JPH0219694A - Oil-free vacuum pump - Google Patents

Oil-free vacuum pump

Info

Publication number
JPH0219694A
JPH0219694A JP63170156A JP17015688A JPH0219694A JP H0219694 A JPH0219694 A JP H0219694A JP 63170156 A JP63170156 A JP 63170156A JP 17015688 A JP17015688 A JP 17015688A JP H0219694 A JPH0219694 A JP H0219694A
Authority
JP
Japan
Prior art keywords
rotor
pump
rotating shaft
disk
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170156A
Other languages
Japanese (ja)
Other versions
JPH0786357B2 (en
Inventor
Yasushi Furuya
泰 古谷
Yoshihide Fusayasu
房安 恵英
Keiji Yokoi
横井 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP63170156A priority Critical patent/JPH0786357B2/en
Publication of JPH0219694A publication Critical patent/JPH0219694A/en
Publication of JPH0786357B2 publication Critical patent/JPH0786357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • F05D2240/61Hollow

Abstract

PURPOSE:To improve the pumping effect and to achieve high vacuum by supporting the opposite ends of a rotary shaft on radial magnetic bearings and supporting the section between the rotor of a motor and the final stage pump of a multi-stage volute pump on a thrust magnetic bearing. CONSTITUTION:Viscous drag pump rotors 4, 4a, volute pump rotors 5a-5d of pumps I, II and the rotor of a motor 6 are formed integrally with a rotary shaft 1. The opposite ends of the rotary shaft 1 are supported by a magnetic radial bearing 2 while the section between the motor rotor 6 and the final sage rotor 5d of a multi-stage volute pump is supported by a magnetic thrust bearing 3. By such arrangement, the micro gap is reduced sufficiently to improve the pumping effect thus achieving high vacuum through a single unit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多数の放射状翼を有する複数のロータと該ロ
ータの放射状翼を囲んで流体流路を形成するケーシング
とを設けた多段渦流型ポンプを排気側に備え、該多段渦
流型ポンプの上流側に前記ロータと同一速度で回転する
複数の円板と該円板に対向する流路溝を形成した静止円
板とを組合せ、または、前記ロータと同一速度で回転す
る流路溝付きの複数の円板と該流路溝付き円板に対向す
る静止円板とを組合せた多段粘性ドラーグボンプを備え
、10’Torr以下の真空度が単体で得られるオイル
フリー型真空ポンプに閤する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a multi-stage vortex flow type rotor equipped with a plurality of rotors having a large number of radial blades and a casing surrounding the radial blades of the rotor to form a fluid flow path. A pump is provided on the exhaust side, and a plurality of discs rotating at the same speed as the rotor are provided on the upstream side of the multistage vortex pump, and a stationary disc with a flow groove formed opposite to the discs is combined, or It is equipped with a multi-stage viscous drag pump that combines a plurality of discs with flow passage grooves that rotate at the same speed as the rotor and a stationary disc facing the discs with flow passage grooves, and has a vacuum degree of 10'Torr or less as a single unit. Apply to the oil-free vacuum pump obtained.

[従来の技術] 多数の放射状翼を有するロータと該ロータの放射状翼を
囲んで流体通路を形成するケーシングとを備えた渦流型
圧縮機は、1段当りの圧縮比が大きく、しかも一般の容
積型圧縮機とは異なり、特に流体シールを必要としない
非接触型の圧縮ataのため、公知のようにオイルフリ
ー型の圧縮機、または、真空ポンプとして利用されてい
る。当然、該渦流型真空ポンプを開数段設ければ、より
高い真空度が得られるポンプとなり得るが、昇圧の原理
は容積型と異なるため、ITorr以下の圧力では1段
当りの圧縮比が低下し、それ以上の真空度を得るのは困
難である。
[Prior Art] A vortex compressor equipped with a rotor having a large number of radial blades and a casing surrounding the radial blades of the rotor to form a fluid passage has a high compression ratio per stage, and has a typical volume. Unlike a type compressor, a non-contact type compressor does not particularly require a fluid seal, so it is used as a well-known oil-free type compressor or vacuum pump. Naturally, if the vortex type vacuum pump is provided with several stages, it is possible to obtain a higher degree of vacuum, but since the principle of pressure increase is different from that of the positive displacement type, the compression ratio per stage decreases at pressures below ITorr. However, it is difficult to obtain a higher degree of vacuum.

他方、回転する円板と該円板に対向する流路溝を形成し
た静止円板とを組合せた粘性ドラーグポンプは、ITo
rr以下の圧力範囲ならば1段当りの圧力比は大きくな
り、これを複数段組合せて排圧がITorr付近の真空
ポンプに適用すれば、10’Torr以下の高真空度が
容易に得られるのは公知の事実である。
On the other hand, a viscous drag pump that combines a rotating disc and a stationary disc with a flow channel facing the disc is ITo
If the pressure range is below rr, the pressure ratio per stage will be large, and if this is combined with multiple stages and applied to a vacuum pump with an exhaust pressure near ITorr, a high degree of vacuum below 10'Torr can be easily obtained. is a known fact.

[発明が解決しようとする課題] 上記従来の渦流型真空ポンプにおいては、運転圧力の高
い段はど圧縮による発熱量が大きく、ロータの温度−L
昇値も窩い、当然、多段渦流型真空ポンプでは、排圧が
大気圧となる最終段ポンプの17一タ温度が最も高く、
上流段のポンプはど温度が低い。回転軸の温度は、軸中
央に位置する多段渦流型真空ポンプの晟終段の位置が最
も高く両軸端に近づく程低くなるような分布となってい
る。
[Problems to be Solved by the Invention] In the conventional eddy current vacuum pump described above, the stage with high operating pressure generates a large amount of heat due to compression, and the rotor temperature -L
The rise value is also low, and of course, in a multi-stage vortex vacuum pump, the final stage pump, where the exhaust pressure is atmospheric pressure, has the highest temperature of 17.
The temperature of the upstream pump is low. The temperature of the rotating shaft is distributed such that it is highest at the final stage of the multi-stage vortex vacuum pump located at the center of the shaft, and decreases as it approaches both ends of the shaft.

渦流型真空ポンプの性能は、複数の翼を有する円板状ロ
ータと該円板状ロータと対向するケーシング間の微小隙
間が小さいほど良い。しかし、多段で構成する渦流型真
空ポンプでは、前記微小隙間は定常運転時に発生ずる前
記熱膨脹によるロータ軸の伸びの影響を受け、また、粘
性ドラーグ型真空ポンプにおいても、回転円板と静止円
板との間の微小隙間は上記の影響を受けて充分に小さく
することができず、従って、ポンプ効果が低かった。
The performance of the vortex vacuum pump is better as the minute gap between the disc-shaped rotor having a plurality of blades and the casing facing the disc-shaped rotor is small. However, in a multi-stage eddy current vacuum pump, the minute gap is affected by the elongation of the rotor shaft due to the thermal expansion that occurs during steady operation, and even in a viscous drag type vacuum pump, the small gap is affected by the elongation of the rotor shaft due to the thermal expansion that occurs during steady operation. Due to the above-mentioned influence, the small gap between the pump and the pump could not be made sufficiently small, and therefore the pumping effect was low.

本発明は、圧WI発熱による影響を抑えてポンプ効果を
向上し、単体で排圧を大気圧とし10”rorr以下の
真空度が得られるオイルフリー型真空ポンプを提供する
こことを目的としている。
It is an object of the present invention to provide an oil-free vacuum pump that suppresses the influence of pressure WI heat generation, improves the pumping effect, and that allows exhaust pressure to be atmospheric pressure and obtain a degree of vacuum of 10" rorr or less. .

[課題を解決するための手段] 本発明によれば、多数の放射状翼を有する複数のロータ
と該ロータの放射状翼を囲んで流体流路を形成するケー
シングとを設けた多段渦流型ポンプを排気側に備え、該
多段渦流型ポンプの上流側に前記ロータと同一速度で回
転する複数の円板と該円板に対向する流路溝を形成した
静止円板とを組合せ、または、前記ロータと同一速度で
回転する流路溝付きの複数の円板と該流路溝付き円板に
対向する静止円板とを組合せた多段粘性ドラーグポンプ
を備えた真空ポンプにおいて、前記ロータとこれを駆動
する電動機用ロータ軸とを1体の回転軸に形成し、該回
転軸の両端をラジアル磁気軸受で支持し、前記電動機ロ
ータと前記多段渦流型ポンプの最終段ポンプとの間のス
ラスト磁気軸受で支持している。
[Means for Solving the Problems] According to the present invention, a multi-stage vortex pump is provided with a plurality of rotors having a large number of radial blades and a casing surrounding the radial blades of the rotor to form a fluid flow path. A combination of a plurality of discs rotating at the same speed as the rotor and a stationary disc with flow grooves facing the discs is provided on the upstream side of the multistage vortex pump, or the rotor and In a vacuum pump equipped with a multi-stage viscous drag pump that combines a plurality of disks with flow path grooves rotating at the same speed and a stationary disk facing the disks with flow path grooves, the rotor and the same are driven. A rotor shaft for an electric motor is formed into a single rotating shaft, both ends of the rotating shaft are supported by radial magnetic bearings, and supported by a thrust magnetic bearing between the electric motor rotor and a final stage pump of the multistage eddy current pump. are doing.

ここで、前記回転軸を中空に形成して前記電動機ロータ
側から液体供給用の導管を該回転軸と非接触状態に設け
、該導管で供給する液体により該回転軸を冷却する冷却
手段を設けているのが好ましい。
Here, the rotary shaft is formed hollow, a conduit for supplying liquid from the motor rotor side is provided in a non-contact state with the rotary shaft, and a cooling means is provided for cooling the rotary shaft with the liquid supplied through the conduit. It is preferable that

[作用] 」二記のように構成されたオイルフリー型真空ボ〉・プ
において、スラスト磁気軸受は回転軸の軸方向変位の基
準位置となり、回転軸の熱膨脹による変位を相対的に小
さくする。
[Function] In the oil-free vacuum tube configured as described in Section 2, the thrust magnetic bearing serves as a reference position for the axial displacement of the rotating shaft, and relatively reduces the displacement of the rotating shaft due to thermal expansion.

また、冷却手段を設けた場合には、液体は回転軸を冷却
し、回転軸の熱膨脹による絶対的変位をさらに小さくす
ることができる。
Furthermore, when a cooling means is provided, the liquid cools the rotating shaft, and the absolute displacement of the rotating shaft due to thermal expansion can be further reduced.

従って、渦流型ポンプのロータとケーシングとの間およ
びドラーグボンプの回転円板と静止円板との間の隙間を
充分小さくとっても、非接触で運転可能となり、ポンプ
効果を向上させることができる。
Therefore, even if the gaps between the rotor and the casing of the vortex pump and between the rotating disk and the stationary disk of the drag pump are made sufficiently small, contactless operation is possible and the pumping effect can be improved.

[実施例コ 以下図面を参照して本発明の詳細な説明する。[Example code] The present invention will be described in detail below with reference to the drawings.

第1図において、ポンプ吸込口38とポンプ吐出口39
とが形成された全体を符号Aで示すハウジング内には、
ポンプ吸込口38側から全体を符号Iで示す多段粘性ド
ラーグポンプと、全体を符号■で示す多段渦流型ポンプ
とが設けられている。
In FIG. 1, the pump suction port 38 and the pump discharge port 39
Inside the housing, the whole of which is designated by the symbol A, is formed with a
From the pump suction port 38 side, there are provided a multi-stage viscous drag pump, which is generally indicated by the symbol I, and a multi-stage vortex pump, which is generally indicated by the symbol ■.

これらポンプ■、■は、図示の例ではそれぞれ4段に構
成されているが、この構成はロータの回転速度によって
変わるものであり、図示に限定されるものではない。
In the illustrated example, these pumps (1) and (2) are each configured in four stages, but this configuration changes depending on the rotational speed of the rotor and is not limited to what is illustrated.

それら各ポンプ1.■の粘性ドラーグボンプロータ4.
4a、渦流型ポンプロータ5a、5b、5c、5d(以
下総称する場合は符号5を用いる)および電動機ロータ
6は回転軸1と一体に形成されている。
Each of those pumps1. ■ Viscous dragbon rotor 4.
4a, eddy current pump rotors 5a, 5b, 5c, and 5d (hereinafter, reference numeral 5 will be used when collectively referring to them), and an electric motor rotor 6 are formed integrally with the rotating shaft 1.

この回転軸1の両端部とハウジングAとの間には、ラジ
アル磁気軸受2.2aが設けられ、また、最終段のロー
タ5dと電動機ロータ6との間とハウジングAとの間に
は、スラスト磁気軸受3およびスラストカラー3aが設
けられている。
A radial magnetic bearing 2.2a is provided between both ends of the rotating shaft 1 and the housing A, and a thrust bearing is provided between the final stage rotor 5d and the motor rotor 6 and the housing A. A magnetic bearing 3 and a thrust collar 3a are provided.

また、回転軸1は中空軸に形成され、内部には導管7が
回転軸1と非接触状態に設けられている。
Further, the rotating shaft 1 is formed as a hollow shaft, and a conduit 7 is provided inside the rotating shaft 1 in a non-contact state.

この導PFニアは回転軸冷却液人口51を介して図示し
ない冷却液ボ°ンプに接続され、回転軸冷却液出口52
を介して図示しない冷却液タンクに接続され、これら冷
却液ポンプ、入口51、導管7、出口52、タンクおよ
びそれらを接続する回路により冷却手段が構成されてい
る。なお、図中の符号8は1!動機ステータ、53はケ
ーシング冷却水通路、54は電9JJ機冷却水通路であ
る。
This lead PF near is connected to a coolant pump (not shown) via a rotating shaft coolant port 51, and is connected to a coolant pump (not shown) through a rotating shaft coolant outlet 52.
The coolant pump, the inlet 51, the conduit 7, the outlet 52, the tank, and the circuit connecting them constitute a cooling means. In addition, the code 8 in the figure is 1! The motive stator, 53 is a casing cooling water passage, and 54 is an electric 9JJ machine cooling water passage.

前記ドラーグボンブロータ4.4aは、それぞれ両面と
も微小隙間20.20aを設けて粘性ドラーグボンプケ
ーシング10.10aと対向し、1つのロータで2段の
ポンプが形成されている。
The drag bomb rotor 4.4a faces the viscous drag bomb casing 10.10a with minute gaps 20.20a provided on both sides, and a two-stage pump is formed with one rotor.

これらロータ4.4aは平面状の回転円板に形成され、
ケーシング10.10aには第2図に示すように、複数
の流路翼30で囲まれた流路溝31が形成されている。
These rotors 4.4a are formed into planar rotating disks,
As shown in FIG. 2, a channel groove 31 surrounded by a plurality of channel vanes 30 is formed in the casing 10.10a.

従って、ロータ4.4aが矢r1a方向に回転すると、
流体は粘性力によって流路溝31内を半径方向内方から
外に向って昇圧しながら流れ、逆に矢印す方向に回転す
ると、前述と逆方向に流れ、かつ流れ方向に昇圧する。
Therefore, when the rotor 4.4a rotates in the direction of arrow r1a,
The fluid flows in the channel groove 31 from the inside in the radial direction to the outside while increasing the pressure due to viscous force, and when the fluid rotates in the direction indicated by the arrow in the opposite direction, it flows in the opposite direction to the above-mentioned direction and the pressure increases in the flow direction.

これは粘性ドラーグボンブ作用として公知であり、前記
と同様な流路溝31をロータ4.4a側に形成しても、
または流路溝をロータ側に形成し平面状円板をケーシン
グ側とし、次いで、流路溝をケーシング側に形成し平面
状円板をロータ側とする如く交互に形成しても、粘性ド
ラーグボンブとしての作用は同じである6 他方、渦流ポンプロータ5には第3図に示すように多数
の放射状翼32が形成されている。このロータ5は、放
射状翼32を囲んで流体流路35を形成した渦流型ポン
プケーシング12a、12b、12c、12dと微小隙
間22.22aを設けて対向し、1つのロータ5で1段
の渦流型ポンプが形成されている。
This is known as a viscous drag bomb effect, and even if the same flow path groove 31 as described above is formed on the rotor 4.4a side,
Alternatively, the flow grooves may be formed on the rotor side and the planar disk on the casing side, and then the flow grooves may be formed on the casing side and the planar disk on the rotor side. 6. On the other hand, the vortex pump rotor 5 is formed with a large number of radial vanes 32, as shown in FIG. The rotor 5 faces the vortex type pump casings 12a, 12b, 12c, and 12d, which surround the radial blades 32 and form a fluid flow path 35, with a minute gap 22. A type pump is formed.

第4図において、流体通路35はストリッパ33により
低圧(吸込)側と高圧(吐出)側とに分けられ、ロータ
5aが矢印C方向に回転すると、流体は昇圧しながら流
れ、吐出ポート36に導かれる。吐出ポート36は次段
のケーシング12bの吸込ポートになって流体は順次昇
圧され、最終段からポンプのケーシング12dに形成さ
れたポンプ吐出口39から大気に放出される。
In FIG. 4, the fluid passage 35 is divided into a low pressure (suction) side and a high pressure (discharge) side by a stripper 33, and when the rotor 5a rotates in the direction of arrow C, the fluid flows while increasing its pressure and is guided to the discharge port 36. It will be destroyed. The discharge port 36 becomes a suction port of the casing 12b of the next stage, the pressure of the fluid is increased sequentially, and the fluid is discharged from the final stage to the atmosphere from the pump discharge port 39 formed in the casing 12d of the pump.

[発明の効果〕 本発明は、以上説明したように構成されているので、軸
方向変位の基準位置を軸の中央に設定することにより圧
w4発熱による回転軸の相対変位をスラスト磁気軸受で
抑えて小さくし、回転軸の絶対変位を相対的に小さくし
、渦流型ポンプのロータとケーシングとの間および粘性
ドラーグボンプの回転円板と静止円板との間の微小隙間
を充分に小さくしてポンプ効果を向上し、排気を大気圧
とし、単体で10’Torr以下の高高度を得ることが
できる。
[Effects of the Invention] Since the present invention is configured as described above, by setting the reference position for axial displacement at the center of the shaft, the relative displacement of the rotating shaft due to pressure w4 heat generation is suppressed by the thrust magnetic bearing. The absolute displacement of the rotating shaft is made relatively small, and the minute gaps between the rotor and casing of a vortex pump and between the rotating disk and the stationary disk of a viscous drag pump are made sufficiently small. The effect is improved, the exhaust is set to atmospheric pressure, and a high altitude of 10'Torr or less can be achieved by itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側断面図、第2図は粘
性ドラーグボンプケーシングの平面図、第3図は渦流型
ポンプロータの平面図、第4図は流体通路を示す渦流型
ポンプケーシングの断面図である。 ■・・・多段粘性ドラーグポンプ  ■・・・多段渦流
型ポンプ  1・・・回転軸  2.2a・・・ラジア
ル磁気軸受  3・・・スラスト磁気軸受  4.4a
・・・粘性ドラーグボンプロータ  5a、5b、5C
15d−−・渦流型ポンプロータ  6・・・電動機ロ
ータ  7・・・導管  10.10a・・・粘性ドラ
ーグボンブケーシング  12a、12b、12c、1
2d・・・渦流型ポンプケーシング  20.20a、
22.22a・・・微小隙間  30・・・流路翼  
31・・・流路溝  32・・・放射状翼  35・・
・流体通路 特許出願人   株式会社荏原総合研究所第 図 第 図 第 1 図 ”JQ
Fig. 1 is a side sectional view showing an embodiment of the present invention, Fig. 2 is a plan view of a viscous drag pump casing, Fig. 3 is a plan view of a vortex type pump rotor, and Fig. 4 is a vortex type pump rotor showing a fluid passage. FIG. 3 is a cross-sectional view of the pump casing. ■... Multi-stage viscous drag pump ■... Multi-stage vortex pump 1... Rotating shaft 2.2a... Radial magnetic bearing 3... Thrust magnetic bearing 4.4a
... Viscous dragbon rotor 5a, 5b, 5C
15d--Eddy current pump rotor 6... Electric motor rotor 7... Conduit 10.10a... Viscous drag bomb casing 12a, 12b, 12c, 1
2d... Eddy current pump casing 20.20a,
22.22a...Minute gap 30...Flow path blade
31... Channel groove 32... Radial blade 35...
・Fluid passage patent applicant Ebara Research Institute Co., Ltd. Figure 1 Figure 1 "JQ"

Claims (2)

【特許請求の範囲】[Claims] (1)多数の放射状翼を有する複数のロータと該ロータ
の放射状翼を囲んで流体流路を形成するケーシングとを
設けた多段渦流型ポンプを排気側に備え、該多段渦流型
ポンプの上流側に前記ロータと同一速度で回転する複数
の円板と該円板に対向する流路溝を形成した静止円板と
を組合せ、または、前記ロータと同一速度で回転する流
路溝付きの複数の円板と該流路溝付き円板に対向する静
止円板とを組合せた多段粘性ドラーグポンプを備えた真
空ポンプにおいて、前記ロータとこれを駆動する電動機
用ロータ軸とを1体の回転軸に形成し、該回転軸の両端
をラジアル磁気軸受で支持し、前記電動機ロータと前記
多段渦流型ポンプの最終段ポンプとの間をスラスト磁気
軸受で支持することを特徴とするオイルフリー型真空ポ
ンプ。
(1) A multistage vortex pump equipped with a plurality of rotors having a large number of radial blades and a casing surrounding the radial blades of the rotor to form a fluid flow path is provided on the exhaust side, and the upstream side of the multistage vortex pump A combination of a plurality of disks rotating at the same speed as the rotor and a stationary disk with flow grooves formed opposite to the disk, or a plurality of disks with flow grooves rotating at the same speed as the rotor. In a vacuum pump equipped with a multistage viscous drag pump that combines a disk and a stationary disk facing the grooved disk, the rotor and a rotor shaft for an electric motor that drives the rotor are combined into one rotating shaft. 1. An oil-free type vacuum pump, characterized in that both ends of the rotating shaft are supported by radial magnetic bearings, and a thrust magnetic bearing is supported between the electric motor rotor and the final stage pump of the multistage eddy current pump.
(2)前記回転軸を中空に形成して前記電動機ロータ側
から液体供給用の導管を該回転軸と非接触状態に設け、
該導管で供給する液体により該回転軸を冷却する冷却手
段を設けた請求項(1)記載のオイルフリー型真空ポン
プ。
(2) forming the rotating shaft hollow and providing a conduit for supplying liquid from the motor rotor side in a non-contact state with the rotating shaft;
2. The oil-free vacuum pump according to claim 1, further comprising a cooling means for cooling the rotating shaft with the liquid supplied through the conduit.
JP63170156A 1988-07-08 1988-07-08 Oil-free vacuum pump Expired - Lifetime JPH0786357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170156A JPH0786357B2 (en) 1988-07-08 1988-07-08 Oil-free vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170156A JPH0786357B2 (en) 1988-07-08 1988-07-08 Oil-free vacuum pump

Publications (2)

Publication Number Publication Date
JPH0219694A true JPH0219694A (en) 1990-01-23
JPH0786357B2 JPH0786357B2 (en) 1995-09-20

Family

ID=15899721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170156A Expired - Lifetime JPH0786357B2 (en) 1988-07-08 1988-07-08 Oil-free vacuum pump

Country Status (1)

Country Link
JP (1) JPH0786357B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142594U (en) * 1988-03-24 1989-09-29
JPH0378996U (en) * 1989-12-05 1991-08-12
JPH04121494U (en) * 1991-04-18 1992-10-29 三菱重工業株式会社 Closed rotary fluid machine
US5445494A (en) * 1993-11-08 1995-08-29 Bw/Ip International, Inc. Multi-stage centrifugal pump with canned magnetic bearing
GB2453313A (en) * 2007-08-04 2009-04-08 Waukesha Bearings Ltd Compressor bearing arrangement
US7645126B2 (en) 2003-07-10 2010-01-12 Ebara Corporation Vacuum pump and semiconductor manufacturing apparatus
US7717684B2 (en) 2003-08-21 2010-05-18 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
CN105298864A (en) * 2015-11-23 2016-02-03 江苏新腾宇流体设备制造有限公司 Zero-abrasion magnetic pump
EP3910201A4 (en) * 2019-01-10 2022-10-05 Edwards Japan Limited Vacuum pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308773B2 (en) * 2020-01-23 2023-07-14 エドワーズ株式会社 Rotating device and vacuum pump

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142594U (en) * 1988-03-24 1989-09-29
JPH0378996U (en) * 1989-12-05 1991-08-12
JPH04121494U (en) * 1991-04-18 1992-10-29 三菱重工業株式会社 Closed rotary fluid machine
US5445494A (en) * 1993-11-08 1995-08-29 Bw/Ip International, Inc. Multi-stage centrifugal pump with canned magnetic bearing
US7645126B2 (en) 2003-07-10 2010-01-12 Ebara Corporation Vacuum pump and semiconductor manufacturing apparatus
US7717684B2 (en) 2003-08-21 2010-05-18 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
US8066495B2 (en) 2003-08-21 2011-11-29 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
GB2453313A (en) * 2007-08-04 2009-04-08 Waukesha Bearings Ltd Compressor bearing arrangement
GB2453313B (en) * 2007-08-04 2012-06-27 Waukesha Bearings Ltd Motor compressor
CN105298864A (en) * 2015-11-23 2016-02-03 江苏新腾宇流体设备制造有限公司 Zero-abrasion magnetic pump
EP3910201A4 (en) * 2019-01-10 2022-10-05 Edwards Japan Limited Vacuum pump
US11808272B2 (en) 2019-01-10 2023-11-07 Edwards Japan Limited Vacuum pump including levitated magnetic bearing

Also Published As

Publication number Publication date
JPH0786357B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5158440A (en) Integrated centrifugal pump and motor
US6422838B1 (en) Two-stage, permanent-magnet, integral disk-motor pump
US6280157B1 (en) Sealless integral-motor pump with regenerative impeller disk
JP4395210B2 (en) Improvement of vacuum pump
JPS62255597A (en) Vacuum pump
CN101268284A (en) Impeller for a centrifugal compressor
JP2002515568A (en) Friction vacuum pump with stator and rotor
JPH0219694A (en) Oil-free vacuum pump
JP2000283085A (en) Vacuum pump with inverted motor
EP0551435B1 (en) Integrated centrifugal pump and motor
JP4050811B2 (en) Double flow type gas friction pump
US5451147A (en) Turbo vacuum pump
JP4576746B2 (en) Turbo rotating equipment
JP2757922B2 (en) Centrifugal compressor
JPS61226596A (en) Turbo particle pump
JPH02264196A (en) Turbine vacuum pump
GB2366333A (en) Multi-stage/regenerative centrifugal compressor
JP7351784B2 (en) centrifugal rotating machine
JP2680156B2 (en) Vacuum pump
KR100405984B1 (en) Diffuser mounting structure of Turbo compressor
KR100320207B1 (en) Turbo compressor
KR20010010873A (en) Axial sealing structure for turbo compressor
JPH01170795A (en) Vortex turbo-machinery
JP2022151994A (en) Rotary machine
KR100390489B1 (en) Structure for reducing gas leakage of turbo compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13