Therefore, the performance (variation) of the sensor itself is measured in advance and corrected to reduce the error.
Improve accuracy of variety determination.

第16図のように、センサ(2)を基準として、センサ
(1)の場合(センサ(2)と同一駆動電圧でもセンサ
出力の小さいもの)は、発光量も多く受光量も多いと考
えられるので、判定の基準はセンサ(2)の場合よりも
少ない発光M(少ない変更回数)として補正する。セン
サ(3)の場合はその逆である。
As shown in Figure 16, with sensor (2) as the reference, sensor (1) (which has the same drive voltage as sensor (2) but has a smaller sensor output) is considered to emit more light and receive more light. Therefore, the determination criterion is corrected by setting a smaller number of light emissions M (less number of changes) than in the case of sensor (2). The opposite is true for sensor (3).

センサの性能測定は、サンプリング粒が供給される前(
電源ON時、又はロール間隙初期調節時、無負荷電流測
定時)に行えばよい。
Sensor performance measurements are performed before sampling grains are fed (
This can be done when the power is turned on, when initially adjusting the roll gap, or when measuring the no-load current.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を示すもので、第1図は制御ブロ
ック図、第2図は籾摺機の斜面図、第3図は脱ぷ率セン
サ検出による透過率曲線を示すグラフ、第4図〜第6図
はそのグラフの波形形態と演算処理制御形態例を示すグ
ラフ、第7図は光量調節作用を示すグラフ、第8図及び
第9図は透過率曲線の作成図、及び作成表、第10図は
透過率曲線の例、第11図は判別制御のフローチャート
、第12図及び第13図は透過率曲線の光量調節例、第
14図はその光量調節制御のフローチャート、第15図
は透過率曲線の例、第16図は脱ぶ率センサの特性を示
すグラフ、第17図は脱ぶ率センサの補正値を示す補正
表、第18図は判別制御のフローチャートを示すもので
ある。 符号の説明 6 脱ぶ率制御装置  7 脱ぶ率センサ11 マイク
ロコンピュータ 1 5 1 6 12 発光素子 15 光量制御装置 受光素子 光量調節出力 願人の名称 機株式会社 水  田  栄 久 13 1 8 特許出 井関農 代表者 第5図 暁封十ヶ′4jたのどき (ク゛J 30〜?θ% ノ 第6図 胱#率(が4逢い とき (存゛j 80%JスTノ 第7図 L 第8図 第9図 第70図 第//図 仮Q嫉らC見8轡東 手 続 補 正 書(自発) 平或  年  月 日 特願平1−  233//3号 2.発明の名称 籾摺機等の品種判別制御方式 3.補正をする者 事件との関係  特許出願人 郵便番号 799−26 住  所 愛媛県松山市馬本町700番地電  話 特
許部(0899)57−33114.補正の対象 (1)明細書の「発明の詳細な説明」の欄(2)図面(
第工図) 5.補正の内容 (1)明細書第6頁第17行目〜第工8行目の−1 「64ブロックとする。」 に補正する。 (2)図面(第工図) 通りに補正する。 6.添付書類の目録 (1)図面(第1図) を添付の図面 (第1図) −2
The figures show an embodiment of the present invention, in which Fig. 1 is a control block diagram, Fig. 2 is a slope view of the huller, Fig. 3 is a graph showing the transmittance curve detected by the hulling rate sensor, and Fig. 4 is a graph showing the transmittance curve detected by the hulling rate sensor. Figures 6 to 6 are graphs showing the waveform form of the graph and an example of the arithmetic processing control form, Figure 7 is a graph showing the light amount adjustment effect, and Figures 8 and 9 are diagrams and tables for creating transmittance curves. , FIG. 10 is an example of a transmittance curve, FIG. 11 is a flowchart of discrimination control, FIGS. 12 and 13 are examples of light amount adjustment of the transmittance curve, FIG. 14 is a flowchart of the light amount adjustment control, and FIG. 15 is an example of a transmittance curve, FIG. 16 is a graph showing the characteristics of the shedding rate sensor, FIG. 17 is a correction table showing the correction value of the shedding rate sensor, and FIG. 18 is a flowchart of discrimination control. . Explanation of symbols 6 Shedding rate control device 7 Shedding rate sensor 11 Microcomputer 1 5 1 6 12 Light emitting element 15 Light amount control device Light receiving element Light amount adjustment output Applicant's name Machine Co., Ltd. Sakae Hisashi Mizuta 13 1 8 Patent Izeki Agricultural Representative Figure 5 Akatsuki Fengjuka' 4j Tanodoki (Ku J 30 ~? Figure 8 Figure 9 Figure 70 // Figure provisional Type discrimination control system for sliding machines, etc. 3. Relationship with the case of the person making the amendment Patent applicant Postal code: 799-26 Address: 700, Mamoto-cho, Matsuyama City, Ehime Prefecture Telephone: Patent Department (0899) 57-33114. Subject of amendment (1) “Detailed Description of the Invention” column of the specification (2) Drawings (
Construction drawing) 5. Contents of the amendment (1) Correction to -1 "64 blocks" on page 6, line 17 to line 8 of page 6 of the specification. (2) Correct the drawing (first construction drawing). 6. List of attached documents (1) Drawings (Figure 1) Attached drawings (Figure 1) -2

Claims (1)

【特許請求の範囲】[Claims] サンプリング粒にセンサ光を透過してこの入力により透
過率区分毎の透過率粒数分布を作成制御し、この透過率
粒数分布の形態によって粒の品種判別制御を行うことを
特徴とする籾摺機等の品種判別制御方式。
A rice huller characterized in that sensor light is transmitted through sampled grains, a transmittance grain number distribution for each transmittance category is created and controlled based on this input, and grain type discrimination is controlled based on the form of this transmittance grain number distribution. Control method for determining the type of machine, etc.
JP23311389A 1989-09-08 1989-09-08 Controlling system of sort discrimination of huller and the like Pending JPH0395442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23311389A JPH0395442A (en) 1989-09-08 1989-09-08 Controlling system of sort discrimination of huller and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23311389A JPH0395442A (en) 1989-09-08 1989-09-08 Controlling system of sort discrimination of huller and the like

Publications (1)

Publication Number Publication Date
JPH0395442A true JPH0395442A (en) 1991-04-19

Family

ID=16949973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23311389A Pending JPH0395442A (en) 1989-09-08 1989-09-08 Controlling system of sort discrimination of huller and the like

Country Status (1)

Country Link
JP (1) JPH0395442A (en)

Similar Documents

Publication Publication Date Title
US4513868A (en) Sorting machine
US5135114A (en) Apparatus for evaluating the grade of rice grains
US7064281B2 (en) Combination weighing device
JPH0395442A (en) Controlling system of sort discrimination of huller and the like
JPH03277948A (en) Method for detecting and controlling hulled ratio of rice huller and the like
JP2897261B2 (en) Grain sorting equipment
JPH03249955A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH0385427A (en) Controlling system of light quantity adjustment of hulling rate sensor
JPH0398652A (en) Abnormality detection apparatus of dehulling ratio sensor
JP2000042433A (en) Automatic rice-polishing apparatus with automatic reduction in generation of broken rice
JPH0385428A (en) Measuring system of hulling rate
JPH03278845A (en) Controlling system for hulling ratio of huller and the like
JPH0438449A (en) Light quantity control device of dehulling rate sensor
JPH0398651A (en) Dehulling ratio control apparatus of huller
CA1210361A (en) Arrangement in a winnower
JPH0440243A (en) Controlling apparatus for husking ratio of husker
JPH03249954A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH03221845A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JPH03221846A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JP3173182B2 (en) Grader selection device in brown rice sorter
JPS60238156A (en) Method of setting reference value of control of rice hulling
JPH0432749A (en) Light quantity adjustment control system for milling rate sensor
JPH0731125B2 (en) Light intensity adjuster for the removal rate sensor in the huller
JPH0438450A (en) Light quantity control device of dehulling rate sensor
JPH03278846A (en) Detection control system for hulling ratio of huller and the like