WO2020129326A1 - Turbo compressor and refrigeration cycle device - Google Patents

Turbo compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2020129326A1
WO2020129326A1 PCT/JP2019/035115 JP2019035115W WO2020129326A1 WO 2020129326 A1 WO2020129326 A1 WO 2020129326A1 JP 2019035115 W JP2019035115 W JP 2019035115W WO 2020129326 A1 WO2020129326 A1 WO 2020129326A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
bearing
rotating shaft
turbo compressor
working fluid
Prior art date
Application number
PCT/JP2019/035115
Other languages
French (fr)
Japanese (ja)
Inventor
直芳 庄山
洪志 孫
文紀 河野
松井 大
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2020129326A1 publication Critical patent/WO2020129326A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • the present disclosure relates to a turbo compressor and a refrigeration cycle device.
  • Patent Document 1 describes a turbo compressor 200 as shown in FIG.
  • the turbo compressor 200 includes a casing 221, an electric motor 213, a rotating shaft 225, a rolling bearing 227, and a slide bearing 228.
  • Two stages of impellers 223a and 223b are fixed to one end of the rotary shaft 225, and the impellers 223a and 223b form a compression section 223 together with a compression passage structure.
  • the rolling bearing 227 pivotally supports the rotary shaft 225 between the electric motor 213 and the impellers 223a and 223b, and the other end of the rotary shaft 225 is pivotally supported by the slide bearing 228.
  • the rolling bearing 227 has two angular ball bearings 227a and 227b.
  • the bearing metal 228a is press-fitted into the bearing boss 221d.
  • the electric motor 213 includes a stator 213A and a rotor 213B fixed to the rotating shaft 225.
  • the compressor 223 is driven by the electric motor 213, the vaporized refrigerant is sucked into the compressor 223 and compressed.
  • Patent Document 2 describes a multistage centrifugal compressor 300 as shown in FIG. 7.
  • the multi-stage centrifugal compressor 300 includes a first-stage impeller 301, a next-stage impeller 304, a diffuser 306, a return vane 307, a diffuser vane 308, a stage labyrinth 309, and a rotating shaft 310.
  • the multi-stage centrifugal compressor 300 has a return flow passage through which the gas flow from the diffuser 306 flows into the next-stage impeller 304, and the return vane 307 is arranged in the return flow passage.
  • white arrows indicate the main flow of gas.
  • the return flow passage converts the velocity energy of gas into pressure energy.
  • C is the axis of the rotating shaft 310.
  • Patent Documents 1 and 2 when compressing a working fluid such as a vapor phase refrigerant having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature (20° C. ⁇ 15° C.: Japanese Industrial Standard JISZ8703) , There is room to increase the stability of rotation of the rotating shaft.
  • a working fluid such as a vapor phase refrigerant having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature (20° C. ⁇ 15° C.: Japanese Industrial Standard JISZ8703
  • the present disclosure provides a turbo compressor that is advantageous for increasing the stability of rotation of the rotating shaft.
  • the present disclosure includes a first impeller fixed to the rotary shaft, the first impeller having a rotary shaft, a first suction port fixed to the rotary shaft, into which the working fluid is sucked, and a first discharge port discharging the working fluid.
  • a second impeller having a second suction port for sucking the working fluid and a second discharge port for discharging the working fluid, and between the first impeller and the second impeller in the axial direction of the rotating shaft.
  • a first bearing that rotatably supports the rotating shaft, A first flow path for guiding the working fluid from the first discharge port to the second suction port, wherein the first suction port and the second suction port are opened in the same direction, provide.
  • the above turbo compressor is advantageous for improving the stability of rotation of the rotating shaft.
  • FIG. 1 is a sectional view showing an example of a turbo compressor of the present disclosure.
  • FIG. 2 is a configuration diagram illustrating an example of the refrigeration cycle device of the present disclosure.
  • FIG. 3 is a cross-sectional view showing another example of the turbo compressor of the present disclosure.
  • FIG. 4 is a sectional view showing a part of another example of the turbo compressor of the present disclosure.
  • FIG. 5 is a cross-sectional view showing a turbo compressor according to a reference example.
  • FIG. 6 is a sectional view showing a conventional turbo compressor.
  • FIG. 7 is a sectional view showing a conventional multistage centrifugal compressor.
  • the natural frequency based on the bending rigidity of the rotating shaft When the natural frequency based on the bending rigidity of the rotating shaft is low, the natural frequency based on the bending rigidity of the rotating shaft and the rotating speed of the rotating shaft become close to each other, causing resonance, and rotating the rotating shaft at a desired rotating speed become difficult. Therefore, in order to prevent the natural frequency from decreasing due to the bending rigidity of the rotary shaft, it is desirable to suppress the extension of the length of the rotary shaft in the axial direction. Therefore, the present inventors have earnestly studied the structure of a turbo compressor for increasing the cross-sectional area of the return flow channel while suppressing the extension of the axial length of the rotating shaft.
  • a turbo compressor includes a rotating shaft, a first suction port fixed to the rotating shaft, into which a working fluid is sucked, and a first discharge port from which the working fluid is discharged.
  • a second impeller fixed to the rotary shaft having a second suction port for sucking the working fluid and a second discharge port for discharging the working fluid, and the first impeller in the axial direction of the rotary shaft.
  • the first suction port and the second suction port are opened in the same direction.
  • the turbo compressor according to the first aspect is advantageous in increasing the stability of rotation of the rotary shaft.
  • the working fluid having a saturated vapor pressure of atmospheric pressure or lower at room temperature may be accelerated and compressed. According to the third aspect, it is possible to compress the working fluid having a saturated vapor pressure of atmospheric pressure or less at room temperature in a state where the rotation of the rotary shaft is highly stable.
  • the turbo compressor according to the first aspect to the third aspect is arranged at a position further away from the first impeller than the first bearing in the axial direction, and the rotation shaft is It may further include a second bearing rotatably supported, and a motor having a rotor fixed to the rotating shaft between the first bearing and the second bearing in the axial direction. According to the fourth aspect, it is possible to enhance the stability of rotation of the rotary shaft while the rotor of the motor is fixed to the rotary shaft.
  • the turbo compressor according to the first aspect to the fourth aspect has a third suction port that opens in the same direction as the first suction port and the second suction port.
  • a third impeller arranged at a position apart from the first bearing in the axial direction and fixed to the rotating shaft, wherein the second impeller includes the first impeller and the third impeller.
  • the rotary shaft may be disposed between the rotary shaft and the impeller, and the diameter of the rotary shaft at the fixed position of the third impeller may be equal to or larger than the diameter of the rotary shaft at the fixed position of the second impeller. According to the fifth aspect, it is easy to realize operation at a high pressure ratio by the third impeller.
  • the diameter of the rotary shaft at the fixed position of the third impeller is equal to or larger than the diameter of the rotary shaft at the fixed position of the second impeller, the bending rigidity of the rotary shaft tends to increase. Therefore, according to the fifth aspect, it is possible to prevent the natural frequency from decreasing due to the bending rigidity of the rotating shaft.
  • the turbo compressor according to the fifth aspect is disposed at a position further away from the first impeller than the first bearing in the axial direction, and rotatably supports the rotary shaft.
  • a motor having a rotor fixed to the rotating shaft between the first bearing and the second bearing in the axial direction, the third impeller may be provided. , May be fixed between the second impeller and the rotor in the front axis direction. According to the sixth aspect, it is possible to enhance the stability of rotation of the rotating shaft while the rotor of the motor is fixed to the rotating shaft.
  • a refrigeration cycle apparatus is an evaporator that produces a vapor-phase refrigerant, and compresses the vapor-phase refrigerant produced in the evaporator as the working fluid.
  • the turbo compressor according to any one of the aspects and a condenser for condensing the gas-phase refrigerant compressed by the turbo compressor.
  • the gas-phase refrigerant generated in the evaporator can be compressed in a state in which the rotation of the rotary shaft of the turbo compressor is highly stable.
  • the evaporator may store the liquid-phase refrigerant therein
  • the condenser may store the liquid-phase refrigerant therein.
  • at least one of the liquid-phase refrigerant stored in the evaporator and the liquid-phase refrigerant stored in the condenser may be supplied to the first bearing.
  • at least one of the liquid-phase refrigerant stored in the evaporator and the liquid-phase refrigerant stored in the condenser can be used for lubricating or cooling the first bearing.
  • the turbo compressor 1a includes a rotary shaft 10, a first impeller 21, a second impeller 22, a first bearing 41, and a return flow passage 82a.
  • the first impeller 21 is fixed to the rotating shaft 10.
  • the first impeller 21 has a first suction port 21a for sucking the working fluid and a first discharge port 21b for discharging the working fluid.
  • the second impeller 22 is fixed to the rotating shaft 10.
  • the second impeller 22 has a second suction port 22a for sucking the working fluid and a second discharge port 22b for discharging the working fluid.
  • the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft, and rotatably supports the rotary shaft 10.
  • the first bearing 41 is an essential member for rotatably supporting the rotary shaft 10.
  • the first bearing 41 is distinguished from the seal member which is not indispensable for rotatably supporting the rotating shaft 10 in this respect.
  • the first suction port 21a and the second suction port 22a open in the same direction.
  • the return flow passage 82a is arranged so as to approach the rotary shaft 10 from the first discharge port 21b, and is connected to the second suction port 22a.
  • the return channel 82a may be called the first channel.
  • the first flow path is a flow path that guides the working fluid from the first discharge port 21b to the second suction port 22a, and may be a flow path through which the working fluid passes through pipes or structures.
  • the first impeller 21 is fixed to one end of the rotary shaft 10, for example. Since the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft 10, the first impeller 21 is fixed to one end of the rotary shaft 10. Also, the first bearing 41 can be rotatably supported.
  • the turbo compressor 1a includes, for example, a casing 60, and the first bearing 41 is fixed to the casing 60.
  • the casing 60 has a wall surface that forms a stationary flow channel, and the return flow channel 82a exists inside the casing 60.
  • the turbo compressor 1 a further includes, for example, a motor 70.
  • the motor 70 includes, for example, a rotor 71 and a stator 72.
  • the rotor 71 is fixed to the rotating shaft 10, for example.
  • the rotor 71 is preferably fixed to the rotary shaft 10 at a position farther from the first impeller 21 than the second impeller 22 in the axial direction of the rotary shaft 10.
  • the first impeller 21, the second impeller 22, and the rotor 71 are arranged in this order in the axial direction of the rotary shaft 10.
  • the stator 72 is fixed to the casing 60, for example. When electric power is supplied to the motor 70, a rotating magnetic field is generated by the stator 72, and a rotating torque is generated in the rotor 71.
  • the first impeller 21 and the second impeller 22 fixed to the rotating shaft 10 rotate.
  • the turbo compressor 1a accelerates and compresses a working fluid having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature, for example.
  • the working fluid is typically in the gas phase. Water may be preferably used as such a working fluid. Since such a working fluid easily flows through the return passage with a large specific volume, it is highly necessary to increase the cross-sectional area of the return passage. In some cases, the turbo compressor 1a may accelerate and compress a working fluid having a saturated vapor pressure exceeding atmospheric pressure at room temperature.
  • the turbo compressor 1a further includes a second bearing 42, for example.
  • the second bearing 42 is arranged at a position farther from the first impeller 21 than the first bearing 41 in the axial direction of the rotating shaft 10.
  • the second bearing 42 rotatably supports the rotating shaft 10.
  • the rotor 71 of the motor 70 is fixed to the rotary shaft 10 between the first bearing 41 and the second bearing 42 in the axial direction of the rotary shaft 10, for example.
  • the center of the rotary shaft 10 in the axial direction is located, for example, between the second impeller 22 and the rotor 71.
  • the rotary shaft 10 desirably has a highly symmetrical axisymmetric shape in order to minimize unbalance during rotation.
  • the rotor 71 is fixed to the rotary shaft 10 by shrink fitting, for example.
  • a sufficiently large shrink fit margin is secured in the shrink fit of the rotor 71 so that the shrink fit margin remains even if the rotary shaft 10 rotates at a high speed and the diameter of the rotor 71 is slightly increased by centrifugal force. ..
  • the rotation speed of the rotary shaft 10 is, for example, 5000 rpm (revolutions per minute) to 100000 rpm.
  • the material of the rotating shaft 10 is not limited to a particular material.
  • the material of the rotating shaft 10 may be, for example, a high-strength iron-based material such as SNCM630.
  • the diameter of the rotary shaft 10 at the fixed position of the second impeller 22 is larger than the diameter of the rotary shaft 10 at the fixed position of the first impeller 21.
  • the rotary shaft 10 has a large diameter near the center, and the natural frequency based on the bending rigidity of the rotary shaft 10 tends to be high. Therefore, the rotation stability of the rotary shaft 10 is likely to increase.
  • the first impeller 21 and the second impeller 22 typically form a centrifugal compression mechanism.
  • the outer diameter of the portion of the first impeller 21 forming the first suction port 21a is smaller than the outer diameter of the portion of the first impeller 21 forming the first discharge port 21b, for example.
  • the first suction port 21a is open, for example, in front of the first impeller 21.
  • the first discharge port 21b opens to the outside of the first impeller 21 in the radial direction.
  • the outer diameter of the portion of the second impeller 22 forming the second suction port 22a is smaller than the outer diameter of the portion of the second impeller 22 forming the second discharge port 22b.
  • the second suction port 22a is open, for example, in front of the second impeller 22.
  • the second discharge port 22b opens to the outside of the second impeller 22 in the radial direction.
  • the return passage 82a is, for example, an annular passage located outside the first bearing 41 in the direction perpendicular to the axis of the rotating shaft 10.
  • the outer diameter of the portion of the first impeller 21 forming the first discharge port 21b is smaller than the outer diameter of the portion of the second impeller 22 forming the second suction port 22a, for example. Therefore, the return passage 82a is formed so as to narrow toward the second impeller 22 in the axial direction of the rotating shaft 10.
  • the working fluid sucked from the first suction port 21a is accelerated by the first impeller 21 and discharged from the first discharge port 21b. After that, the working fluid passes through the return flow path 82a, is sucked into the second suction port 22a, is accelerated by the second impeller 22, and is discharged from the second discharge port 22b. Thereby, the working fluid is compressed.
  • a flow path 83 is connected to the turbo compressor 1a, and the working fluid discharged from the second discharge port 22b is supplied to the outside of the turbo compressor 1a through the flow path 83.
  • the first bearing 41 is not limited to a specific bearing as long as it supports the rotating shaft 10 in a rotatable manner.
  • the first bearing 41 is, for example, a slide bearing.
  • the first bearing 41 has, for example, a radial support portion 41a and a thrust support portion 41b.
  • the radial support portion 41a supports the load of the rotating body including the rotating shaft 10 in the radial direction.
  • the thrust support portion 41b supports the thrust force generated by the rotation of the first impeller 21 and the second impeller 22.
  • the fluid that lubricates the first bearing 41 may be a lubricating oil or a fluid that is compatible with the working fluid.
  • the fluid that lubricates the first bearing 41 may desirably be a fluid having the same composition as the working fluid.
  • the first bearing 41 may be a rolling bearing such as a ball bearing or a magnetic bearing.
  • the second bearing 42 is not limited to a particular bearing as long as it supports the rotating shaft 10 in a rotatable manner.
  • the second bearing 42 is, for example, a slide bearing.
  • the second bearing 42 is configured, for example, so as not to support thrust force during normal operation of the turbo compressor 1a.
  • the second bearing 42 allows, for example, in the axial direction of the rotary shaft 10, a dimensional change of about one thousandth or more of the entire length of the rotary body including the rotary shaft 10 in the axial direction of the rotary shaft 10. Thereby, even if the rotary shaft 10 expands due to the temperature rise of the rotary shaft 10 during the operation of the turbo compressor 1a, the second bearing 42 can cope with the expansion of the rotary shaft 10 due to the expansion of the rotary shaft 10.
  • the second bearing 42 may be a rolling bearing such as a ball bearing or a magnetic bearing.
  • the pressure ratio of the working fluid in the first impeller 21 may be 2, for example, and the pressure of the working fluid discharged from the first discharge port 21b may be 2 kPa.
  • the working fluid discharged from the first discharge port 21b is sucked into the second suction port 22a through the return flow passage 82a.
  • the specific volume of steam having a pressure of 2 kPa at room temperature is 67 m3/kg, and the return flow passage 82a requires a large cross-sectional area.
  • the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft 10.
  • the rotary shaft 10 originally has a length for disposing the first bearing 41 between the first impeller 21 and the second impeller 22.
  • the first bearing 41 overlaps the return flow passage 82a in the axial direction of the rotary shaft 10, so that the cross-sectional area of the return flow passage 82a is suppressed while suppressing the extension of the axial length of the rotary shaft 10. It is easy to make Therefore, the natural frequency based on the bending rigidity of the rotary shaft 10 tends to increase.
  • the turbo compressor 1a it is possible to prevent resonance due to the natural frequency based on the bending rigidity of the rotating shaft 10 and the rotating speed of the rotating shaft 10 becoming close to each other.
  • the meaning of the cross-sectional area of the return flow passage 82a is also meant to include the cross-sectional area A having a constant radius from the rotation axis as shown in FIG.
  • the cross-sectional area A of the return passage 82a can be expanded. As a result, the high-pressure vapor-phase refrigerant can be passed inside the return flow passage 82a.
  • a working fluid may be used as the lubricant of the first bearing 41.
  • a passage passing through the inside of the rotating shaft 10 from the right side of the rotating shaft 10 to the first bearing 41 is provided, and the working fluid is supplied to the first bearing through the passage. 41.
  • a refrigeration cycle device can be provided using the turbo compressor 1a.
  • the refrigeration cycle device 100 includes an evaporator 30, a turbo compressor 1 a, and a condenser 50.
  • the evaporator 30 produces a gas-phase refrigerant.
  • the turbo compressor 1a compresses the vapor phase refrigerant generated in the evaporator 30 as a working fluid.
  • the condenser 50 condenses the vapor phase refrigerant compressed by the turbo compressor 1a.
  • the vapor-phase refrigerant generated in the evaporator 30 can be compressed in a state where the rotation shaft 10 of the turbo compressor 1a is highly stable in rotation.
  • the refrigeration cycle apparatus 100 can be made to function as an air conditioner, for example.
  • the evaporator 30 stores, for example, a liquid-phase refrigerant therein.
  • the condenser 50 stores the liquid phase refrigerant therein, for example.
  • at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser is supplied to the first bearing 41.
  • at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser 50 can be used for lubricating or cooling the first bearing 41.
  • the refrigeration cycle apparatus 100 includes, for example, a main circuit 80, a first circulation circuit 31, and a second circulation circuit 51.
  • the main circuit 80 is a circuit in which the evaporator 30, the turbo compressor 1a, and the condenser 50 are connected in this order.
  • a flow passage 81 connects the internal space of the evaporator 30 and the internal space of the casing 60 of the turbo compressor 1 a.
  • a flow passage 83 connects the internal space of the casing 60 of the turbo compressor 1 a and the internal space of the condenser 50.
  • the internal space of the condenser 50 and the internal space of the evaporator 30 communicate with each other through a flow path 84.
  • the first circulation circuit 31 has a first pump 35 and a first heat exchanger 33.
  • the liquid working fluid stored in the evaporator 30 is supplied to the first heat exchanger 33 by the first pump 35, and the working fluid absorbed in the first heat exchanger 33 is supplied to the evaporator 30. It is configured to return.
  • the evaporator 30 and the inlet of the first pump 35 are connected by a flow path 31a.
  • the outlet of the first pump 35 and the inlet of the first heat exchanger 33 are connected by the flow path 31b.
  • the outlet of the first heat exchanger 33 and the evaporator 30 are connected by the flow path 31c.
  • the second circulation circuit 51 has a second pump 55 and a second heat exchanger 53.
  • the liquid working fluid stored in the condenser 50 is supplied to the second heat exchanger 53 by the second pump 55, and the working fluid radiated by the second heat exchanger 53 is fed to the condenser 50. It is configured to return.
  • the condenser 50 and the inlet of the second pump 55 are connected by the flow path 51a.
  • the outlet of the second pump 55 and the inlet of the second heat exchanger 53 are connected by the flow path 51b.
  • the outlet of the second heat exchanger 53 and the condenser 50 are connected by the flow path 51c.
  • the liquid-phase refrigerant stored in the evaporator 30 is used as the lubricating liquid to be supplied to the first bearing 41 and the second bearing 42.
  • the liquid-phase refrigerant stored in the condenser 50 may be used as the lubricating liquid to be supplied to the first bearing 41 and the second bearing 42.
  • the liquid-phase refrigerant supplied to the first bearing 41 and the second bearing 42 is returned to the evaporator 30 or the condenser 50.
  • the turbo compressor 1a can be changed from various viewpoints.
  • the turbo compressor 1a may be changed to the turbo compressor 1b shown in FIG.
  • the turbo compressor 1b is configured in the same manner as the turbo compressor 1a, except for the part particularly described.
  • the constituents of the turbo compressor 1b that are the same as or correspond to the constituents of the turbo compressor 1a are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the description of the turbo compressor 1a also applies to the turbo compressor 1b unless technically contradictory.
  • the turbo compressor 1b further includes a third impeller 23.
  • the third impeller 23 is arranged at a position apart from the first bearing 41 in the axial direction of the rotary shaft 10 and is fixed to the rotary shaft 10.
  • the second impeller 22 is arranged between the first impeller 21 and the third impeller 23. According to the turbo compressor 1b, it is easy to realize the operation at a high pressure ratio by the third impeller 23.
  • the diameter of the rotary shaft 10 at the fixed position of the third impeller 23 is equal to or larger than the diameter of the rotary shaft 10 at the fixed position of the second impeller 22.
  • the rotating shaft 10 tends to have a large diameter near the center in the axial direction, and the bending rigidity of the rotating shaft 10 tends to increase.
  • the natural frequency based on the bending rigidity of the rotating shaft 10 from decreasing, and prevent the natural frequency based on the bending rigidity of the rotating shaft 10 and the rotation speed of the rotating shaft 10 from becoming close to each other to cause resonance. it can.
  • the third impeller 23 is fixed to the rotary shaft 10 between the second impeller 22 and the rotor 71 in the axial direction of the rotary shaft 10, for example.
  • the stability of rotation of the rotary shaft 10 can be enhanced with the rotor 71 of the motor 70 fixed to the rotary shaft 10.
  • the center of the rotary shaft 10 in the axial direction is located, for example, between the second impeller 22 and the rotor 71.
  • the third impeller 23 typically has a third suction port 23a for sucking the working fluid and a third discharge port 23b for discharging the working fluid.
  • the third suction port 23a opens in the same direction as the opening direction of the first suction port 21a and the second suction port 22a, for example.
  • the third impeller 23 constitutes, for example, a centrifugal compression mechanism together with the first impeller 21 and the second impeller 22.
  • the outer diameter of the portion of the third impeller 23 forming the third suction port 23a is smaller than the outer diameter of the portion of the third impeller 23 forming the third discharge port 23b, for example.
  • the third suction port 23a opens, for example, in front of the third impeller 23.
  • the third discharge port 23b opens to the outside in the radial direction of the third impeller 23.
  • the turbo compressor 1b further includes, for example, a return flow path 82b.
  • the return flow path 82b is a flow path for guiding the working fluid from the second discharge port 22b to the third suction port 23a.
  • the working fluid having a small specific volume that has been compressed by passing through the first impeller 21 and the second impeller 22 is guided to the third impeller 23. Therefore, the third impeller 23 can be manufactured so that the width of the working fluid passage in the third impeller 23 is narrower than the width of the working fluid passage in the first impeller 21.
  • the turbo compressor 1a When the turbo compressor 1a is operated for a long time, the temperature of the rotating shaft 10 rises. As a result, the total length of the rotary shaft 10 increases. Since the first bearing 41 has a load capacity of the thrust load of the rotary shaft 10, the positional relationship between the first bearing 41 and the rotary shaft 10 hardly changes in the axial direction of the rotary shaft 10. The influence of thermal expansion of the rotary shaft 10 becomes more serious as the distance from the first bearing 41 having the load capacity of thrust load increases.
  • the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotating shaft 10.
  • the first bearing 41 is not limited to a particular bearing as long as it has a load capacity of the thrust load of the rotary shaft 10.
  • the first bearing 41 is, for example, a slide bearing.
  • the first bearing 41 has a bearing surface 41b.
  • the bearing surface 41b is formed so as to form a projection surface when projected on a plane perpendicular to the axis of the rotating shaft 10.
  • the first bearing 41 may be a rolling bearing such as a ball bearing or a magnetic bearing.
  • the first bearing 41 may have a load capacity of the radial load of the rotary shaft 10.
  • the first bearing 41 has a radial bearing surface 41a that supports the rotating shaft 10 in the radial direction.
  • the first bearing 41 may be configured to have a bearing surface that supports the rotating shaft 10 in the thrust direction and the radial direction. Such a bearing surface can be formed, for example, by forming a tapered hole in the first bearing 41.
  • the second bearing 42 is not limited to a particular bearing as long as it supports the rotating shaft 10 in a rotatable manner.
  • the second bearing 42 is, for example, a slide bearing.
  • the second bearing 42 is configured, for example, so as not to support thrust force during normal operation of the turbo compressor 1a.
  • the second bearing 42 allows, for example, in the axial direction of the rotary shaft 10, a dimensional change of about one thousandth or more of the entire length of the rotary body including the rotary shaft 10 in the axial direction of the rotary shaft 10. Thereby, even if the rotary shaft 10 thermally expands due to the temperature rise of the rotary shaft 10 during the operation of the turbo compressor 1a, the second bearing 42 can cope with the thermal expansion of the rotary shaft 10.
  • the second bearing 42 may be a rolling bearing such as a ball bearing or a magnetic bearing.
  • the fluid that lubricates the first bearing 41 may be lubricating oil or fluid that is compatible with the refrigerant.
  • the fluid that lubricates the first bearing 41 may desirably be a fluid having the same composition as the refrigerant.
  • the turbo compressor 1a includes, for example, a casing 60, and the first bearing 41 is fixed to the casing 60.
  • the casing 60 has a wall surface that forms a stationary flow channel, and the return flow channel 82a exists inside the casing 60.
  • the turbo compressor 1 a further includes, for example, a motor 70.
  • the motor 70 includes, for example, a rotor 71 and a stator 72.
  • the rotor 71 is fixed to the rotary shaft 10 between the first bearing 41 and the second bearing 42 in the axial direction of the rotary shaft 10, for example.
  • the stator 72 is fixed to the casing 60, for example.
  • a rotating magnetic field is generated by the stator 72, and a rotating torque is generated in the rotor 71.
  • the first impeller 21 and the second impeller 22 fixed to the rotating shaft 10 rotate.
  • the rotor 71 generates heat and the temperature of the rotating shaft 10 rises.
  • the turbo compressor 1a accelerates and compresses a refrigerant having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature, for example.
  • the refrigerant is typically in the gas phase. Water can be preferably used as such a refrigerant. Since such a refrigerant easily flows through the return passage with a large specific volume, it is highly necessary to increase the cross-sectional area of the return passage.
  • the turbo compressor 1a may accelerate and compress a refrigerant having a saturated vapor pressure exceeding atmospheric pressure at room temperature.
  • the return passage 82a is suppressed while suppressing the extension of the rotary shaft 10 in the axial direction. It is easy to increase the cross-sectional area of. As a result, the natural frequency based on the bending rigidity of the rotating shaft 10 does not easily decrease. If the cross-sectional area of the return passage 82a is large, the refrigerant easily flows through the return passage 82a with a large specific volume. For example, when the turbo compressor 1a compresses a refrigerant having a saturated vapor pressure equal to or lower than the atmospheric pressure at room temperature, it is easy to flow the refrigerant with a large specific volume in the return flow passage 82a.
  • the return passage 82a is, for example, an annular passage located outside the first bearing 41 in the direction perpendicular to the axis of the rotating shaft 10.
  • the outer diameter of the portion of the first impeller 21 forming the first discharge port 21b is smaller than the outer diameter of the portion of the second impeller 22 forming the second suction port 22a, for example. Therefore, the return passage 82a is formed so as to narrow toward the second impeller 22 in the axial direction of the rotating shaft 10.
  • the rotary shaft 10 desirably has a highly symmetrical axisymmetric shape in order to minimize unbalance during rotation.
  • the rotor 71 is fixed to the rotary shaft 10 by shrink fitting, for example.
  • a sufficiently large shrink fit margin is secured in the shrink fit of the rotor 71 so that the shrink fit margin remains even if the rotary shaft 10 rotates at a high speed and the diameter of the rotor 71 is slightly increased by centrifugal force. ..
  • the rotation speed of the rotary shaft 10 is, for example, 5000 rpm to 100000 rpm.
  • the material of the rotating shaft 10 is not limited to a particular material.
  • the material of the rotating shaft 10 may be, for example, a high-strength iron-based material such as SNCM630.
  • the diameter of the rotary shaft 10 at the fixed position of the second impeller 22 is larger than the diameter of the rotary shaft 10 at the fixed position of the first impeller 21.
  • the rotary shaft 10 has a large diameter near the center, and the natural frequency based on the bending rigidity of the rotary shaft 10 tends to be high. Therefore, the rotation stability of the rotary shaft 10 is likely to increase.
  • the first impeller 21 and the second impeller 22 typically form a centrifugal compression mechanism.
  • the outer diameter of the portion of the first impeller 21 forming the first suction port 21a is smaller than the outer diameter of the portion of the first impeller 21 forming the first discharge port 21b, for example.
  • the first suction port 21a is open, for example, in front of the first impeller 21.
  • the first discharge port 21b opens to the outside of the first impeller 21 in the radial direction.
  • the outer diameter of the portion of the second impeller 22 forming the second suction port 22a is smaller than the outer diameter of the portion of the second impeller 22 forming the second discharge port 22b.
  • the second suction port 22a is open, for example, in front of the second impeller 22.
  • the second discharge port 22b opens to the outside of the second impeller 22 in the radial direction.
  • the refrigerant sucked from the first suction port 21a is accelerated by the first impeller 21 and discharged from the first discharge port 21b. After that, the refrigerant passes through the return flow path 82a, is sucked into the second suction port 22a, is accelerated by the second impeller 22, and is discharged from the second discharge port 22b. As a result, the refrigerant is compressed.
  • a flow path 83 is connected to the turbo compressor 1a, and the refrigerant discharged from the second discharge port 22b is supplied to the outside of the turbo compressor 1a through the flow path 83.
  • the refrigerant discharged from the first discharge port 21b is sucked into the second suction port 22a through the return flow passage 82a. Further, the refrigerant is accelerated by the second impeller 22 and discharged from the second discharge port 22b. Thereby, the refrigerant is further compressed.
  • the pressure ratio of the refrigerant in the second impeller 22 may be 2, for example, and the pressure of the refrigerant discharged from the second discharge port 22b may be 4 kPa.
  • the refrigerant compressed in this way is guided to the outside of the turbo compressor 1a through the flow path 83.
  • a pressure difference of, for example, 1 kPa may occur between the front surface of the first impeller 21 including the first suction port 21a and the back surface opposite to the front surface of the first impeller 21.
  • a pressure difference of, for example, 2 kPa may occur between the front surface of the second impeller 22 including the second suction port 22a and the back surface of the second impeller 22 opposite to the front surface. Due to these pressure differences, a thrust force is generated on the rotary shaft 10 from right to left in FIG.
  • the turbo compressor 1a When the turbo compressor 1a is operated for a long period of time, the temperature of the rotating shaft 10 rises due to the heat generation of the rotor 71, and the rotating shaft 10 thermally expands to increase its total length. At this time, the positional relationship between the first bearing 41 that receives the thrust force of the rotating shaft 10 and the rotating shaft 10 hardly changes.
  • the second bearing 42 allows a predetermined dimensional change in the axial direction of the rotary shaft 10, and the positional relationship between the second bearing 42 and the rotary shaft 10 changes. Thereby, the thermal expansion of the rotating shaft 10 can be dealt with.
  • a refrigeration cycle device can be provided using the turbo compressor 1a.
  • the refrigeration cycle device 100 includes an evaporator 30, a turbo compressor 1 a, and a condenser 50.
  • the refrigerant evaporates in the evaporator 30.
  • the turbo compressor 1a compresses the refrigerant evaporated in the evaporator 30.
  • the condenser 50 condenses the refrigerant compressed by the turbo compressor 1a. Since the refrigeration cycle device 100 includes the turbo compressor 1a, the refrigerant evaporated in the evaporator 30 can be compressed under a high pressure ratio or a high adiabatic efficiency. Therefore, the refrigeration cycle apparatus is likely to exhibit a high coefficient of performance (COP).
  • COP coefficient of performance
  • the refrigeration cycle apparatus 100 can function as an air conditioner, for example.
  • the evaporator 30 stores, for example, a liquid-phase refrigerant therein.
  • the condenser 50 stores the liquid phase refrigerant therein, for example.
  • at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser is supplied to the first bearing 41.
  • at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser 50 can be used for lubricating or cooling the first bearing 41.
  • the refrigeration cycle apparatus 100 includes, for example, a main circuit 80, a first circulation circuit 31, and a second circulation circuit 51.
  • the main circuit 80 is a circuit in which the evaporator 30, the turbo compressor 1a, and the condenser 50 are connected in this order.
  • a flow passage 81 connects the internal space of the evaporator 30 and the internal space of the casing 60 of the turbo compressor 1 a.
  • a flow passage 83 connects the internal space of the casing 60 of the turbo compressor 1 a and the internal space of the condenser 50.
  • the internal space of the condenser 50 and the internal space of the evaporator 30 communicate with each other through a flow path 84.
  • the first circulation circuit 31 has a first pump 35 and a first heat exchanger 33.
  • the liquid refrigerant stored in the evaporator 30 is supplied to the first heat exchanger 33 by the first pump 35, and the refrigerant absorbed in the first heat exchanger 33 returns to the evaporator 30. Is configured.
  • the evaporator 30 and the inlet of the first pump 35 are connected by a flow path 31a.
  • the outlet of the first pump 35 and the inlet of the first heat exchanger 33 are connected by the flow path 31b.
  • the outlet of the first heat exchanger 33 and the evaporator 30 are connected by the flow path 31c.
  • the second circulation circuit 51 has a second pump 55 and a second heat exchanger 53.
  • the liquid refrigerant stored in the condenser 50 is supplied to the second heat exchanger 53 by the second pump 55, and the refrigerant radiated by the second heat exchanger 53 returns to the condenser 50. Is configured.
  • the condenser 50 and the inlet of the second pump 55 are connected by the flow path 51a.
  • the outlet of the second pump 55 and the inlet of the second heat exchanger 53 are connected by the flow path 51b.
  • the outlet of the second heat exchanger 53 and the condenser 50 are connected by the flow path 51c.
  • the liquid-phase refrigerant stored in the evaporator 30 is used as a lubricant to be supplied to the first bearing 41 and the second bearing 42.
  • the liquid-phase refrigerant stored in the condenser 50 may be used as a lubricant to be supplied to the first bearing 41 and the second bearing 42.
  • the liquid-phase refrigerant supplied to the first bearing 41 and the second bearing 42 is returned to the evaporator 30 or the condenser 50.
  • the turbo compressor 1a can be changed from various viewpoints.
  • the turbo compressor 1a may be changed to the turbo compressor 1b shown in FIG.
  • the turbo compressor 1b is configured in the same manner as the turbo compressor 1a, except for the part particularly described.
  • the constituents of the turbo compressor 1b that are the same as or correspond to the constituents of the turbo compressor 1a are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the description of the turbo compressor 1a also applies to the turbo compressor 1b unless technically contradictory.
  • the first bearing 41 is a slide bearing having a bearing surface 41b.
  • the bearing surface 41b forms a projection surface when projected on a plane perpendicular to the axis of the rotating shaft 10.
  • the rotating shaft 10 has a first flow path 12 and a second flow path 14.
  • the first flow passage 12 extends along the axis inside the rotary shaft 10, and the lubricant flows through the first flow passage 12.
  • the second flow path 14 connects the space in contact with the bearing surface 41b with the first flow path 12. For example, at least a part of the second flow path 14 extends in the radial direction of the rotating shaft 10.
  • the lubricant flowing through the first flow path 12 may be a lubricating oil, a fluid having compatibility with the refrigerant, or a fluid containing the same component as the refrigerant.
  • the lubricant supplied from the second flow path 14 exists in the radial gap R between the radial support surface 41a of the first bearing 41 and the outer surface of the rotary shaft 10. There is. Further, in the axial gap T between the rotary shaft 10 and the bearing surface 41b of the first bearing 41, the lubricant that has passed through the radial gap R is present. The lubricant present in the axial gap T flows in the radial direction due to the pressure in the radial gap R and the rotation of the rotary shaft 10.
  • the pressure loss of the lubricant flow in the flow path of the axial gap T is smaller than the pressure loss of the lubricant flow in the flow path of the radial gap R when the axial gap T is sufficiently wide. ..
  • the pressure of the lubricant in the axial gap T is almost the same as the pressure around the axial gap T.
  • the rotating shaft 10 moves to the left due to the thrust force received by the rotating shaft 10
  • the axial gap T decreases, and the pressure loss of the flow of the lubricant in the flow path of the axial gap T increases.
  • the size of the radial gap R or the pressure loss of the lubricant flow in the flow path of the radial gap R hardly changes.
  • the turbo compressor 1b When the turbo compressor 1b is operated under a high pressure ratio condition, it is necessary to rotate the rotary shaft 10 at high speed. The higher the pressure ratio under the operating conditions of the turbo compressor 1b, the greater the thrust force acting on the first impeller 21 and the second impeller 22. According to the turbo compressor 1b, the second flow path 14 communicates with the first flow path 12 and the radial gap R, for example. Therefore, the lubricant introduced into the first flow path 12 from the outside of the first flow path 12 can be supplied to the radial gap R.
  • the lubricant flowing through the second flow path 14 is accelerated and pressurized by the centrifugal force, and the lubricant can be supplied to the radial gap R and the axial gap T at a high pressure of 1 MPa, for example.
  • the thrust support rigidity of the first bearing 41 increases. Therefore, even when the turbo compressor 1b is operated under the condition that the pressure ratio is high and the thrust force received by the rotating shaft 10 is large, the rotational speed of the rotating shaft is used to move the rotating shaft 10 in the axial direction. The amount can be suppressed.
  • the design value of the clearance to be considered for preventing contact between the first impeller and the member arranged near the first impeller can be set more reliably. This is advantageous from the viewpoint of increasing the pressure ratio or increasing the adiabatic efficiency in the operation of the turbo compressor 1b.
  • the turbo compressor according to the present disclosure can be applied to applications such as an air conditioner, a chiller, and a turbo compressor for a heat cycle power generation system.
  • the turbo compressor according to the present disclosure can prevent resonance due to a decrease in natural frequency based on the bending rigidity of the rotating shaft, and can be applied to an air conditioner, a chiller, and a turbo compressor for a heat cycle power generation system.

Abstract

Provided is a turbo compressor comprising: a rotating shaft; a first impeller which is fixed to the rotating shaft and has a first suction port for suctioning an operating fluid and a first discharge port for discharging the operating fluid; a second impeller which is fixed to the rotating shaft and has a second suction port for suctioning the operating fluid and a second discharge port for discharging the operating fluid; a first bearing which is disposed between the first impeller and the second impeller in an axial direction of the rotating shaft and rotatably supports the rotating shaft; and a first flow path for guiding the operating fluid from the first discharge port to the second suction port. The first suction port and the second suction port are opened in the same direction.

Description

ターボ圧縮機及び冷凍サイクル装置Turbo compressor and refrigeration cycle device
 本開示は、ターボ圧縮機及び冷凍サイクル装置に関する。 The present disclosure relates to a turbo compressor and a refrigeration cycle device.
 従来、低圧の冷媒を圧縮するための多段のターボ圧縮機が知られている。 Conventionally, a multi-stage turbo compressor for compressing low-pressure refrigerant is known.
 特許文献1には、図6に示す通り、ターボ圧縮機200が記載されている。ターボ圧縮機200は、ケーシング221と、電動機213と、回転軸225と、転がり軸受227と、滑り軸受228とを備える。回転軸225の一端には2段のインペラ223a及び223bが固定されており、インペラ223a及び223bは、圧縮通路構造と共に圧縮部223を構成している。転がり軸受227は、電動機213とインペラ223a及び223bとの間で回転軸225を軸支し、回転軸225の他端が滑り軸受228によって軸支されている。転がり軸受227は、2つのアンギュラ玉軸受227a及び227bを有する。滑り軸受228において、軸受ボス221dに軸受メタル228aが圧入されている。電動機213は、ステータ213Aと、回転軸225に固定されたロータ213Bとを備える。電動機213によって圧縮部223が駆動されると、気化冷媒が圧縮部223に吸入されて圧縮される。 Patent Document 1 describes a turbo compressor 200 as shown in FIG. The turbo compressor 200 includes a casing 221, an electric motor 213, a rotating shaft 225, a rolling bearing 227, and a slide bearing 228. Two stages of impellers 223a and 223b are fixed to one end of the rotary shaft 225, and the impellers 223a and 223b form a compression section 223 together with a compression passage structure. The rolling bearing 227 pivotally supports the rotary shaft 225 between the electric motor 213 and the impellers 223a and 223b, and the other end of the rotary shaft 225 is pivotally supported by the slide bearing 228. The rolling bearing 227 has two angular ball bearings 227a and 227b. In the plain bearing 228, the bearing metal 228a is press-fitted into the bearing boss 221d. The electric motor 213 includes a stator 213A and a rotor 213B fixed to the rotating shaft 225. When the compressor 223 is driven by the electric motor 213, the vaporized refrigerant is sucked into the compressor 223 and compressed.
 一方、従来、ターボ圧縮機として、リターン流路を有する多段遠心式圧縮機が知られている。例えば、特許文献2には、図7に示す通り、多段遠心式圧縮機300が記載されている。多段遠心式圧縮機300は、1段目の羽根車301と、次段羽根車304と、ディフューザ306と、リターンベーン307と、ディフューザベーン308と、ステージラビリンス309と、回転軸310とを備える。多段遠心式圧縮機300は、ディフューザ306からのガス流を次段羽根車304へ流入させるリターン流路を有し、リターンベーン307がリターン流路に配置されている。図7において、白抜きの矢印は、ガスの流れの主流を示す。リターン流路は、ガスの速度エネルギーを圧力エネルギーに変えるものである。図7において、Cは、回転軸310の軸心である。 On the other hand, conventionally, as a turbo compressor, a multi-stage centrifugal compressor having a return flow path is known. For example, Patent Document 2 describes a multistage centrifugal compressor 300 as shown in FIG. 7. The multi-stage centrifugal compressor 300 includes a first-stage impeller 301, a next-stage impeller 304, a diffuser 306, a return vane 307, a diffuser vane 308, a stage labyrinth 309, and a rotating shaft 310. The multi-stage centrifugal compressor 300 has a return flow passage through which the gas flow from the diffuser 306 flows into the next-stage impeller 304, and the return vane 307 is arranged in the return flow passage. In FIG. 7, white arrows indicate the main flow of gas. The return flow passage converts the velocity energy of gas into pressure energy. In FIG. 7, C is the axis of the rotating shaft 310.
特開2017-125434号公報JP, 2017-125434, A 特開平7-127600号公報JP-A-7-127600
 特許文献1及び2に記載の技術によれば、例えば、常温(20℃±15℃:日本工業規格JISZ8703)において大気圧以下の飽和蒸気圧を有する気相冷媒等の作動流体を圧縮する場合に、回転軸の回転の安定性を高める余地がある。 According to the techniques described in Patent Documents 1 and 2, for example, when compressing a working fluid such as a vapor phase refrigerant having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature (20° C.±15° C.: Japanese Industrial Standard JISZ8703) , There is room to increase the stability of rotation of the rotating shaft.
 本開示は、回転軸の回転の安定性を高めるのに有利なターボ圧縮機を提供する。 The present disclosure provides a turbo compressor that is advantageous for increasing the stability of rotation of the rotating shaft.
 本開示は、回転軸と、前記回転軸に固定され、作動流体が吸い込まれる第一吸込口及び前記作動流体が吐出される第一吐出口を有する、第一インペラと、前記回転軸に固定され、前記作動流体が吸い込まれる第二吸込口及び前記作動流体が吐出される第二吐出口を有する、第二インペラと、前記回転軸の軸線方向において前記第一インペラと前記第二インペラとの間に配置され、前記回転軸を回転可能に支持する第一軸受と、
 前記第一吐出口から前記第二吸込口に前記作動流体を導く第一流路と、を備え、前記第一吸込口及び前記第二吸込口は、同じ向きに開口している、ターボ圧縮機を提供する。
The present disclosure includes a first impeller fixed to the rotary shaft, the first impeller having a rotary shaft, a first suction port fixed to the rotary shaft, into which the working fluid is sucked, and a first discharge port discharging the working fluid. A second impeller having a second suction port for sucking the working fluid and a second discharge port for discharging the working fluid, and between the first impeller and the second impeller in the axial direction of the rotating shaft. And a first bearing that rotatably supports the rotating shaft,
A first flow path for guiding the working fluid from the first discharge port to the second suction port, wherein the first suction port and the second suction port are opened in the same direction, provide.
 上記のターボ圧縮機は、回転軸の回転の安定性を高めるのに有利である。 The above turbo compressor is advantageous for improving the stability of rotation of the rotating shaft.
図1は、本開示のターボ圧縮機の一例を示す断面図である。FIG. 1 is a sectional view showing an example of a turbo compressor of the present disclosure. 図2は、本開示の冷凍サイクル装置の一例を示す構成図である。FIG. 2 is a configuration diagram illustrating an example of the refrigeration cycle device of the present disclosure. 図3は、本開示のターボ圧縮機の別の一例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of the turbo compressor of the present disclosure. 図4は、本開示のターボ圧縮機の別の一例の一部を示す断面図である。FIG. 4 is a sectional view showing a part of another example of the turbo compressor of the present disclosure. 図5は、参考例に係るターボ圧縮機を示す断面図である。FIG. 5 is a cross-sectional view showing a turbo compressor according to a reference example. 図6は、従来のターボ圧縮機を示す断面図である。FIG. 6 is a sectional view showing a conventional turbo compressor. 図7は、従来の多段遠心式圧縮機を示す断面図である。FIG. 7 is a sectional view showing a conventional multistage centrifugal compressor.
 (本開示の基礎となった知見)
 例えば、常温で大気圧以下の飽和蒸気圧を有する作動流体を、リターン流路を有する多段のターボ圧縮機を用いて圧縮することが考えられる。この場合、リターン流路の断面積を大きくする必要がある。なぜなら、このような作動流体はリターン流路を大きな比容積で流れ、リターン流路における作動流体の体積流量が大きいからである。一方、リターン流路の断面積を大きくするためには、回転軸の軸線方向の長さを長くする必要がある。しかし、このことは、回転軸の曲げ剛性に基づく固有振動数を低下させやすい。回転軸の曲げ剛性に基づく固有振動数が低いと、回転軸の曲げ剛性に基づく固有振動数と回転軸の回転数とが近くなって共振が発生し、回転軸を所望の回転数で回転させることが難しくなる。このため、回転軸の曲げ剛性に基づく固有振動数の低下を防止するために、回転軸の軸線方向の長さの延伸を抑えることが望ましい。そこで、本発明者らは、回転軸の軸線方向の長さの延伸を抑えつつリターン流路の断面積を大きくするためのターボ圧縮機の構成について鋭意検討を重ねた。その結果、本発明者らは、回転軸を回転可能に支持する軸受とリターン流路との所望の配置関係を新たに見出し、本開示のターボ圧縮機を案出した。なお、この知見は、本発明者らの検討に基づくものであり、先行技術として自認するものではない。
(Findings that form the basis of this disclosure)
For example, it is conceivable to compress a working fluid having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature using a multi-stage turbo compressor having a return passage. In this case, it is necessary to increase the cross-sectional area of the return channel. This is because such working fluid flows through the return flow passage with a large specific volume, and the volume flow rate of the working fluid in the return flow passage is large. On the other hand, in order to increase the cross-sectional area of the return flow channel, it is necessary to lengthen the axial length of the rotary shaft. However, this tends to reduce the natural frequency based on the bending rigidity of the rotating shaft. When the natural frequency based on the bending rigidity of the rotating shaft is low, the natural frequency based on the bending rigidity of the rotating shaft and the rotating speed of the rotating shaft become close to each other, causing resonance, and rotating the rotating shaft at a desired rotating speed Becomes difficult. Therefore, in order to prevent the natural frequency from decreasing due to the bending rigidity of the rotary shaft, it is desirable to suppress the extension of the length of the rotary shaft in the axial direction. Therefore, the present inventors have earnestly studied the structure of a turbo compressor for increasing the cross-sectional area of the return flow channel while suppressing the extension of the axial length of the rotating shaft. As a result, the present inventors have newly found a desired positional relationship between the bearing that rotatably supports the rotating shaft and the return passage, and have devised the turbo compressor of the present disclosure. It should be noted that this finding is based on the study of the present inventors and is not admitted as prior art.
 (本開示に係る一態様の概要)
 本開示の第1態様に係るターボ圧縮機は、回転軸と、前記回転軸に固定され、作動流体が吸い込まれる第一吸込口及び前記作動流体が吐出される第一吐出口を有する、第一インペラと、前記回転軸に固定され、前記作動流体が吸い込まれる第二吸込口及び前記作動流体が吐出される第二吐出口を有する、第二インペラと、前記回転軸の軸線方向において前記第一インペラと前記第二インペラとの間に配置され、前記回転軸を回転可能に支持する第一軸受と、前記第一吐出口から前記第二吸込口に前記作動流体を導く第一流路と、を備え、前記第一吸込口及び前記第二吸込口は、同じ向きに開口している。
(Outline of One Aspect According to the Present Disclosure)
A turbo compressor according to a first aspect of the present disclosure includes a rotating shaft, a first suction port fixed to the rotating shaft, into which a working fluid is sucked, and a first discharge port from which the working fluid is discharged. A second impeller fixed to the rotary shaft, having a second suction port for sucking the working fluid and a second discharge port for discharging the working fluid, and the first impeller in the axial direction of the rotary shaft. A first bearing that is disposed between an impeller and the second impeller and rotatably supports the rotating shaft, and a first flow path that guides the working fluid from the first discharge port to the second suction port. The first suction port and the second suction port are opened in the same direction.
 第1態様によれば、第一軸受は、回転軸の軸線方向において第一インペラと第二インペラとの間に配置されているので、回転軸の軸線方向の長さの延伸を抑えつつ第一流路の断面積を大きくしやすい。これにより、回転軸の曲げ剛性に基づく固有振動数の低下を防止できる。このため、第1態様に係るターボ圧縮機は、回転軸の回転の安定性を高めるのに有利である。 According to the first aspect, since the first bearing is arranged between the first impeller and the second impeller in the axial direction of the rotary shaft, the first flow is suppressed while suppressing the extension of the length of the rotary shaft in the axial direction. It is easy to increase the cross-sectional area of the road. As a result, it is possible to prevent the natural frequency from decreasing due to the bending rigidity of the rotating shaft. Therefore, the turbo compressor according to the first aspect is advantageous in increasing the stability of rotation of the rotary shaft.
 本開示の第2態様において、例えば、第1態様に係るターボ圧縮機では、前記軸線方向において前記第一軸受が存在する領域の全ては、前記軸線方向において前記第一流路が存在する領域と重なっている。第2態様によれば、より確実に回転軸の軸線方向の長さの延伸を抑えることができる。 In the second aspect of the present disclosure, for example, in the turbo compressor according to the first aspect, all of the region in which the first bearing exists in the axial direction overlaps with the region in which the first flow path exists in the axial direction. ing. According to the second aspect, it is possible to more reliably suppress the extension of the length of the rotating shaft in the axial direction.
 本開示の第3態様において、例えば、第1態様又は第2態様に係るターボ圧縮機では、常温において大気圧以下の飽和蒸気圧を有する前記作動流体を加速して圧縮してもよい。第3態様によれば、回転軸の回転の安定性が高い状態で、常温において大気圧以下の飽和蒸気圧を有する作動流体を圧縮できる。 In the third aspect of the present disclosure, for example, in the turbo compressor according to the first aspect or the second aspect, the working fluid having a saturated vapor pressure of atmospheric pressure or lower at room temperature may be accelerated and compressed. According to the third aspect, it is possible to compress the working fluid having a saturated vapor pressure of atmospheric pressure or less at room temperature in a state where the rotation of the rotary shaft is highly stable.
 本開示の第4態様において、例えば、第1態様から第3態様に係るターボ圧縮機は、前記軸線方向において前記第一軸受よりも前記第一インペラから離れた位置に配置され、前記回転軸を回転可能に支持する第二軸受と、前記軸線方向において前記第一軸受と前記第二軸受との間で前記回転軸に固定されている回転子を有するモータと、をさらに備えていてもよい。第4態様によれば、モータの回転子が回転軸に固定された状態で、回転軸の回転の安定性を高めることができる。 In the fourth aspect of the present disclosure, for example, the turbo compressor according to the first aspect to the third aspect is arranged at a position further away from the first impeller than the first bearing in the axial direction, and the rotation shaft is It may further include a second bearing rotatably supported, and a motor having a rotor fixed to the rotating shaft between the first bearing and the second bearing in the axial direction. According to the fourth aspect, it is possible to enhance the stability of rotation of the rotary shaft while the rotor of the motor is fixed to the rotary shaft.
 本開示の第5態様において、例えば、第1態様から第4態様に係るターボ圧縮機は、前記第一吸込口及び前記第二吸込口と同じ向きに開口している第三吸込口を有し、前記軸線方向において前記第一軸受から離れた位置に配置され、前記回転軸に固定されている、第三インペラをさらに備えてもよく、前記第二インペラは、前記第一インペラと前記第三インペラとの間に配置されてもよく、前記第三インペラの固定位置における前記回転軸の直径は、前記第二インペラの固定位置における前記回転軸の直径以上であってもよい。第5態様によれば、第三インペラにより高い圧力比での運転を実現しやすい。加えて、第三インペラの固定位置における回転軸の直径が第二インペラの固定位置における回転軸の直径以上であることにより、回転軸の曲げ剛性が高くなりやすい。このため、第5態様によれば、回転軸の曲げ剛性に基づく固有振動数の低下を防止できる。 In the fifth aspect of the present disclosure, for example, the turbo compressor according to the first aspect to the fourth aspect has a third suction port that opens in the same direction as the first suction port and the second suction port. And a third impeller arranged at a position apart from the first bearing in the axial direction and fixed to the rotating shaft, wherein the second impeller includes the first impeller and the third impeller. The rotary shaft may be disposed between the rotary shaft and the impeller, and the diameter of the rotary shaft at the fixed position of the third impeller may be equal to or larger than the diameter of the rotary shaft at the fixed position of the second impeller. According to the fifth aspect, it is easy to realize operation at a high pressure ratio by the third impeller. In addition, since the diameter of the rotary shaft at the fixed position of the third impeller is equal to or larger than the diameter of the rotary shaft at the fixed position of the second impeller, the bending rigidity of the rotary shaft tends to increase. Therefore, according to the fifth aspect, it is possible to prevent the natural frequency from decreasing due to the bending rigidity of the rotating shaft.
 本開示の第6態様において、例えば、第5態様に係るターボ圧縮機は、前記軸線方向において前記第一軸受よりも前記第一インペラから離れた位置に配置され、前記回転軸を回転可能に支持する第二軸受と、前記軸線方向において前記第一軸受と前記第二軸受との間で前記回転軸に固定されている回転子を有するモータと、をさらに備えてもよく、前記第三インペラは、前軸線方向において前記第二インペラと前記回転子との間で固定されていてもよい。第6態様によれば、モータの回転子が回転軸に固定された状態で回転軸の回転の安定性を高めることができる。 In the sixth aspect of the present disclosure, for example, the turbo compressor according to the fifth aspect is disposed at a position further away from the first impeller than the first bearing in the axial direction, and rotatably supports the rotary shaft. And a motor having a rotor fixed to the rotating shaft between the first bearing and the second bearing in the axial direction, the third impeller may be provided. , May be fixed between the second impeller and the rotor in the front axis direction. According to the sixth aspect, it is possible to enhance the stability of rotation of the rotating shaft while the rotor of the motor is fixed to the rotating shaft.
 本開示の第7態様に係る冷凍サイクル装置は、気相冷媒を生じさせる蒸発器と、前記蒸発器で生じた前記気相冷媒を前記作動流体として圧縮する、第1態様から第6態様のいずれか1つの態様のターボ圧縮機と、前記ターボ圧縮機で圧縮された前記気相冷媒を凝縮させる凝縮器と、を備える。 A refrigeration cycle apparatus according to a seventh aspect of the present disclosure is an evaporator that produces a vapor-phase refrigerant, and compresses the vapor-phase refrigerant produced in the evaporator as the working fluid. The turbo compressor according to any one of the aspects and a condenser for condensing the gas-phase refrigerant compressed by the turbo compressor.
 第7態様によれば、ターボ圧縮機の回転軸の回転の安定性が高い状態で、蒸発器で発生した気相冷媒を圧縮できる。 According to the seventh aspect, the gas-phase refrigerant generated in the evaporator can be compressed in a state in which the rotation of the rotary shaft of the turbo compressor is highly stable.
 本開示の第8態様において、例えば、第7態様に係る冷凍サイクル装置では、前記蒸発器は液相冷媒をその内部に貯留してもよく、前記凝縮器は液相冷媒をその内部に貯留してもよく、前記蒸発器に貯留された前記液相冷媒及び前記凝縮器に貯留された前記液相冷媒の少なくとも1つが前記第一軸受に供給されてもよい。第8態様によれば、例えば、蒸発器に貯留された液相冷媒及び凝縮器に貯留された液相冷媒の少なくとも1つを第一軸受の潤滑又は冷却に利用できる。 In the eighth aspect of the present disclosure, for example, in the refrigeration cycle apparatus according to the seventh aspect, the evaporator may store the liquid-phase refrigerant therein, and the condenser may store the liquid-phase refrigerant therein. Alternatively, at least one of the liquid-phase refrigerant stored in the evaporator and the liquid-phase refrigerant stored in the condenser may be supplied to the first bearing. According to the eighth aspect, for example, at least one of the liquid-phase refrigerant stored in the evaporator and the liquid-phase refrigerant stored in the condenser can be used for lubricating or cooling the first bearing.
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の説明は本開示の一例に関するものであり、本開示は以下の実施形態に限定されない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the following description relates to an example of the present disclosure, and the present disclosure is not limited to the following embodiments.
 (実施の形態1)
 図1に示す通り、ターボ圧縮機1aは、回転軸10と、第一インペラ21と、第二インペラ22と、第一軸受41と、リターン流路82aとを備えている。第一インペラ21は、回転軸10に固定されている。第一インペラ21は、作動流体が吸い込まれる第一吸込口21a及び作動流体が吐出される第一吐出口21bを有する。第二インペラ22は、回転軸10に固定されている。第二インペラ22は、作動流体が吸い込まれる第二吸込口22a及び作動流体が吐出される第二吐出口22bを有する。第一軸受41は、回転軸の軸線方向において第一インペラ21と第二インペラ22との間に配置され、回転軸10を回転可能に支持する。
(Embodiment 1)
As shown in FIG. 1, the turbo compressor 1a includes a rotary shaft 10, a first impeller 21, a second impeller 22, a first bearing 41, and a return flow passage 82a. The first impeller 21 is fixed to the rotating shaft 10. The first impeller 21 has a first suction port 21a for sucking the working fluid and a first discharge port 21b for discharging the working fluid. The second impeller 22 is fixed to the rotating shaft 10. The second impeller 22 has a second suction port 22a for sucking the working fluid and a second discharge port 22b for discharging the working fluid. The first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft, and rotatably supports the rotary shaft 10.
 なお、第一軸受41は、回転軸10を回転可能に支持するために不可欠な部材である。第一軸受41は、回転軸10を回転可能に支持するためには不可欠ではないシール部材とはこのような観点で区別される。第一吸込口21a及び第二吸込口22aは、同じ向きに開口している。 The first bearing 41 is an essential member for rotatably supporting the rotary shaft 10. The first bearing 41 is distinguished from the seal member which is not indispensable for rotatably supporting the rotating shaft 10 in this respect. The first suction port 21a and the second suction port 22a open in the same direction.
 図1に示すように、リターン流路82aは、第一吐出口21bから回転軸10に近づくように配置され、第二吸込口22aと連結する。尚、リターン流路82aのことを、第一流路と呼んでもよい。 As shown in FIG. 1, the return flow passage 82a is arranged so as to approach the rotary shaft 10 from the first discharge port 21b, and is connected to the second suction port 22a. The return channel 82a may be called the first channel.
 第一流路は、第一吐出口21bから第二吸込口22aに作動流体を導く流路で、配管、構造物の中を作動流体が通る流路等でもよい。 The first flow path is a flow path that guides the working fluid from the first discharge port 21b to the second suction port 22a, and may be a flow path through which the working fluid passes through pipes or structures.
 例えば、回転軸10の軸線方向において第一軸受41が存在する領域の全ては、回転軸10の軸線方向においてリターン流路82aが存在する領域と重なっている。 For example, the entire region where the first bearing 41 exists in the axial direction of the rotating shaft 10 overlaps the region where the return flow passage 82a exists in the axial direction of the rotating shaft 10.
 第一インペラ21は、例えば、回転軸10の一方の端部に固定されている。第一軸受41は、回転軸10の軸線方向において第一インペラ21と第二インペラ22との間に配置されているので、第一インペラ21が回転軸10の一方の端部に固定されていても、第一軸受41を回転可能に支持できる。 The first impeller 21 is fixed to one end of the rotary shaft 10, for example. Since the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft 10, the first impeller 21 is fixed to one end of the rotary shaft 10. Also, the first bearing 41 can be rotatably supported.
 ターボ圧縮機1aは、例えば、ケーシング60を備えており、第一軸受41は、ケーシング60に固定されている。ケーシング60は、静止流路をなす壁面を有し、リターン流路82aはケーシング60の内部に存在する。 The turbo compressor 1a includes, for example, a casing 60, and the first bearing 41 is fixed to the casing 60. The casing 60 has a wall surface that forms a stationary flow channel, and the return flow channel 82a exists inside the casing 60.
 図1に示す通り、ターボ圧縮機1aは、例えばモータ70をさらに備えている。モータ70は、例えば、回転子71と、固定子72とを備えている。回転子71は、例えば、回転軸10に固定されている。回転子71は、望ましくは、回転軸10の軸線方向において第二インペラ22よりも第一インペラ21から離れた位置で回転軸10に固定されている。換言すると、回転軸10の軸線方向において、第一インペラ21、第二インペラ22、及び回転子71がこの順番で並んでいる。固定子72は、例えば、ケーシング60に固定されている。モータ70に電力が供給されると、固定子72によって回転磁界が発生し、回転子71に回転トルクが発生する。これにより、回転軸10に固定された第一インペラ21及び第二インペラ22が回転する。 As shown in FIG. 1, the turbo compressor 1 a further includes, for example, a motor 70. The motor 70 includes, for example, a rotor 71 and a stator 72. The rotor 71 is fixed to the rotating shaft 10, for example. The rotor 71 is preferably fixed to the rotary shaft 10 at a position farther from the first impeller 21 than the second impeller 22 in the axial direction of the rotary shaft 10. In other words, the first impeller 21, the second impeller 22, and the rotor 71 are arranged in this order in the axial direction of the rotary shaft 10. The stator 72 is fixed to the casing 60, for example. When electric power is supplied to the motor 70, a rotating magnetic field is generated by the stator 72, and a rotating torque is generated in the rotor 71. As a result, the first impeller 21 and the second impeller 22 fixed to the rotating shaft 10 rotate.
 ターボ圧縮機1aは、例えば、常温において大気圧以下の飽和蒸気圧を有する作動流体を加速して圧縮する。作動流体は、典型的には気相である。このような作動流体として、望ましくは水を使用できる。このような作動流体はリターン流路を大きな比容積で流れやすいので、リターン流路の断面積を大きくする必要性が高い。なお、ターボ圧縮機1aは、場合によっては、常温において大気圧を超える飽和蒸気圧を有する作動流体を加速して圧縮してもよい。 The turbo compressor 1a accelerates and compresses a working fluid having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature, for example. The working fluid is typically in the gas phase. Water may be preferably used as such a working fluid. Since such a working fluid easily flows through the return passage with a large specific volume, it is highly necessary to increase the cross-sectional area of the return passage. In some cases, the turbo compressor 1a may accelerate and compress a working fluid having a saturated vapor pressure exceeding atmospheric pressure at room temperature.
 ターボ圧縮機1aは、例えば、第二軸受42をさらに備えている。第二軸受42は、回転軸10の軸線方向において第一軸受41よりも第一インペラ21から離れた位置に配置されている。第二軸受42は、回転軸10を回転可能に支持する。モータ70の回転子71は、例えば、回転軸10の軸線方向において第一軸受41と第二軸受42との間で回転軸10に固定されている。回転軸10の軸線方向における中心は、例えば、第二インペラ22と回転子71との間に位置している。 The turbo compressor 1a further includes a second bearing 42, for example. The second bearing 42 is arranged at a position farther from the first impeller 21 than the first bearing 41 in the axial direction of the rotating shaft 10. The second bearing 42 rotatably supports the rotating shaft 10. The rotor 71 of the motor 70 is fixed to the rotary shaft 10 between the first bearing 41 and the second bearing 42 in the axial direction of the rotary shaft 10, for example. The center of the rotary shaft 10 in the axial direction is located, for example, between the second impeller 22 and the rotor 71.
 回転軸10は、望ましくは、回転時のアンバランスを最小限に抑えるために、高精度に軸対称な形状を有している。回転子71は、例えば、焼嵌めによって回転軸10に固定されている。回転軸10が高速で回転して遠心力により回転子71の直径が僅かに拡大しても焼嵌めしろが残るように、回転子71の焼嵌めにおいて十分に大きな焼嵌めしろが確保されている。回転軸10の回転数は、例えば、5000rpm(revolutions per minute)から100000rpmである。回転軸10の材料は、特定の材料に限定されない。回転軸10の材料は、例えば、SNCM630等の高強度の鉄系材料でありうる。 The rotary shaft 10 desirably has a highly symmetrical axisymmetric shape in order to minimize unbalance during rotation. The rotor 71 is fixed to the rotary shaft 10 by shrink fitting, for example. A sufficiently large shrink fit margin is secured in the shrink fit of the rotor 71 so that the shrink fit margin remains even if the rotary shaft 10 rotates at a high speed and the diameter of the rotor 71 is slightly increased by centrifugal force. .. The rotation speed of the rotary shaft 10 is, for example, 5000 rpm (revolutions per minute) to 100000 rpm. The material of the rotating shaft 10 is not limited to a particular material. The material of the rotating shaft 10 may be, for example, a high-strength iron-based material such as SNCM630.
 例えば、第二インペラ22の固定位置における回転軸10の直径は、第一インペラ21の固定位置における回転軸10の直径より大きい。この場合、回転軸10が中央付近において大きな直径を有し、回転軸10の曲げ剛性に基づく固有振動数が高くなりやすい。このため、回転軸10の回転の安定性が高くなりやすい。 For example, the diameter of the rotary shaft 10 at the fixed position of the second impeller 22 is larger than the diameter of the rotary shaft 10 at the fixed position of the first impeller 21. In this case, the rotary shaft 10 has a large diameter near the center, and the natural frequency based on the bending rigidity of the rotary shaft 10 tends to be high. Therefore, the rotation stability of the rotary shaft 10 is likely to increase.
 ターボ圧縮機1aにおいて、第一インペラ21及び第二インペラ22は、典型的には、遠心式の圧縮機構を構成している。第一インペラ21の第一吸込口21aをなす部位の外径は、例えば、第一インペラ21の第一吐出口21bをなす部位の外径よりも小さい。第一吸込口21aは、例えば、第一インペラ21の前方に開口している。第一吐出口21bは、第一インペラ21の半径方向外側に開口している。第二インペラ22の第二吸込口22aをなす部位の外径は、例えば、第二インペラ22の第二吐出口22bをなす部位の外径よりも小さい。第二吸込口22aは、例えば、第二インペラ22の前方に開口している。第二吐出口22bは、第二インペラ22の半径方向外側に開口している。 In the turbo compressor 1a, the first impeller 21 and the second impeller 22 typically form a centrifugal compression mechanism. The outer diameter of the portion of the first impeller 21 forming the first suction port 21a is smaller than the outer diameter of the portion of the first impeller 21 forming the first discharge port 21b, for example. The first suction port 21a is open, for example, in front of the first impeller 21. The first discharge port 21b opens to the outside of the first impeller 21 in the radial direction. The outer diameter of the portion of the second impeller 22 forming the second suction port 22a is smaller than the outer diameter of the portion of the second impeller 22 forming the second discharge port 22b. The second suction port 22a is open, for example, in front of the second impeller 22. The second discharge port 22b opens to the outside of the second impeller 22 in the radial direction.
 リターン流路82aは、例えば、回転軸10の軸線に垂直な方向において、第一軸受41の外側に位置する環状の流路である。第一インペラ21の第一吐出口21bをなす部位の外径は、例えば、第二インペラ22の第二吸込口22aをなす部位の外径よりも小さい。このため、リターン流路82aは、回転軸10の軸線方向において第二インペラ22に向かって窄むように形成されている。 The return passage 82a is, for example, an annular passage located outside the first bearing 41 in the direction perpendicular to the axis of the rotating shaft 10. The outer diameter of the portion of the first impeller 21 forming the first discharge port 21b is smaller than the outer diameter of the portion of the second impeller 22 forming the second suction port 22a, for example. Therefore, the return passage 82a is formed so as to narrow toward the second impeller 22 in the axial direction of the rotating shaft 10.
 第一吸込口21aから吸い込まれた作動流体は、第一インペラ21によって加速されて、第一吐出口21bから吐出される。その後、作動流体は、リターン流路82aを通って、第二吸込口22aに吸い込まれ、第二インペラ22によって加速され、第二吐出口22bから吐出される。これにより、作動流体が圧縮される。ターボ圧縮機1aには流路83が接続されており、第二吐出口22bから吐出された作動流体は、流路83を通ってターボ圧縮機1aの外部に供給される。 The working fluid sucked from the first suction port 21a is accelerated by the first impeller 21 and discharged from the first discharge port 21b. After that, the working fluid passes through the return flow path 82a, is sucked into the second suction port 22a, is accelerated by the second impeller 22, and is discharged from the second discharge port 22b. Thereby, the working fluid is compressed. A flow path 83 is connected to the turbo compressor 1a, and the working fluid discharged from the second discharge port 22b is supplied to the outside of the turbo compressor 1a through the flow path 83.
 第一軸受41は、回転軸10を回転可能に支持する限り、特定の軸受に限定されない。第一軸受41は、例えば、滑り軸受である。第一軸受41は、例えば、ラジアル支持部41aと、スラスト支持部41bとを有する。ラジアル支持部41aは、回転軸10を含む回転体の荷重を半径方向に支持する。スラスト支持部41bは、第一インペラ21及び第二インペラ22の回転によって生じるスラスト力を支持する。第一軸受41が滑り軸受である場合、第一軸受41を潤滑する流体は潤滑油であってもよいし、作動流体に対し相溶性を示す流体であってもよい。第一軸受41を潤滑する流体は、望ましくは、作動流体と同一成分の流体であってもよい。第一軸受41は、玉軸受等の転がり軸受であってもよいし、磁気軸受であってもよい。 The first bearing 41 is not limited to a specific bearing as long as it supports the rotating shaft 10 in a rotatable manner. The first bearing 41 is, for example, a slide bearing. The first bearing 41 has, for example, a radial support portion 41a and a thrust support portion 41b. The radial support portion 41a supports the load of the rotating body including the rotating shaft 10 in the radial direction. The thrust support portion 41b supports the thrust force generated by the rotation of the first impeller 21 and the second impeller 22. When the first bearing 41 is a slide bearing, the fluid that lubricates the first bearing 41 may be a lubricating oil or a fluid that is compatible with the working fluid. The fluid that lubricates the first bearing 41 may desirably be a fluid having the same composition as the working fluid. The first bearing 41 may be a rolling bearing such as a ball bearing or a magnetic bearing.
 第二軸受42は、回転軸10を回転可能に支持する限り、特定の軸受に限定されない。第二軸受42は、例えば、滑り軸受である。第二軸受42は、例えば、ターボ圧縮機1aの通常運転では、スラスト力を支持しないように構成されている。第二軸受42は、例えば、回転軸10の軸線方向において、回転軸10を含む回転体に対し、回転軸10の軸線方向における全長の1000分の1程度又はそれ以上の寸法変化を許容する。これにより、ターボ圧縮機1aの運転中に回転軸10の温度上昇により回転軸10が膨張しても、第二軸受42は、回転軸10の膨張に伴う回転軸10の伸びに対応できる。第二軸受42は、玉軸受等の転がり軸受であってもよいし、磁気軸受であってもよい。 The second bearing 42 is not limited to a particular bearing as long as it supports the rotating shaft 10 in a rotatable manner. The second bearing 42 is, for example, a slide bearing. The second bearing 42 is configured, for example, so as not to support thrust force during normal operation of the turbo compressor 1a. The second bearing 42 allows, for example, in the axial direction of the rotary shaft 10, a dimensional change of about one thousandth or more of the entire length of the rotary body including the rotary shaft 10 in the axial direction of the rotary shaft 10. Thereby, even if the rotary shaft 10 expands due to the temperature rise of the rotary shaft 10 during the operation of the turbo compressor 1a, the second bearing 42 can cope with the expansion of the rotary shaft 10 due to the expansion of the rotary shaft 10. The second bearing 42 may be a rolling bearing such as a ball bearing or a magnetic bearing.
 ターボ圧縮機1aの動作及び作用の一例について説明する。第一インペラ21の第一吸込口21aの前方の空間には、例えば、1kPaの圧力の気相の作動流体が存在している。モータ70の作動により、回転軸10が回転すると、回転軸10と共に第一インペラ21及び第二インペラ22が回転する。これにより、第一吸込口21aの前方の空間の作動流体は、第一吸込口21aを通過して、第一インペラ21によって加速され、第一吐出口21bから吐出される。これにより、作動流体が圧縮される。第一インペラ21における作動流体の圧力比は例えば2であり、第一吐出口21bから吐出された作動流体の圧力は2kPaでありうる。第一吐出口21bから吐出された作動流体は、リターン流路82aを通って第二吸込口22aに吸い込まれる。例えば、作動流体が水蒸気である場合、2kPaの圧力の水蒸気の常温における比体積は67m3/kgであり、リターン流路82aは大きな断面積を必要とする。ターボ圧縮機1aにおいて、第一軸受41は、回転軸10の軸線方向において第一インペラ21と第二インペラ22との間に配置されている。このため、回転軸10は、本来、第一インペラ21と第二インペラ22との間に第一軸受41を配置するための長さを有している。ターボ圧縮機1aにおいて、第一軸受41は、回転軸10の軸線方向においてリターン流路82aと重なっているので、回転軸10の軸線方向の長さの延伸を抑えつつリターン流路82aの断面積を大きくしやすい。このため、回転軸10の曲げ剛性に基づく固有振動数が高くなりやすい。その結果、ターボ圧縮機1aによれば、回転軸10の曲げ剛性に基づく固有振動数と回転軸10の回転数とが近くなって共振が発生することを防止できる。 An example of the operation and action of the turbo compressor 1a will be described. In the space in front of the first suction port 21a of the first impeller 21, for example, a vapor-phase working fluid having a pressure of 1 kPa exists. When the rotating shaft 10 rotates due to the operation of the motor 70, the first impeller 21 and the second impeller 22 rotate together with the rotating shaft 10. As a result, the working fluid in the space in front of the first suction port 21a passes through the first suction port 21a, is accelerated by the first impeller 21, and is discharged from the first discharge port 21b. Thereby, the working fluid is compressed. The pressure ratio of the working fluid in the first impeller 21 may be 2, for example, and the pressure of the working fluid discharged from the first discharge port 21b may be 2 kPa. The working fluid discharged from the first discharge port 21b is sucked into the second suction port 22a through the return flow passage 82a. For example, when the working fluid is steam, the specific volume of steam having a pressure of 2 kPa at room temperature is 67 m3/kg, and the return flow passage 82a requires a large cross-sectional area. In the turbo compressor 1 a, the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft 10. Therefore, the rotary shaft 10 originally has a length for disposing the first bearing 41 between the first impeller 21 and the second impeller 22. In the turbo compressor 1a, the first bearing 41 overlaps the return flow passage 82a in the axial direction of the rotary shaft 10, so that the cross-sectional area of the return flow passage 82a is suppressed while suppressing the extension of the axial length of the rotary shaft 10. It is easy to make Therefore, the natural frequency based on the bending rigidity of the rotary shaft 10 tends to increase. As a result, according to the turbo compressor 1a, it is possible to prevent resonance due to the natural frequency based on the bending rigidity of the rotating shaft 10 and the rotating speed of the rotating shaft 10 becoming close to each other.
 尚、リターン流路82aの断面積の意味とは、図1に示すように回転軸から半径が一定である断面積Aも含む意味である。本開示において、第一軸受け41で、リターン流路82aを保持するので、リターン流路82aの断面積Aを拡げることができる。その結果、リターン流路82aの内部において、高圧の気相冷媒を通過させることができる。 Note that the meaning of the cross-sectional area of the return flow passage 82a is also meant to include the cross-sectional area A having a constant radius from the rotation axis as shown in FIG. In the present disclosure, since the return passage 82a is held by the first bearing 41, the cross-sectional area A of the return passage 82a can be expanded. As a result, the high-pressure vapor-phase refrigerant can be passed inside the return flow passage 82a.
 尚、第一軸受け41の潤滑剤に、作動流体を用いてもよい。例えば、作動流体の第一軸受け41への供給は、図1において、回転軸10の右側から第一軸受け41まで、回転軸10の内部を通る通路を設け、その通路で作動流体を第一軸受け41に供給する。 A working fluid may be used as the lubricant of the first bearing 41. For example, as for the supply of the working fluid to the first bearing 41, in FIG. 1, a passage passing through the inside of the rotating shaft 10 from the right side of the rotating shaft 10 to the first bearing 41 is provided, and the working fluid is supplied to the first bearing through the passage. 41.
 例えば、ターボ圧縮機1aを用いて冷凍サイクル装置を提供できる。図2に示す通り、冷凍サイクル装置100は、蒸発器30と、ターボ圧縮機1aと、凝縮器50と、を備えている。蒸発器30は、気相冷媒を生じさせる。ターボ圧縮機1aは、蒸発器30で生じた気相冷媒を作動流体として圧縮する。凝縮器50は、ターボ圧縮機1aで圧縮された気相冷媒を凝縮させる。冷凍サイクル装置100によれば、ターボ圧縮機1aの回転軸10の回転の安定性が高い状態で、蒸発器30で発生した気相冷媒を圧縮できる。冷凍サイクル装置100は、例えば、空気調和装置として機能させることができる。 For example, a refrigeration cycle device can be provided using the turbo compressor 1a. As shown in FIG. 2, the refrigeration cycle device 100 includes an evaporator 30, a turbo compressor 1 a, and a condenser 50. The evaporator 30 produces a gas-phase refrigerant. The turbo compressor 1a compresses the vapor phase refrigerant generated in the evaporator 30 as a working fluid. The condenser 50 condenses the vapor phase refrigerant compressed by the turbo compressor 1a. According to the refrigeration cycle apparatus 100, the vapor-phase refrigerant generated in the evaporator 30 can be compressed in a state where the rotation shaft 10 of the turbo compressor 1a is highly stable in rotation. The refrigeration cycle apparatus 100 can be made to function as an air conditioner, for example.
 蒸発器30は、例えば、液相冷媒をその内部に貯留する。凝縮器50は、例えば、液相冷媒をその内部に貯留する。冷凍サイクル装置100において、蒸発器30に貯留された液相冷媒及び凝縮器に貯留された液相冷媒の少なくとも1つが第一軸受41に供給される。この場合、例えば、蒸発器30に貯留された液相冷媒及び凝縮器50に貯留された液相冷媒の少なくとも1つを第一軸受41の潤滑又は冷却に利用できる。 The evaporator 30 stores, for example, a liquid-phase refrigerant therein. The condenser 50 stores the liquid phase refrigerant therein, for example. In the refrigeration cycle apparatus 100, at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser is supplied to the first bearing 41. In this case, for example, at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser 50 can be used for lubricating or cooling the first bearing 41.
 図2に示す通り、冷凍サイクル装置100は、例えば、主回路80と、第一循環回路31と、第二循環回路51とを備えている。主回路80は、蒸発器30、ターボ圧縮機1a、及び凝縮器50がこの順に接続されている回路である。蒸発器30の内部空間とターボ圧縮機1aのケーシング60の内部空間とが流路81によって連通している。ターボ圧縮機1aのケーシング60の内部空間と凝縮器50の内部空間とが流路83によって連通している。凝縮器50の内部空間と蒸発器30の内部空間とが流路84によって連通している。 As shown in FIG. 2, the refrigeration cycle apparatus 100 includes, for example, a main circuit 80, a first circulation circuit 31, and a second circulation circuit 51. The main circuit 80 is a circuit in which the evaporator 30, the turbo compressor 1a, and the condenser 50 are connected in this order. A flow passage 81 connects the internal space of the evaporator 30 and the internal space of the casing 60 of the turbo compressor 1 a. A flow passage 83 connects the internal space of the casing 60 of the turbo compressor 1 a and the internal space of the condenser 50. The internal space of the condenser 50 and the internal space of the evaporator 30 communicate with each other through a flow path 84.
 第一循環回路31は、第一ポンプ35及び第一熱交換器33を有する。第一循環回路31は、蒸発器30に貯留された液体の作動流体が第一ポンプ35によって第一熱交換器33に供給され、第一熱交換器33で吸熱した作動流体が蒸発器30に戻るように構成されている。第一循環回路31において、蒸発器30と第一ポンプ35との入口とが流路31aによって接続されている。第一ポンプ35の出口と第一熱交換器33の入口とが流路31bによって接続されている。第一熱交換器33の出口と蒸発器30とが流路31cによって接続されている。 The first circulation circuit 31 has a first pump 35 and a first heat exchanger 33. In the first circulation circuit 31, the liquid working fluid stored in the evaporator 30 is supplied to the first heat exchanger 33 by the first pump 35, and the working fluid absorbed in the first heat exchanger 33 is supplied to the evaporator 30. It is configured to return. In the first circulation circuit 31, the evaporator 30 and the inlet of the first pump 35 are connected by a flow path 31a. The outlet of the first pump 35 and the inlet of the first heat exchanger 33 are connected by the flow path 31b. The outlet of the first heat exchanger 33 and the evaporator 30 are connected by the flow path 31c.
 第二循環回路51は、第二ポンプ55及び第二熱交換器53を有する。第二循環回路51は、凝縮器50に貯留された液体の作動流体が第二ポンプ55によって第二熱交換器53に供給され、第二熱交換器53で放熱した作動流体が凝縮器50に戻るように構成されている。第二循環回路51において、凝縮器50と第二ポンプ55の入口とが流路51aによって接続されている。第二ポンプ55の出口と第二熱交換器53の入口とが流路51bによって接続されている。第二熱交換器53の出口と凝縮器50とが流路51cによって接続されている。 The second circulation circuit 51 has a second pump 55 and a second heat exchanger 53. In the second circulation circuit 51, the liquid working fluid stored in the condenser 50 is supplied to the second heat exchanger 53 by the second pump 55, and the working fluid radiated by the second heat exchanger 53 is fed to the condenser 50. It is configured to return. In the second circulation circuit 51, the condenser 50 and the inlet of the second pump 55 are connected by the flow path 51a. The outlet of the second pump 55 and the inlet of the second heat exchanger 53 are connected by the flow path 51b. The outlet of the second heat exchanger 53 and the condenser 50 are connected by the flow path 51c.
 冷凍サイクル装置100において、例えば、蒸発器30に貯留されている液相冷媒が第一軸受41及び第二軸受42に供給されるべき潤滑液として利用される。冷凍サイクル装置100において、例えば、凝縮器50に貯留されている液相冷媒が第一軸受41及び第二軸受42に供給されるべき潤滑液として利用されてもよい。第一軸受41及び第二軸受42に供給された液相冷媒は、蒸発器30又は凝縮器50に戻される。 In the refrigeration cycle device 100, for example, the liquid-phase refrigerant stored in the evaporator 30 is used as the lubricating liquid to be supplied to the first bearing 41 and the second bearing 42. In the refrigeration cycle apparatus 100, for example, the liquid-phase refrigerant stored in the condenser 50 may be used as the lubricating liquid to be supplied to the first bearing 41 and the second bearing 42. The liquid-phase refrigerant supplied to the first bearing 41 and the second bearing 42 is returned to the evaporator 30 or the condenser 50.
 ターボ圧縮機1aは、様々な観点から変更可能である。例えば、ターボ圧縮機1aは、図3に示すターボ圧縮機1bのように変更されてもよい。ターボ圧縮機1bは、特に説明する部分を除き、ターボ圧縮機1aと同様に構成されている。ターボ圧縮機1aの構成要素と同一又は対応するターボ圧縮機1bの構成要素には、同一の符号を付し、詳細な説明を省略する。ターボ圧縮機1aに関する説明は、技術的に矛盾しない限り、ターボ圧縮機1bにも当てはまる。 The turbo compressor 1a can be changed from various viewpoints. For example, the turbo compressor 1a may be changed to the turbo compressor 1b shown in FIG. The turbo compressor 1b is configured in the same manner as the turbo compressor 1a, except for the part particularly described. The constituents of the turbo compressor 1b that are the same as or correspond to the constituents of the turbo compressor 1a are designated by the same reference numerals, and detailed description thereof will be omitted. The description of the turbo compressor 1a also applies to the turbo compressor 1b unless technically contradictory.
 図3に示す通り、ターボ圧縮機1bは、第三インペラ23をさらに備えている。第三インペラ23は、回転軸10の軸線方向において第一軸受41から離れた位置に配置され、回転軸10に固定されている。第二インペラ22は、第一インペラ21と第三インペラ23との間に配置されている。ターボ圧縮機1bによれば、第三インペラ23によって高い圧力比での運転を実現しやすい。加えて、ターボ圧縮機1bにおいて、第三インペラ23の固定位置における回転軸10の直径は、第二インペラ22の固定位置における回転軸10の直径以上である。これにより、回転軸10は、軸線方向における中央付近において大きな直径を有しやすく、回転軸10の曲げ剛性が高くなりやすい。その結果、回転軸10の曲げ剛性に基づく固有振動数の低下を防止でき、回転軸10の曲げ剛性に基づく固有振動数と回転軸10の回転数とが近くなって共振が発生することを防止できる。 As shown in FIG. 3, the turbo compressor 1b further includes a third impeller 23. The third impeller 23 is arranged at a position apart from the first bearing 41 in the axial direction of the rotary shaft 10 and is fixed to the rotary shaft 10. The second impeller 22 is arranged between the first impeller 21 and the third impeller 23. According to the turbo compressor 1b, it is easy to realize the operation at a high pressure ratio by the third impeller 23. In addition, in the turbo compressor 1b, the diameter of the rotary shaft 10 at the fixed position of the third impeller 23 is equal to or larger than the diameter of the rotary shaft 10 at the fixed position of the second impeller 22. Thereby, the rotating shaft 10 tends to have a large diameter near the center in the axial direction, and the bending rigidity of the rotating shaft 10 tends to increase. As a result, it is possible to prevent the natural frequency based on the bending rigidity of the rotating shaft 10 from decreasing, and prevent the natural frequency based on the bending rigidity of the rotating shaft 10 and the rotation speed of the rotating shaft 10 from becoming close to each other to cause resonance. it can.
 第三インペラ23は、例えば、回転軸10の軸線方向において第二インペラ22と回転子71との間で回転軸10に固定されている。この場合、モータ70の回転子71が回転軸10に固定された状態で回転軸10の回転の安定性を高めることができる。回転軸10の軸線方向における中心は、例えば、第二インペラ22と回転子71との間に位置している。 The third impeller 23 is fixed to the rotary shaft 10 between the second impeller 22 and the rotor 71 in the axial direction of the rotary shaft 10, for example. In this case, the stability of rotation of the rotary shaft 10 can be enhanced with the rotor 71 of the motor 70 fixed to the rotary shaft 10. The center of the rotary shaft 10 in the axial direction is located, for example, between the second impeller 22 and the rotor 71.
 第三インペラ23は、典型的には、作動流体が吸い込まれる第三吸込口23a及び作動流体が吐出される第三吐出口23bを有する。第三吸込口23aは、例えば、第一吸込口21a及び第二吸込口22aの開口向きと同じ向きに開口している。第三インペラ23は、例えば、第一インペラ21及び第二インペラ22と共に遠心式の圧縮機構を構成している。第三インペラ23の第三吸込口23aをなす部位の外径は、例えば、第三インペラ23の第三吐出口23bをなす部位の外径よりも小さい。第三吸込口23aは、例えば、第三インペラ23の前方に開口している。第三吐出口23bは、第三インペラ23の半径方向外側に開口している。 The third impeller 23 typically has a third suction port 23a for sucking the working fluid and a third discharge port 23b for discharging the working fluid. The third suction port 23a opens in the same direction as the opening direction of the first suction port 21a and the second suction port 22a, for example. The third impeller 23 constitutes, for example, a centrifugal compression mechanism together with the first impeller 21 and the second impeller 22. The outer diameter of the portion of the third impeller 23 forming the third suction port 23a is smaller than the outer diameter of the portion of the third impeller 23 forming the third discharge port 23b, for example. The third suction port 23a opens, for example, in front of the third impeller 23. The third discharge port 23b opens to the outside in the radial direction of the third impeller 23.
 ターボ圧縮機1bは、例えば、リターン流路82bをさらに備えている。リターン流路82bは、第二吐出口22bから第三吸込口23aに作動流体を導く流路である。これにより、第一インペラ21及び第二インペラ22を通過して圧縮された小さい比体積を有する作動流体が第三インペラ23に導かれる。このため、第三インペラ23は、第三インペラ23における作動流体の流路の幅が第一インペラ21における作動流体の流路の幅よりも狭いように作製されうる。 The turbo compressor 1b further includes, for example, a return flow path 82b. The return flow path 82b is a flow path for guiding the working fluid from the second discharge port 22b to the third suction port 23a. As a result, the working fluid having a small specific volume that has been compressed by passing through the first impeller 21 and the second impeller 22 is guided to the third impeller 23. Therefore, the third impeller 23 can be manufactured so that the width of the working fluid passage in the third impeller 23 is narrower than the width of the working fluid passage in the first impeller 21.
 (実施の形態2)
 実施の形態1と異なる点は、第一軸受41が、回転軸10のスラスト荷重の負荷容量を有する点である。
(Embodiment 2)
The difference from the first embodiment is that the first bearing 41 has a load capacity of the thrust load of the rotary shaft 10.
 ターボ圧縮機1aが長期間運転されると、回転軸10の温度が上昇する。これにより、回転軸10の全長が増加する。第一軸受41は、回転軸10のスラスト荷重の負荷容量を有するので、回転軸10の軸線方向において第一軸受41と回転軸10との位置関係はほとんど変化しない。回転軸10の熱膨張の影響は、スラスト荷重の負荷容量を有する第一軸受41からの距離が大きいほどより深刻になる。回転軸10の軸線方向において、第一軸受41は、第一インペラ21と第二インペラ22との間に配置されている。このため、回転軸10の軸線方向における第一インペラ21と第一軸受41との距離及び回転軸10の軸線方向における第二インペラ22と第一軸受41との距離を短くしやすい。このため、回転軸10の軸線方向における回転軸10の熱膨張による第一インペラ21の移動量及び回転軸10の軸線方向における回転軸10の熱膨張による第二インペラ22の移動量を少なくできる。その結果、第一インペラ21と、第一インペラ21の近くに配置されるシュラウド又はディフューザーリング等の部材との接触防止のために考慮すべきクリアランスの設計値を小さく設定できる。加えて、第二インペラ22と、第二インペラ22の近くに配置されるシュラウド又はディフューザーリング等の部材との接触防止のために考慮すべきクリアランスの設計値を小さく設定できる。 When the turbo compressor 1a is operated for a long time, the temperature of the rotating shaft 10 rises. As a result, the total length of the rotary shaft 10 increases. Since the first bearing 41 has a load capacity of the thrust load of the rotary shaft 10, the positional relationship between the first bearing 41 and the rotary shaft 10 hardly changes in the axial direction of the rotary shaft 10. The influence of thermal expansion of the rotary shaft 10 becomes more serious as the distance from the first bearing 41 having the load capacity of thrust load increases. The first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotating shaft 10. Therefore, it is easy to shorten the distance between the first impeller 21 and the first bearing 41 in the axial direction of the rotating shaft 10 and the distance between the second impeller 22 and the first bearing 41 in the axial direction of the rotating shaft 10. Therefore, the amount of movement of the first impeller 21 due to thermal expansion of the rotating shaft 10 in the axial direction of the rotating shaft 10 and the amount of movement of the second impeller 22 due to thermal expansion of the rotating shaft 10 in the axial direction of the rotating shaft 10 can be reduced. As a result, it is possible to set a small clearance design value to be considered for preventing contact between the first impeller 21 and a member such as a shroud or a diffuser ring arranged near the first impeller 21. In addition, the design value of the clearance to be considered for preventing contact between the second impeller 22 and a member such as a shroud or a diffuser ring arranged near the second impeller 22 can be set small.
 第一軸受41は、回転軸10のスラスト荷重の負荷容量を有する限り、特定の軸受に限定されない。第一軸受41は、例えば、滑り軸受である。この場合、第一軸受41は軸受面41bを有する。軸受面41bは、回転軸10の軸線に垂直な平面に投影したとき投影面をなすように形成されている。第一軸受41は、玉軸受等の転がり軸受であってもよいし、磁気軸受であってもよい。 The first bearing 41 is not limited to a particular bearing as long as it has a load capacity of the thrust load of the rotary shaft 10. The first bearing 41 is, for example, a slide bearing. In this case, the first bearing 41 has a bearing surface 41b. The bearing surface 41b is formed so as to form a projection surface when projected on a plane perpendicular to the axis of the rotating shaft 10. The first bearing 41 may be a rolling bearing such as a ball bearing or a magnetic bearing.
 第一軸受41は、回転軸10のラジアル荷重の負荷容量を有していてもよい。例えば、第一軸受41は、回転軸10をラジアル方向に支持するラジアル軸受面41aを有する。なお、第一軸受41は、回転軸10をスラスト方向及びラジアル方向に支持する軸受面を有するように構成されていてもよい。このような軸受面は、例えば、第一軸受41にテーパー孔を形成することによって形成できる。 The first bearing 41 may have a load capacity of the radial load of the rotary shaft 10. For example, the first bearing 41 has a radial bearing surface 41a that supports the rotating shaft 10 in the radial direction. The first bearing 41 may be configured to have a bearing surface that supports the rotating shaft 10 in the thrust direction and the radial direction. Such a bearing surface can be formed, for example, by forming a tapered hole in the first bearing 41.
 第二軸受42は、回転軸10を回転可能に支持する限り、特定の軸受に限定されない。第二軸受42は、例えば、滑り軸受である。第二軸受42は、例えば、ターボ圧縮機1aの通常運転では、スラスト力を支持しないように構成されている。第二軸受42は、例えば、回転軸10の軸線方向において、回転軸10を含む回転体に対し、回転軸10の軸線方向における全長の1000分の1程度又はそれ以上の寸法変化を許容する。これにより、ターボ圧縮機1aの運転中に回転軸10の温度上昇に伴い回転軸10が熱膨張しても、第二軸受42は、回転軸10の熱膨張に対応できる。第二軸受42は、玉軸受等の転がり軸受であってもよいし、磁気軸受であってもよい。 The second bearing 42 is not limited to a particular bearing as long as it supports the rotating shaft 10 in a rotatable manner. The second bearing 42 is, for example, a slide bearing. The second bearing 42 is configured, for example, so as not to support thrust force during normal operation of the turbo compressor 1a. The second bearing 42 allows, for example, in the axial direction of the rotary shaft 10, a dimensional change of about one thousandth or more of the entire length of the rotary body including the rotary shaft 10 in the axial direction of the rotary shaft 10. Thereby, even if the rotary shaft 10 thermally expands due to the temperature rise of the rotary shaft 10 during the operation of the turbo compressor 1a, the second bearing 42 can cope with the thermal expansion of the rotary shaft 10. The second bearing 42 may be a rolling bearing such as a ball bearing or a magnetic bearing.
 第一軸受41が滑り軸受である場合、第一軸受41を潤滑する流体は潤滑油であってもよいし、冷媒に対し相溶性を示す流体であってもよい。第一軸受41を潤滑する流体は、望ましくは、冷媒と同一成分の流体であってもよい。 When the first bearing 41 is a slide bearing, the fluid that lubricates the first bearing 41 may be lubricating oil or fluid that is compatible with the refrigerant. The fluid that lubricates the first bearing 41 may desirably be a fluid having the same composition as the refrigerant.
 ターボ圧縮機1aは、例えば、ケーシング60を備えており、第一軸受41は、ケーシング60に固定されている。ケーシング60は、静止流路をなす壁面を有し、リターン流路82aはケーシング60の内部に存在する。 The turbo compressor 1a includes, for example, a casing 60, and the first bearing 41 is fixed to the casing 60. The casing 60 has a wall surface that forms a stationary flow channel, and the return flow channel 82a exists inside the casing 60.
 図1に示す通り、ターボ圧縮機1aは、例えばモータ70をさらに備えている。モータ70は、例えば、回転子71と、固定子72とを備えている。回転子71は、例えば、回転軸10の軸線方向において第一軸受41と第二軸受42との間で回転軸10に固定されている。 As shown in FIG. 1, the turbo compressor 1 a further includes, for example, a motor 70. The motor 70 includes, for example, a rotor 71 and a stator 72. The rotor 71 is fixed to the rotary shaft 10 between the first bearing 41 and the second bearing 42 in the axial direction of the rotary shaft 10, for example.
 固定子72は、例えば、ケーシング60に固定されている。モータ70に電力が供給されると、固定子72によって回転磁界が発生し、回転子71に回転トルクが発生する。これにより、回転軸10に固定された第一インペラ21及び第二インペラ22が回転する。ターボ圧縮機1aが長期間運転されると、回転子71が発熱し、回転軸10の温度が上昇する。 The stator 72 is fixed to the casing 60, for example. When electric power is supplied to the motor 70, a rotating magnetic field is generated by the stator 72, and a rotating torque is generated in the rotor 71. As a result, the first impeller 21 and the second impeller 22 fixed to the rotating shaft 10 rotate. When the turbo compressor 1a is operated for a long period of time, the rotor 71 generates heat and the temperature of the rotating shaft 10 rises.
 ターボ圧縮機1aは、例えば、常温において大気圧以下の飽和蒸気圧を有する冷媒を加速して圧縮する。ターボ圧縮機1aにおいて、冷媒は、典型的には気相である。このような冷媒として、望ましくは水を使用できる。このような冷媒はリターン流路を大きな比容積で流れやすいので、リターン流路の断面積を大きくする必要性が高い。なお、ターボ圧縮機1aは、場合によっては、常温において大気圧を超える飽和蒸気圧を有する冷媒を加速して圧縮してもよい。 The turbo compressor 1a accelerates and compresses a refrigerant having a saturated vapor pressure equal to or lower than atmospheric pressure at room temperature, for example. In the turbo compressor 1a, the refrigerant is typically in the gas phase. Water can be preferably used as such a refrigerant. Since such a refrigerant easily flows through the return passage with a large specific volume, it is highly necessary to increase the cross-sectional area of the return passage. In some cases, the turbo compressor 1a may accelerate and compress a refrigerant having a saturated vapor pressure exceeding atmospheric pressure at room temperature.
 第一軸受41は、回転軸10の軸線方向において第一インペラ21と第二インペラ22との間に配置されているので、回転軸10の軸線方向の長さの延伸を抑えつつリターン流路82aの断面積を大きくしやすい。これにより、回転軸10の曲げ剛性に基づく固有振動数が低くなりにくい。リターン流路82aの断面積が大きいと、大きな比容積で冷媒がリターン流路82aを流れやすい。例えば、ターボ圧縮機1aが、常温において大気圧以下の飽和蒸気圧を有する冷媒を圧縮する場合に、リターン流路82aにおいて大きな比容積で冷媒を流しやすい。 Since the first bearing 41 is arranged between the first impeller 21 and the second impeller 22 in the axial direction of the rotary shaft 10, the return passage 82a is suppressed while suppressing the extension of the rotary shaft 10 in the axial direction. It is easy to increase the cross-sectional area of. As a result, the natural frequency based on the bending rigidity of the rotating shaft 10 does not easily decrease. If the cross-sectional area of the return passage 82a is large, the refrigerant easily flows through the return passage 82a with a large specific volume. For example, when the turbo compressor 1a compresses a refrigerant having a saturated vapor pressure equal to or lower than the atmospheric pressure at room temperature, it is easy to flow the refrigerant with a large specific volume in the return flow passage 82a.
 例えば、回転軸10の軸線方向において第一軸受41が存在する領域の全ては、回転軸10の軸線方向においてリターン流路82aが存在する領域と重なっている。 For example, the entire region where the first bearing 41 exists in the axial direction of the rotating shaft 10 overlaps the region where the return flow passage 82a exists in the axial direction of the rotating shaft 10.
 リターン流路82aは、例えば、回転軸10の軸線に垂直な方向において、第一軸受41の外側に位置する環状の流路である。第一インペラ21の第一吐出口21bをなす部位の外径は、例えば、第二インペラ22の第二吸込口22aをなす部位の外径よりも小さい。このため、リターン流路82aは、回転軸10の軸線方向において第二インペラ22に向かって窄むように形成されている。 The return passage 82a is, for example, an annular passage located outside the first bearing 41 in the direction perpendicular to the axis of the rotating shaft 10. The outer diameter of the portion of the first impeller 21 forming the first discharge port 21b is smaller than the outer diameter of the portion of the second impeller 22 forming the second suction port 22a, for example. Therefore, the return passage 82a is formed so as to narrow toward the second impeller 22 in the axial direction of the rotating shaft 10.
 回転軸10は、望ましくは、回転時のアンバランスを最小限に抑えるために、高精度に軸対称な形状を有している。回転子71は、例えば、焼嵌めによって回転軸10に固定されている。回転軸10が高速で回転して遠心力により回転子71の直径が僅かに拡大しても焼嵌めしろが残るように、回転子71の焼嵌めにおいて十分に大きな焼嵌めしろが確保されている。回転軸10の回転数は、例えば、5000rpmから100000rpmである。回転軸10の材料は、特定の材料に限定されない。回転軸10の材料は、例えば、SNCM630等の高強度の鉄系材料でありうる。 The rotary shaft 10 desirably has a highly symmetrical axisymmetric shape in order to minimize unbalance during rotation. The rotor 71 is fixed to the rotary shaft 10 by shrink fitting, for example. A sufficiently large shrink fit margin is secured in the shrink fit of the rotor 71 so that the shrink fit margin remains even if the rotary shaft 10 rotates at a high speed and the diameter of the rotor 71 is slightly increased by centrifugal force. .. The rotation speed of the rotary shaft 10 is, for example, 5000 rpm to 100000 rpm. The material of the rotating shaft 10 is not limited to a particular material. The material of the rotating shaft 10 may be, for example, a high-strength iron-based material such as SNCM630.
 例えば、第二インペラ22の固定位置における回転軸10の直径は、第一インペラ21の固定位置における回転軸10の直径より大きい。この場合、回転軸10が中央付近において大きな直径を有し、回転軸10の曲げ剛性に基づく固有振動数が高くなりやすい。このため、回転軸10の回転の安定性が高くなりやすい。 For example, the diameter of the rotary shaft 10 at the fixed position of the second impeller 22 is larger than the diameter of the rotary shaft 10 at the fixed position of the first impeller 21. In this case, the rotary shaft 10 has a large diameter near the center, and the natural frequency based on the bending rigidity of the rotary shaft 10 tends to be high. Therefore, the rotation stability of the rotary shaft 10 is likely to increase.
 ターボ圧縮機1aにおいて、第一インペラ21及び第二インペラ22は、典型的には、遠心式の圧縮機構を構成している。第一インペラ21の第一吸込口21aをなす部位の外径は、例えば、第一インペラ21の第一吐出口21bをなす部位の外径よりも小さい。第一吸込口21aは、例えば、第一インペラ21の前方に開口している。第一吐出口21bは、第一インペラ21の半径方向外側に開口している。第二インペラ22の第二吸込口22aをなす部位の外径は、例えば、第二インペラ22の第二吐出口22bをなす部位の外径よりも小さい。第二吸込口22aは、例えば、第二インペラ22の前方に開口している。第二吐出口22bは、第二インペラ22の半径方向外側に開口している。 In the turbo compressor 1a, the first impeller 21 and the second impeller 22 typically form a centrifugal compression mechanism. The outer diameter of the portion of the first impeller 21 forming the first suction port 21a is smaller than the outer diameter of the portion of the first impeller 21 forming the first discharge port 21b, for example. The first suction port 21a is open, for example, in front of the first impeller 21. The first discharge port 21b opens to the outside of the first impeller 21 in the radial direction. The outer diameter of the portion of the second impeller 22 forming the second suction port 22a is smaller than the outer diameter of the portion of the second impeller 22 forming the second discharge port 22b. The second suction port 22a is open, for example, in front of the second impeller 22. The second discharge port 22b opens to the outside of the second impeller 22 in the radial direction.
 第一吸込口21aから吸い込まれた冷媒は、第一インペラ21によって加速されて、第一吐出口21bから吐出される。その後、冷媒は、リターン流路82aを通って、第二吸込口22aに吸い込まれ、第二インペラ22によって加速され、第二吐出口22bから吐出される。これにより、冷媒が圧縮される。ターボ圧縮機1aには流路83が接続されており、第二吐出口22bから吐出された冷媒は、流路83を通ってターボ圧縮機1aの外部に供給される。 The refrigerant sucked from the first suction port 21a is accelerated by the first impeller 21 and discharged from the first discharge port 21b. After that, the refrigerant passes through the return flow path 82a, is sucked into the second suction port 22a, is accelerated by the second impeller 22, and is discharged from the second discharge port 22b. As a result, the refrigerant is compressed. A flow path 83 is connected to the turbo compressor 1a, and the refrigerant discharged from the second discharge port 22b is supplied to the outside of the turbo compressor 1a through the flow path 83.
 ターボ圧縮機1aの動作及び作用の一例について説明する。第一インペラ21の第一吸込口21aの前方の空間には、例えば、1kPaの圧力の気相の冷媒が存在している。モータ70の作動により、回転軸10が回転すると、回転軸10と共に第一インペラ21及び第二インペラ22が回転する。これにより、第一吸込口21aの前方の空間の冷媒は、第一吸込口21aを通過して、第一インペラ21によって加速され、第一吐出口21bから吐出される。これにより、冷媒が圧縮される。第一インペラ21における冷媒の圧力比は例えば2であり、第一吐出口21bから吐出された冷媒の圧力は2kPaでありうる。 An example of the operation and action of the turbo compressor 1a will be described. In the space in front of the first suction port 21a of the first impeller 21, for example, a vapor-phase refrigerant having a pressure of 1 kPa exists. When the rotating shaft 10 rotates due to the operation of the motor 70, the first impeller 21 and the second impeller 22 rotate together with the rotating shaft 10. As a result, the refrigerant in the space in front of the first suction port 21a passes through the first suction port 21a, is accelerated by the first impeller 21, and is discharged from the first discharge port 21b. As a result, the refrigerant is compressed. The pressure ratio of the refrigerant in the first impeller 21 may be 2, for example, and the pressure of the refrigerant discharged from the first discharge port 21b may be 2 kPa.
 第一吐出口21bから吐出された冷媒は、リターン流路82aを通って第二吸込口22aに吸い込まれる。さらに、冷媒は、第二インペラ22によって加速され、第二吐出口22bから吐出される。これにより、冷媒がさらに圧縮される。第二インペラ22における冷媒の圧力比は例えば2であり、第二吐出口22bから吐出された冷媒の圧力は4kPaでありうる。このようにして圧縮された冷媒は、流路83を通って、ターボ圧縮機1aの外部に導かれる。 The refrigerant discharged from the first discharge port 21b is sucked into the second suction port 22a through the return flow passage 82a. Further, the refrigerant is accelerated by the second impeller 22 and discharged from the second discharge port 22b. Thereby, the refrigerant is further compressed. The pressure ratio of the refrigerant in the second impeller 22 may be 2, for example, and the pressure of the refrigerant discharged from the second discharge port 22b may be 4 kPa. The refrigerant compressed in this way is guided to the outside of the turbo compressor 1a through the flow path 83.
 第一吸込口21aを含む第一インペラ21の前面と第一インペラ21の前面と反対側の背面との間には、例えば、1kPaの圧力差が発生しうる。加えて、第二吸込口22aを含む第二インペラ22の前面と第二インペラ22の前面と反対側の背面との間には、例えば、2kPaの圧力差が発生しうる。これらの圧力差により、図1において右から左に向かって回転軸10にスラスト力が発生する。 A pressure difference of, for example, 1 kPa may occur between the front surface of the first impeller 21 including the first suction port 21a and the back surface opposite to the front surface of the first impeller 21. In addition, a pressure difference of, for example, 2 kPa may occur between the front surface of the second impeller 22 including the second suction port 22a and the back surface of the second impeller 22 opposite to the front surface. Due to these pressure differences, a thrust force is generated on the rotary shaft 10 from right to left in FIG.
 ターボ圧縮機1aが長期間運転されると、例えば、回転子71の発熱により回転軸10の温度が上昇し、回転軸10が熱膨張してその全長が増加する。このとき、回転軸10のスラスト力を受ける第一軸受41と回転軸10との位置関係はほとんど変化しない。一方、第二軸受42は、回転軸10の軸線方向における所定の寸法変化を許容し、第二軸受42と回転軸10との位置関係は変化する。これにより、回転軸10の熱膨張に対処できる。 When the turbo compressor 1a is operated for a long period of time, the temperature of the rotating shaft 10 rises due to the heat generation of the rotor 71, and the rotating shaft 10 thermally expands to increase its total length. At this time, the positional relationship between the first bearing 41 that receives the thrust force of the rotating shaft 10 and the rotating shaft 10 hardly changes. On the other hand, the second bearing 42 allows a predetermined dimensional change in the axial direction of the rotary shaft 10, and the positional relationship between the second bearing 42 and the rotary shaft 10 changes. Thereby, the thermal expansion of the rotating shaft 10 can be dealt with.
 例えば、ターボ圧縮機1aを用いて冷凍サイクル装置を提供できる。図2に示す通り、冷凍サイクル装置100は、蒸発器30と、ターボ圧縮機1aと、凝縮器50と、を備えている。蒸発器30において冷媒が蒸発する。ターボ圧縮機1aは、蒸発器30で蒸発した冷媒を圧縮する。凝縮器50は、ターボ圧縮機1aで圧縮された冷媒を凝縮させる。冷凍サイクル装置100はターボ圧縮機1aを備えているので、圧力比が高い状態又は断熱効率が高い状態で、蒸発器30で蒸発した冷媒を圧縮できる。このため、冷凍サイクル装置が高い成績係数(COP)を発揮しやすい。 For example, a refrigeration cycle device can be provided using the turbo compressor 1a. As shown in FIG. 2, the refrigeration cycle device 100 includes an evaporator 30, a turbo compressor 1 a, and a condenser 50. The refrigerant evaporates in the evaporator 30. The turbo compressor 1a compresses the refrigerant evaporated in the evaporator 30. The condenser 50 condenses the refrigerant compressed by the turbo compressor 1a. Since the refrigeration cycle device 100 includes the turbo compressor 1a, the refrigerant evaporated in the evaporator 30 can be compressed under a high pressure ratio or a high adiabatic efficiency. Therefore, the refrigeration cycle apparatus is likely to exhibit a high coefficient of performance (COP).
 冷凍サイクル装置100は、例えば、空気調和装置として機能させることができる。 The refrigeration cycle apparatus 100 can function as an air conditioner, for example.
 蒸発器30は、例えば、液相冷媒をその内部に貯留する。凝縮器50は、例えば、液相冷媒をその内部に貯留する。冷凍サイクル装置100において、蒸発器30に貯留された液相冷媒及び凝縮器に貯留された液相冷媒の少なくとも1つが第一軸受41に供給される。この場合、例えば、蒸発器30に貯留された液相冷媒及び凝縮器50に貯留された液相冷媒の少なくとも1つを第一軸受41の潤滑又は冷却に利用できる。 The evaporator 30 stores, for example, a liquid-phase refrigerant therein. The condenser 50 stores the liquid phase refrigerant therein, for example. In the refrigeration cycle apparatus 100, at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser is supplied to the first bearing 41. In this case, for example, at least one of the liquid-phase refrigerant stored in the evaporator 30 and the liquid-phase refrigerant stored in the condenser 50 can be used for lubricating or cooling the first bearing 41.
 図2に示す通り、冷凍サイクル装置100は、例えば、主回路80と、第一循環回路31と、第二循環回路51とを備えている。主回路80は、蒸発器30、ターボ圧縮機1a、及び凝縮器50がこの順に接続されている回路である。蒸発器30の内部空間とターボ圧縮機1aのケーシング60の内部空間とが流路81によって連通している。ターボ圧縮機1aのケーシング60の内部空間と凝縮器50の内部空間とが流路83によって連通している。凝縮器50の内部空間と蒸発器30の内部空間とが流路84によって連通している。 As shown in FIG. 2, the refrigeration cycle apparatus 100 includes, for example, a main circuit 80, a first circulation circuit 31, and a second circulation circuit 51. The main circuit 80 is a circuit in which the evaporator 30, the turbo compressor 1a, and the condenser 50 are connected in this order. A flow passage 81 connects the internal space of the evaporator 30 and the internal space of the casing 60 of the turbo compressor 1 a. A flow passage 83 connects the internal space of the casing 60 of the turbo compressor 1 a and the internal space of the condenser 50. The internal space of the condenser 50 and the internal space of the evaporator 30 communicate with each other through a flow path 84.
 第一循環回路31は、第一ポンプ35及び第一熱交換器33を有する。第一循環回路31は、蒸発器30に貯留された液体の冷媒が第一ポンプ35によって第一熱交換器33に供給され、第一熱交換器33で吸熱した冷媒が蒸発器30に戻るように構成されている。 The first circulation circuit 31 has a first pump 35 and a first heat exchanger 33. In the first circulation circuit 31, the liquid refrigerant stored in the evaporator 30 is supplied to the first heat exchanger 33 by the first pump 35, and the refrigerant absorbed in the first heat exchanger 33 returns to the evaporator 30. Is configured.
 第一循環回路31において、蒸発器30と第一ポンプ35との入口とが流路31aによって接続されている。第一ポンプ35の出口と第一熱交換器33の入口とが流路31bによって接続されている。第一熱交換器33の出口と蒸発器30とが流路31cによって接続されている。 In the first circulation circuit 31, the evaporator 30 and the inlet of the first pump 35 are connected by a flow path 31a. The outlet of the first pump 35 and the inlet of the first heat exchanger 33 are connected by the flow path 31b. The outlet of the first heat exchanger 33 and the evaporator 30 are connected by the flow path 31c.
 第二循環回路51は、第二ポンプ55及び第二熱交換器53を有する。第二循環回路51は、凝縮器50に貯留された液体の冷媒が第二ポンプ55によって第二熱交換器53に供給され、第二熱交換器53で放熱した冷媒が凝縮器50に戻るように構成されている。 The second circulation circuit 51 has a second pump 55 and a second heat exchanger 53. In the second circulation circuit 51, the liquid refrigerant stored in the condenser 50 is supplied to the second heat exchanger 53 by the second pump 55, and the refrigerant radiated by the second heat exchanger 53 returns to the condenser 50. Is configured.
 第二循環回路51において、凝縮器50と第二ポンプ55の入口とが流路51aによって接続されている。第二ポンプ55の出口と第二熱交換器53の入口とが流路51bによって接続されている。第二熱交換器53の出口と凝縮器50とが流路51cによって接続されている。 In the second circulation circuit 51, the condenser 50 and the inlet of the second pump 55 are connected by the flow path 51a. The outlet of the second pump 55 and the inlet of the second heat exchanger 53 are connected by the flow path 51b. The outlet of the second heat exchanger 53 and the condenser 50 are connected by the flow path 51c.
 冷凍サイクル装置100において、例えば、蒸発器30に貯留されている液相冷媒が第一軸受41及び第二軸受42に供給されるべき潤滑剤として利用される。冷凍サイクル装置100において、例えば、凝縮器50に貯留されている液相冷媒が第一軸受41及び第二軸受42に供給されるべき潤滑剤として利用されてもよい。第一軸受41及び第二軸受42に供給された液相冷媒は、蒸発器30又は凝縮器50に戻される。 In the refrigeration cycle apparatus 100, for example, the liquid-phase refrigerant stored in the evaporator 30 is used as a lubricant to be supplied to the first bearing 41 and the second bearing 42. In the refrigeration cycle apparatus 100, for example, the liquid-phase refrigerant stored in the condenser 50 may be used as a lubricant to be supplied to the first bearing 41 and the second bearing 42. The liquid-phase refrigerant supplied to the first bearing 41 and the second bearing 42 is returned to the evaporator 30 or the condenser 50.
 ターボ圧縮機1aは、様々な観点から変更可能である。例えば、ターボ圧縮機1aは、図4に示すターボ圧縮機1bのように変更されてもよい。ターボ圧縮機1bは、特に説明する部分を除き、ターボ圧縮機1aと同様に構成されている。ターボ圧縮機1aの構成要素と同一又は対応するターボ圧縮機1bの構成要素には、同一の符号を付し、詳細な説明を省略する。ターボ圧縮機1aに関する説明は、技術的に矛盾しない限り、ターボ圧縮機1bにも当てはまる。 The turbo compressor 1a can be changed from various viewpoints. For example, the turbo compressor 1a may be changed to the turbo compressor 1b shown in FIG. The turbo compressor 1b is configured in the same manner as the turbo compressor 1a, except for the part particularly described. The constituents of the turbo compressor 1b that are the same as or correspond to the constituents of the turbo compressor 1a are designated by the same reference numerals, and detailed description thereof will be omitted. The description of the turbo compressor 1a also applies to the turbo compressor 1b unless technically contradictory.
 図4に示す通り、ターボ圧縮機1bにおいて、第一軸受41は、軸受面41bを有する滑り軸受である。軸受面41bは、回転軸10の軸線に垂直な平面に投影したとき投影面をなす。回転軸10は、第一流路12と、第二流路14とを有する。第一流路12は、回転軸10の内部において軸線に沿って延びており、潤滑剤が第一流路12を流れる。第二流路14は、軸受面41bに接する空間と第一流路12とを連通させる。例えば、第二流路14の少なくとも一部は、回転軸10の半径方向に延びている。 As shown in FIG. 4, in the turbo compressor 1b, the first bearing 41 is a slide bearing having a bearing surface 41b. The bearing surface 41b forms a projection surface when projected on a plane perpendicular to the axis of the rotating shaft 10. The rotating shaft 10 has a first flow path 12 and a second flow path 14. The first flow passage 12 extends along the axis inside the rotary shaft 10, and the lubricant flows through the first flow passage 12. The second flow path 14 connects the space in contact with the bearing surface 41b with the first flow path 12. For example, at least a part of the second flow path 14 extends in the radial direction of the rotating shaft 10.
 第一流路12を流れる潤滑剤は、潤滑油であってもよいし、冷媒と相溶性を示す流体であってもよいし、冷媒と同一成分を含有する流体であってもよい。 The lubricant flowing through the first flow path 12 may be a lubricating oil, a fluid having compatibility with the refrigerant, or a fluid containing the same component as the refrigerant.
 図4に示す通り、例えば、第一軸受41のラジアル支持面41aと回転軸10の外面との間にある半径方向隙間Rには、第二流路14から供給された潤滑剤が存在している。また、回転軸10と第一軸受41の軸受面41bとの間にある軸方向隙間Tには、半径方向隙間Rを通過した潤滑剤が存在している。軸方向隙間Tに存在している潤滑剤は、半径方向隙間Rの圧力及び回転軸10の回転によって半径方向に流れる。このとき、例えば、軸方向隙間Tの流路における潤滑剤の流れの圧力損失は、軸方向隙間Tが十分広い場合は、半径方向隙間Rの流路における潤滑剤の流れの圧力損失よりも小さい。この場合、軸方向隙間Tにおける潤滑剤の圧力は軸方向隙間Tの周囲の圧力とほぼ同じである。回転軸10が受けるスラスト力により回転軸10が左側に移動すると、軸方向隙間Tが減少し、軸方向隙間Tの流路における潤滑剤の流れの圧力損失が上昇する。一方、半径方向隙間Rの大きさ又は半径方向隙間Rの流路における潤滑剤の流れの圧力損失はほとんど変化しない。 As shown in FIG. 4, for example, in the radial gap R between the radial support surface 41a of the first bearing 41 and the outer surface of the rotary shaft 10, the lubricant supplied from the second flow path 14 exists. There is. Further, in the axial gap T between the rotary shaft 10 and the bearing surface 41b of the first bearing 41, the lubricant that has passed through the radial gap R is present. The lubricant present in the axial gap T flows in the radial direction due to the pressure in the radial gap R and the rotation of the rotary shaft 10. At this time, for example, the pressure loss of the lubricant flow in the flow path of the axial gap T is smaller than the pressure loss of the lubricant flow in the flow path of the radial gap R when the axial gap T is sufficiently wide. .. In this case, the pressure of the lubricant in the axial gap T is almost the same as the pressure around the axial gap T. When the rotating shaft 10 moves to the left due to the thrust force received by the rotating shaft 10, the axial gap T decreases, and the pressure loss of the flow of the lubricant in the flow path of the axial gap T increases. On the other hand, the size of the radial gap R or the pressure loss of the lubricant flow in the flow path of the radial gap R hardly changes.
 軸方向隙間Tが十分に小さくなると、軸方向隙間Tの流路における潤滑剤の流れの圧力損失は、半径方向隙間Rの流路における潤滑剤の流れの圧力損失を上回る。このため、軸方向隙間Tに存在する潤滑材の圧力が上昇する。これにより、左へ動いた回転軸10を右側へ押し返す反力が生じる。換言すると、回転軸10にスラスト負荷容量が発生する。さらに、軸方向隙間Tの減少とともに、軸方向の反力が増加するようなスラスト支持剛性が発現する。 When the axial gap T is sufficiently small, the pressure loss of the lubricant flow in the flow passage of the axial gap T exceeds the pressure loss of the lubricant flow in the flow passage of the radial gap R. Therefore, the pressure of the lubricant existing in the axial gap T increases. As a result, a reaction force that pushes back the rotating shaft 10 that has moved to the right is generated. In other words, the thrust load capacity is generated on the rotary shaft 10. Furthermore, as the axial clearance T decreases, thrust support rigidity that increases the reaction force in the axial direction is developed.
 ターボ圧縮機1bを圧力比が高い条件で運転する場合、回転軸10を高速回転させる必要がある。ターボ圧縮機1bの運転条件における圧力比が高いほど、第一インペラ21及び第二インペラ22に作用するスラスト力も大きくなる。ターボ圧縮機1bによれば、第二流路14は、例えば、第一流路12と、半径方向隙間Rとを連通させている。このため、第一流路12の外部から第一流路12に導かれた潤滑剤を半径方向隙間Rに供給することができる。回転軸10が回転すると、遠心力により第二流路14を流れる潤滑剤が加速、加圧され、例えば1MPaの高い圧力で半径方向隙間R及び軸方向隙間Tに潤滑剤を供給できる。これにより、第一軸受41においてスラスト支持剛性が増加する。このため、圧力比が高い条件でターボ圧縮機1bが運転され、回転軸10が受けるスラスト力が大きい場合でも、回転軸の回転数の高さを利用して、回転軸10の軸方向の移動量を抑制できる。その結果、第一インペラと、第一インペラの近くに配置される部材との接触防止のために考慮すべきクリアランスの設計値をより確実に小さく設定できる。このことは、ターボ圧縮機1bの運転において、圧力比を高める又は断熱効率を高める観点から有利である。 When the turbo compressor 1b is operated under a high pressure ratio condition, it is necessary to rotate the rotary shaft 10 at high speed. The higher the pressure ratio under the operating conditions of the turbo compressor 1b, the greater the thrust force acting on the first impeller 21 and the second impeller 22. According to the turbo compressor 1b, the second flow path 14 communicates with the first flow path 12 and the radial gap R, for example. Therefore, the lubricant introduced into the first flow path 12 from the outside of the first flow path 12 can be supplied to the radial gap R. When the rotating shaft 10 rotates, the lubricant flowing through the second flow path 14 is accelerated and pressurized by the centrifugal force, and the lubricant can be supplied to the radial gap R and the axial gap T at a high pressure of 1 MPa, for example. As a result, the thrust support rigidity of the first bearing 41 increases. Therefore, even when the turbo compressor 1b is operated under the condition that the pressure ratio is high and the thrust force received by the rotating shaft 10 is large, the rotational speed of the rotating shaft is used to move the rotating shaft 10 in the axial direction. The amount can be suppressed. As a result, the design value of the clearance to be considered for preventing contact between the first impeller and the member arranged near the first impeller can be set more reliably. This is advantageous from the viewpoint of increasing the pressure ratio or increasing the adiabatic efficiency in the operation of the turbo compressor 1b.
 本開示に係るターボ圧縮機は、空気調和装置、チラー、及び熱サイクル発電システム用のターボ圧縮機等の用途に適用できる。 The turbo compressor according to the present disclosure can be applied to applications such as an air conditioner, a chiller, and a turbo compressor for a heat cycle power generation system.
 本開示に係るターボ圧縮機は、回転軸の曲げ剛性に基づく固有振動数の低下に伴う共振を防止でき、空気調和装置、チラー、及び熱サイクル発電システム用のターボ圧縮機の用途に適用できる。 The turbo compressor according to the present disclosure can prevent resonance due to a decrease in natural frequency based on the bending rigidity of the rotating shaft, and can be applied to an air conditioner, a chiller, and a turbo compressor for a heat cycle power generation system.
1a、1b ターボ圧縮機
10 回転軸
11 一方の端部
21 第一インペラ
21a 第一吸込口
21b 第一吐出口
22 第二インペラ
22a 第二吸込口
22b 第二吐出口
23 第三インペラ
30 蒸発器
41 第一軸受
42 第二軸受
50 凝縮器
70 モータ
71 回転子
82a リターン流路
100 冷凍サイクル装置
1a, 1b Turbo compressor 10 Rotating shaft 11 One end 21 First impeller 21a First suction port 21b First discharge port 22 Second impeller 22a Second suction port 22b Second discharge port 23 Third impeller 30 Evaporator 41 First bearing 42 Second bearing 50 Condenser 70 Motor 71 Rotor 82a Return flow path 100 Refrigeration cycle device

Claims (14)

  1.  回転軸と、
     前記回転軸に固定され、作動流体が吸い込まれる第一吸込口及び前記作動流体が吐出される第一吐出口を有する、第一インペラと、
     前記回転軸に固定され、前記作動流体が吸い込まれる第二吸込口及び前記作動流体が吐出される第二吐出口を有する、第二インペラと、
     前記回転軸の軸線方向において前記第一インペラと前記第二インペラとの間に配置され、前記回転軸を回転可能に支持する第一軸受と、
     前記第一吐出口から前記第二吸込口に前記作動流体を導く第一流路と、を備え、
     前記第一吸込口及び前記第二吸込口は、同じ向きに開口している、
     ターボ圧縮機。
    A rotation axis,
    A first impeller fixed to the rotating shaft, having a first suction port for sucking a working fluid and a first discharge port for discharging the working fluid;
    A second impeller fixed to the rotating shaft, having a second suction port for sucking the working fluid and a second discharge port for discharging the working fluid,
    A first bearing that is arranged between the first impeller and the second impeller in the axial direction of the rotating shaft and rotatably supports the rotating shaft,
    A first flow path for guiding the working fluid from the first discharge port to the second suction port,
    The first suction port and the second suction port are opened in the same direction,
    Turbo compressor.
  2.  前記第一流路は、前記第一吐出口から前記回転軸に近づくように配置され、前記第二吸込口と連結するリターン流路である、
     請求項1に記載のターボ圧縮機。
    The first flow path is a return flow path that is arranged so as to approach the rotation shaft from the first discharge port and is connected to the second suction port.
    The turbo compressor according to claim 1.
  3.  前記軸線方向において、前記第一流路を前記回転軸に投影した場合の第一領域と、前記第一軸受を前記回転軸に投影した場合の第二領域とは重なっている、
     請求項1または2に記載のターボ圧縮機。
    In the axial direction, the first region when the first flow path is projected onto the rotation axis and the second region when the first bearing is projected onto the rotation axis overlap.
    The turbo compressor according to claim 1.
  4.  前記軸線方向における前記第一領域の幅は、前記第二領域の幅より大きい、
     請求項1から3のいずれか1項に記載のターボ圧縮機。
    The width of the first region in the axial direction is larger than the width of the second region,
    The turbo compressor according to any one of claims 1 to 3.
  5.  常温において大気圧以下の飽和蒸気圧を有する前記作動流体を加速して圧縮する、請求項1から4のいずれか1項に記載のターボ圧縮機。 The turbo compressor according to any one of claims 1 to 4, which accelerates and compresses the working fluid having a saturated vapor pressure of atmospheric pressure or less at room temperature.
  6.  前記軸線方向において前記第一軸受よりも前記第一インペラから離れた位置に配置され、前記回転軸を回転可能に支持する第二軸受と、
     前記軸線方向において前記第一軸受と前記第二軸受との間で前記回転軸に固定されている回転子を有するモータと、をさらに備え、
     請求項1から5のいずれか1項に記載のターボ圧縮機。
    A second bearing that is arranged at a position farther from the first impeller than the first bearing in the axial direction, and rotatably supports the rotating shaft,
    Further comprising a motor having a rotor fixed to the rotating shaft between the first bearing and the second bearing in the axial direction,
    The turbo compressor according to any one of claims 1 to 5.
  7.  前記第一吸込口及び前記第二吸込口と同じ向きに開口している第三吸込口を有し、前記軸線方向において前記第一軸受から離れた位置に配置され、前記回転軸に固定されている、第三インペラをさらに備え、
     前記第二インペラは、前記第一インペラと前記第三インペラとの間に配置され、
     前記第三インペラの固定位置における前記回転軸の直径は、前記第二インペラの固定位置における前記回転軸の直径以上である、請求項1から6のいずれか1項に記載のターボ圧縮機。
    It has a third suction port that opens in the same direction as the first suction port and the second suction port, is arranged at a position apart from the first bearing in the axial direction, and is fixed to the rotary shaft. Further equipped with a third impeller,
    The second impeller is arranged between the first impeller and the third impeller,
    The turbo compressor according to any one of claims 1 to 6, wherein a diameter of the rotating shaft at the fixed position of the third impeller is equal to or larger than a diameter of the rotating shaft at the fixed position of the second impeller.
  8.  前記軸線方向において前記第一軸受よりも前記第一インペラから離れた位置に配置され、前記回転軸を回転可能に支持する第二軸受と、
     前記軸線方向において前記第一軸受と前記第二軸受との間で前記回転軸に固定されている回転子を有するモータと、をさらに備え、
     前記第三インペラは、前記軸線方向において前記第二インペラと前記回転子との間で固定されている、請求項7に記載のターボ圧縮機。
    A second bearing that is arranged at a position farther from the first impeller than the first bearing in the axial direction, and rotatably supports the rotating shaft,
    Further comprising a motor having a rotor fixed to the rotating shaft between the first bearing and the second bearing in the axial direction,
    The turbo compressor according to claim 7, wherein the third impeller is fixed between the second impeller and the rotor in the axial direction.
  9.  前記第一軸受は、前記回転軸のスラスト荷重の負荷容量を有する、
     請求項1から8のいずれか1項に記載のターボ圧縮機。
    The first bearing has a load capacity of thrust load of the rotating shaft,
    The turbo compressor according to any one of claims 1 to 8.
  10.  前記第一軸受は、前記回転軸の軸線に垂直な平面に投影したとき投影面をなす軸受面を有する滑り軸受であり、
     前記回転軸は、当該回転軸の内部において軸線に沿って延びており、潤滑剤が流れる第一流路と、前記軸受面に接する空間と前記第一流路とを連通させる第二流路と、を有する、
     請求項1から9のいずれか1項に記載のターボ圧縮機。
    The first bearing is a slide bearing having a bearing surface that forms a projection surface when projected onto a plane perpendicular to the axis of the rotating shaft,
    The rotating shaft extends along the axis inside the rotating shaft, a first flow path through which a lubricant flows, and a second flow path that connects the space in contact with the bearing surface and the first flow path. Have,
    The turbo compressor according to any one of claims 1 to 9.
  11.  前記第一軸受は、前記回転軸のラジアル荷重の負荷容量を有する、
     請求項1から10のいずれか1項に記載のターボ圧縮機。
    The first bearing has a load capacity of a radial load of the rotating shaft,
    The turbo compressor according to any one of claims 1 to 10.
  12.  気相冷媒を生じさせる蒸発器と、
     前記蒸発器で生じた前記気相冷媒を前記作動流体として圧縮する、請求項1から11のいずれか1項に記載のターボ圧縮機と、
     前記ターボ圧縮機で圧縮された前記気相冷媒を凝縮させる凝縮器と、を備えた、
     冷凍サイクル装置。
    An evaporator that produces a vapor phase refrigerant,
    The turbo compressor according to any one of claims 1 to 11, wherein the gas-phase refrigerant generated in the evaporator is compressed as the working fluid.
    A condenser for condensing the gas-phase refrigerant compressed by the turbo compressor,
    Refrigeration cycle device.
  13.  前記蒸発器は液相冷媒をその内部に貯留し、
     前記凝縮器は液相冷媒をその内部に貯留し、
     前記蒸発器に貯留された前記液相冷媒及び前記凝縮器に貯留された前記液相冷媒の少なくとも1つが前記第一軸受に供給される、
     請求項12に記載の冷凍サイクル装置。
    The evaporator stores a liquid phase refrigerant therein,
    The condenser stores the liquid phase refrigerant therein,
    At least one of the liquid-phase refrigerant stored in the evaporator and the liquid-phase refrigerant stored in the condenser is supplied to the first bearing,
    The refrigeration cycle apparatus according to claim 12.
  14.  回転軸に固定され、第一吸入口を有する第一インペラと、
     前記回転軸に固定され、前記第一インペラと同じ方向に開口している第二インペラと、
     前記第一インペラと前記第二インペラとの間に配置された第一軸受けと、
     前記第一インペラと前記第二インペラとを連結し、前記第一軸受けにより保持される第一流路と、
     前記第二インペラに接続された第二流路と、を備えた、ターボ圧縮機の圧縮方法であって、
     前記第一インペラにより、前記第一インペラの第一吸入口から作動流体を吸引し、前記作動流体を圧縮し、前記第一流路に前記作動流体を吐出し、
     前記作動流体の吐出による前記第一流路のずれを前記第一軸受けで保持することで抑制し、
     前記第二インペラにより、前記第一流路から吐出された作動流体を第二インペラで吸引し、前記作動流体を圧縮して、第二流路に前記作動流体を吐出する、
     作動流体の圧縮方法。
    A first impeller fixed to the rotating shaft and having a first suction port;
    A second impeller fixed to the rotating shaft and opening in the same direction as the first impeller,
    A first bearing arranged between the first impeller and the second impeller,
    A first flow path that connects the first impeller and the second impeller, and is held by the first bearing,
    A second flow path connected to the second impeller, comprising: a compression method of a turbo compressor,
    The first impeller sucks a working fluid from the first suction port of the first impeller, compresses the working fluid, and discharges the working fluid to the first flow path,
    The displacement of the first flow path due to the discharge of the working fluid is suppressed by being held by the first bearing,
    The second impeller sucks the working fluid discharged from the first flow path by the second impeller, compresses the working fluid, and discharges the working fluid to the second flow path.
    Working fluid compression method.
PCT/JP2019/035115 2018-12-20 2019-09-06 Turbo compressor and refrigeration cycle device WO2020129326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018238013A JP2022028991A (en) 2018-12-20 2018-12-20 Turbo-compressor and refrigeration cycle device
JP2018-238013 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129326A1 true WO2020129326A1 (en) 2020-06-25

Family

ID=71100698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035115 WO2020129326A1 (en) 2018-12-20 2019-09-06 Turbo compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2022028991A (en)
WO (1) WO2020129326A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3923078Y1 (en) * 1962-01-26 1964-08-11
JPS62176496U (en) * 1986-04-30 1987-11-09
JPH1089283A (en) * 1996-09-20 1998-04-07 Hitachi Ltd Multistage pump
JP2007315251A (en) * 2006-05-24 2007-12-06 Matsushita Electric Works Ltd Pump and liquid supply device
US20080199326A1 (en) * 2007-02-21 2008-08-21 Honeywell International Inc. Two-stage vapor cycle compressor
US20180195520A1 (en) * 2017-01-11 2018-07-12 Lg Electronics Inc. Turbo compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3923078Y1 (en) * 1962-01-26 1964-08-11
JPS62176496U (en) * 1986-04-30 1987-11-09
JPH1089283A (en) * 1996-09-20 1998-04-07 Hitachi Ltd Multistage pump
JP2007315251A (en) * 2006-05-24 2007-12-06 Matsushita Electric Works Ltd Pump and liquid supply device
US20080199326A1 (en) * 2007-02-21 2008-08-21 Honeywell International Inc. Two-stage vapor cycle compressor
US20180195520A1 (en) * 2017-01-11 2018-07-12 Lg Electronics Inc. Turbo compressor

Also Published As

Publication number Publication date
JP2022028991A (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP3085531B2 (en) Motor cooling structure of turbo compressor
JP4860759B2 (en) Apparatus and method for cooling a compressor motor
CN106968984B (en) Turbine engine
JPH11230098A (en) Turbo compressor
CN111295520B (en) Centrifugal compressor with sealed bearing
US8763425B2 (en) Turbo compressor with multiple stages of compression devices
JP2007177695A (en) Turbo compressor
JP2002005089A (en) Turbo-compressor and refrigeration equipment provided with the same
US11698074B2 (en) Turbo compressor and turbo chiller including the same
EP3458781B1 (en) Turbo economizer used in chiller system
JPWO2014196465A1 (en) Seal mechanism and turbo refrigerator
JP2020159294A (en) Turbo compressor and refrigeration cycle device
CN113530855A (en) Compressor and cooling device comprising same
WO2020129326A1 (en) Turbo compressor and refrigeration cycle device
KR102113036B1 (en) A turbo compressor and a turbo chiller including the same
US10234175B2 (en) Turbo refrigerator
JP2014173499A (en) Centrifugal compressor and refrigerator with centrifugal compressor
JP2020193587A (en) Dynamic compressor, refrigeration cycle device, and method for operating dynamic compressor
JP2019211170A (en) Refrigeration cycle device
JP6123889B2 (en) Turbo refrigerator
WO2020241162A1 (en) Dynamic compressor and refrigeration cycle device
JP2023013514A (en) Turbo compressor and freezer
JP2012154204A (en) Centrifugal compressor
JP2021110503A (en) Refrigeration cycle device
JP2021173486A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP