JPH0388997A - Primary vacuum pump - Google Patents

Primary vacuum pump

Info

Publication number
JPH0388997A
JPH0388997A JP2225009A JP22500990A JPH0388997A JP H0388997 A JPH0388997 A JP H0388997A JP 2225009 A JP2225009 A JP 2225009A JP 22500990 A JP22500990 A JP 22500990A JP H0388997 A JPH0388997 A JP H0388997A
Authority
JP
Japan
Prior art keywords
rotor
stator
gap
pump
primary vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225009A
Other languages
Japanese (ja)
Inventor
Jean-Marie Crinquette
ジヤン―マリー・クランケツト
Jacques Long
ジヤツク・ロン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Original Assignee
Alcatel CIT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA filed Critical Alcatel CIT SA
Publication of JPH0388997A publication Critical patent/JPH0388997A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/102Adjustment of the interstices between moving and fixed parts of the machine by means other than fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/052Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/642Mounting; Assembling; Disassembling of axial pumps by adjusting the clearances between rotary and stationary parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE: To optimize a pressure change by forming a rotor and a stator into a truncated conical or a hemispheric shape to provide variable control of a gap with the relative axial movement of the rotor relative to the stator during exhausting work. CONSTITUTION: A rotor 21 and a stator 22 are formed into a truncated conical or a hemispheric shape and in a symmetrical shape along an axis 23 of rotation. A gap 24 between the rotor 21 and the stator 22 can be modified by the axial movement and a dotted line shows different relative positions of the rotor to cause a smaller gap 24'. The movement is performed by an electromagnet, a fluid pressure or a mechanical device, for example. The gap can be adjusted as a function of the viscosity of a pure gas or the viscosity of a pumped up mixture.

Description

【発明の詳細な説明】 本発明は、工つの固定子と、固定子の内部で回転し且つ
これに関して予め定められた洩れ隙間を保持する少なく
とも1つの回転子とを含む一次真空ボンブに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a primary vacuum bomb comprising a rotor stator and at least one rotor rotating inside the stator and maintaining a predetermined leakage gap in relation thereto.

一次真空ポンプはそれのみで又は−組としておよそ10
’mbtr −10−’mbsrの総圧力を大気圧に抗
して生成することができる。酸素及び窒素分子はこの種
のポンプ内に渦流及び/又は粘性状態で引き入れられる
。この種のポンプについての圧力Pに対する排気速度S
の特性は、基本的には回転子と固定子との間に存在する
隙間jの関数である。この関数は添付図面の第工図に示
されており、図中圧力PはX軸に沿ってl1b1f単位
で設定され、速度SはY軸に、P/h単位で設定されて
いる。実線で示された5本の曲線はそれぞれ所定の隙間
の場合に対応し、隙間は1つの曲線から次の曲線へ矢印
jの方向に増加する。
The primary vacuum pump can be used alone or as a set of approximately 10
A total pressure of 'mbtr -10-'mbsr can be generated against atmospheric pressure. Oxygen and nitrogen molecules are drawn into this type of pump in a vortex and/or viscous state. Pumping speed S versus pressure P for this type of pump
The characteristics of are basically a function of the gap j existing between the rotor and stator. This function is shown in the drawing of the accompanying drawings, in which the pressure P is set along the X-axis in units of l1b1f, and the speed S is set along the Y-axis in units of P/h. Each of the five solid curves corresponds to a given gap, the gap increasing from one curve to the next in the direction of arrow j.

ポンプの排気速度に対して大きい容量を汲み上げるとき
、回転子の温度は固定子の温度よりはるかに迅速に上昇
する。接触防止のため、最大膨張差と両立し得る最大の
固定子−回転子間隙間を残すよう装置業者は努めなけれ
ばならない。この大きい隙間は圧力に対する排出速度の
平均特性に相当し、これに加えてこの特性は回転子及び
固定子の各温度と共に変化する。
When pumping a large capacity relative to the pumping speed, the rotor temperature rises much faster than the stator temperature. To prevent contact, the equipment manufacturer must strive to leave the maximum stator-rotor clearance compatible with the maximum differential expansion. This large gap corresponds to an average characteristic of discharge velocity versus pressure, which in addition changes with rotor and stator temperatures.

更に、水素、プロパン、ペンタン等のガスは空気のそれ
の10分の工もの低い絶対粘性を持つ。内部漏れの流量
は従って空気よりはるかに高く、従って一定隙間におけ
る圧力に対する排気速度特性は空気の場合よりかなり低
い。従って純粋ガスの粘性又は汲み上げられている混合
物の粘性の関数として隙間を合わせることができれば有
利である。
Furthermore, gases such as hydrogen, propane, and pentane have absolute viscosities that are ten times lower than that of air. The flow rate of endoleaks is therefore much higher than that of air, and therefore the pumping velocity characteristic for pressure at a constant gap is much lower than for air. It would therefore be advantageous if the gap could be tailored as a function of the viscosity of the pure gas or of the mixture being pumped.

結果としては、小さい隙間を持ち、従って以下のような
優れた特性を有するポンプを構成することが可能である
As a result, it is possible to construct a pump with small clearances and thus with excellent properties such as:

大気圧においては、高い排気速度及び非常に低いds/
dp微分値、及び 速度ゼロにおいては、非常に低い圧力及びできるだけ大
きいds/dp微分値。
At atmospheric pressure, high pumping speeds and very low ds/
dp derivative, and at zero velocity, very low pressure and as large a ds/dp derivative as possible.

加えて、幾つかの適用例(半導体製造、質量分析測定、
ヘリウム又はネオントレーサガスを用いた洩れの検出、
宇宙シミュレーション、等々・・・・・・)では、圧力
とは無関係で排気速度を制御できることが望ましい。こ
れを実行するためには、当業者は2つの選択を手に入れ
ることができる。即ちポンプと直列に可変コンダクタン
スを結合すること、又はポンプの回転速度を下げること
である。
In addition, some application examples (semiconductor manufacturing, mass spectrometry measurements,
Leak detection using helium or neon tracer gas,
In space simulations, etc.), it is desirable to be able to control the pumping speed independent of pressure. To do this, two options are available to the person skilled in the art. That is, coupling a variable conductance in series with the pump or reducing the rotational speed of the pump.

本発明の目的は、排気作業時であってもその特性を迅速
に変化する非常に小さい隙間を達成し、ポンプが結合さ
れている容器内で時間の関数としての圧力変化の最適化
をはかることを可能にするポンプを設計することである
The aim of the invention is to achieve very small gaps that change their properties rapidly even during pumping operations and to optimize the pressure change as a function of time in the vessel to which the pump is connected. The goal is to design a pump that makes it possible.

本発明によれば、この目的は固定子と回転子の間の隙間
が排気作業中に変化することができることによって達成
される。
According to the invention, this objective is achieved in that the gap between the stator and rotor can be varied during the evacuation operation.

発明はこうして、固定子と、固定子内で回転し且つこれ
に関連して予め定められた洩れ隙間を保持する回転子と
から成る一次真空ボンブを提供する。ポンプは、その回
転子及び固定子が円錐台形又は半球形であり、隙間は固
定子に対する回転子の軸方向相対移動によって排気作業
中に可変とされることが、でき、更に前記移動が制御手
段によって得られることを特徴とする。
The invention thus provides a primary vacuum bomb consisting of a stator and a rotor that rotates within the stator and maintains a predetermined leakage gap in relation thereto. The pump may have a rotor and a stator of frustoconical or hemispherical shape, and the gap may be made variable during the evacuation operation by an axial relative movement of the rotor with respect to the stator, and further said movement may be controlled by control means. It is characterized by being obtained by.

く以下に説明する。This will be explained below.

第2図は回転子21及び固定子22を持つポンプを表わ
しており、それぞれが円錐台形をしており、回転軸23
に沿って対称形である。回転子及び固定子間の隙間24
は回転子を固定子(又は逆)の内側で純粋に機械的であ
ってもよい動作によって軸方向に移動することによって
修正されることができる。図中の点線はより小さめの隙
間24′ を生じる回転子の異なる相対位置を示す。
FIG. 2 shows a pump having a rotor 21 and a stator 22, each of which has a truncated cone shape, and a rotating shaft 23.
It is symmetrical along. Gap between rotor and stator 24
can be modified by moving the rotor axially inside the stator (or vice versa) by a movement that may be purely mechanical. The dotted lines in the figure indicate different relative positions of the rotors resulting in a smaller clearance 24'.

回転子は固定子の内部で、位置の適当な動作手段、例え
ば電磁石、流体圧、電気モータ、又は純粋に機械的な装
置によって動かされてもよい。
The rotor may be moved within the stator by means of suitable actuating means such as electromagnets, hydraulic pressure, electric motors or purely mechanical devices.

原理は円錐台形に制限されず、他の形状例えば第3図に
示すような形にも適用することができる。
The principle is not limited to a truncated cone shape, but can also be applied to other shapes, such as the one shown in FIG.

この場合回転子25は半球形で、固定子26内を対称軸
27の周りで回転する。
The rotor 25 is in this case hemispherical and rotates within the stator 26 about an axis of symmetry 27.

この実施例は、隙間を均一に減らすことが絶対的に重要
なのではなく、ガス漏れが特に大きい部分の隙間に作用
すれば充分であることを示している。
This example shows that it is not absolutely important to uniformly reduce the gap, but that it is sufficient to act on the gap where the gas leakage is particularly large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は様々な隙間をもつポンプについて圧力の関数と
しての排気速度を表わすグラフ、第2図は隙間が回転子
又は固定子を移動することによって変化する本発明円錐
台形回転子ポンプの概略図、及び第3図は第2図のそれ
に類似しているが、回転子が半球形であるポンプの概略
図である。 21.25・・・・・・回転子、  22.26・・・
・・・固定子、23・・・・・・回転軸、 27・・・
・・・対称軸、 24・・・・・・隙間。 FIG、1 FIG、2 FIG、 3
FIG. 1 is a graph representing the pumping speed as a function of pressure for pumps with various clearances; FIG. 2 is a schematic representation of a truncated conical rotor pump according to the invention in which the clearance is varied by moving the rotor or stator. , and FIG. 3 are schematic illustrations of a pump similar to that of FIG. 2, but with a hemispherical rotor. 21.25...Rotor, 22.26...
... Stator, 23 ... Rotating shaft, 27 ...
...Axis of symmetry, 24...Gap. FIG, 1 FIG, 2 FIG, 3

Claims (1)

【特許請求の範囲】[Claims] 固定子と、固定子内で回転し且つこれに関して予め定め
られた洩れ隙間を保持する回転子とを含む一次真空ポン
プであって、該ポンプは、その回転子と固定子が円錐台
形又は半球形であり、排気作業中に固定子に関して回転
子の軸方向相対移動によって可変とされる隙間を備えて
いること、及び前記移動が制御手段によって得られるこ
とを特徴とする一次真空ポンプ。
A primary vacuum pump comprising a stator and a rotor rotating within the stator and maintaining a predetermined leakage gap therewith, the pump having a rotor and a stator having a frustoconical or hemispherical shape. A primary vacuum pump, characterized in that it has a gap that is made variable by a relative axial movement of the rotor with respect to the stator during the evacuation operation, and that said movement is obtained by control means.
JP2225009A 1989-08-28 1990-08-27 Primary vacuum pump Pending JPH0388997A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8911302A FR2651280A1 (en) 1989-08-28 1989-08-28 PRIMARY VACUUM PUMP.
FR8911302 1989-08-28

Publications (1)

Publication Number Publication Date
JPH0388997A true JPH0388997A (en) 1991-04-15

Family

ID=9384945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225009A Pending JPH0388997A (en) 1989-08-28 1990-08-27 Primary vacuum pump

Country Status (3)

Country Link
EP (1) EP0415315A1 (en)
JP (1) JPH0388997A (en)
FR (1) FR2651280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8555799B2 (en) 2011-02-04 2013-10-15 Yamaha Hatsudoki Kabushiki Kaisha Personal watercraft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486000B2 (en) * 1995-03-31 2004-01-13 日本原子力研究所 Screw groove vacuum pump
DE19708954A1 (en) * 1997-03-05 1998-09-17 Busch Gmbh K Side channel compressor with bladed rotor wheel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154891A (en) * 1986-12-18 1988-06-28 Osaka Shinku Kiki Seisakusho:Kk Theread groove type vacuum pump
JPH02227598A (en) * 1989-01-09 1990-09-10 Alcatel Cit Gaede canal type vacuum pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR556556A (en) * 1922-09-26 1923-07-23 Hardoll Soc Rotary pump
US2134153A (en) * 1936-02-05 1938-10-25 S H Johnston Gear pump
DE848441C (en) * 1948-11-30 1952-09-04 Ernst Dr Schnabel poetry
US3168870A (en) * 1962-12-12 1965-02-09 Ingersoll Rand Co Centrifugal pump with adjustable capacity
SE357799B (en) * 1971-10-14 1973-07-09 Atlas Copco Ab
FR2290133A6 (en) * 1973-02-09 1976-05-28 Materiel Processing Internal Centrifugal pump with sealing plate - has inner part of plate movable in axial direction of impeller
DE2555595C2 (en) * 1974-12-13 1986-01-23 Nippon Piston Ring K.K., Tokio/Tokyo Vane pump
DE2922835C2 (en) * 1979-06-06 1985-06-05 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Circumferential gap seal on axial flow machines
DE3119568A1 (en) * 1981-05-16 1982-12-02 Big Dutchman (International) AG, 8090 Wezep Eccentric worm screw pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154891A (en) * 1986-12-18 1988-06-28 Osaka Shinku Kiki Seisakusho:Kk Theread groove type vacuum pump
JPH02227598A (en) * 1989-01-09 1990-09-10 Alcatel Cit Gaede canal type vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8555799B2 (en) 2011-02-04 2013-10-15 Yamaha Hatsudoki Kabushiki Kaisha Personal watercraft

Also Published As

Publication number Publication date
EP0415315A1 (en) 1991-03-06
FR2651280A1 (en) 1991-03-01

Similar Documents

Publication Publication Date Title
US3536418A (en) Cryogenic turbo-molecular vacuum pump
CN108757945A (en) A kind of hybrid lubrication end face seal structure
JP2690432B2 (en) Turbo machinery
KR20040094740A (en) A centrifugal compressor
JPH09170589A (en) Turbo molecular pump
US2916332A (en) Aerostatic bearings with fluid-dynamic seals
JPH01138397A (en) Molecular pump
JP2005180438A (en) Ultra high-speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
JPH0388997A (en) Primary vacuum pump
JPS59168295A (en) Turbo molecular pump
CN209262072U (en) A kind of magnetic suspension bearing radial protection structure
JPH0219694A (en) Oil-free vacuum pump
WO2021105656A1 (en) Pumping stage of a vacuum pump
JPH10506453A (en) Device for damping radial vibration
Murakami et al. Development of turbo‐viscous pump with ceramic rotor assembly and oil‐free driving unit
RU2697244C1 (en) Bladeless radial centrifugal compressor
JPH02503703A (en) turbo molecular vacuum pump
US2950046A (en) High vacuum pump
JP2627437B2 (en) Compound vacuum pump
JPH04276197A (en) Multiturbo type vacuum pump
JPH11230084A (en) Turbo molecular pump
JPH0216389A (en) Turbo molecular drag pump
WO2020129326A1 (en) Turbo compressor and refrigeration cycle device
Manzagol et al. New 80 K cryo-mechanical pump project
JPS6385268A (en) Vacuum exhausting device