JPS63154891A - Theread groove type vacuum pump - Google Patents

Theread groove type vacuum pump

Info

Publication number
JPS63154891A
JPS63154891A JP61302089A JP30208986A JPS63154891A JP S63154891 A JPS63154891 A JP S63154891A JP 61302089 A JP61302089 A JP 61302089A JP 30208986 A JP30208986 A JP 30208986A JP S63154891 A JPS63154891 A JP S63154891A
Authority
JP
Japan
Prior art keywords
rotor
gap
stator
vacuum pump
bearing box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61302089A
Other languages
Japanese (ja)
Inventor
Masashi Iguchi
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP61302089A priority Critical patent/JPS63154891A/en
Publication of JPS63154891A publication Critical patent/JPS63154891A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To increase the discharging speed over wide range from low vacuum to high vacuum, by tapering the inner circumferential face of stator and the outer circumferential face of rotor with same gradient and enabling control of motion in the axial direction for maintaining the gap constant by means of a sensor signal. CONSTITUTION:When a rotor 3 is rotated with high speed by means of a motor 14 and the gap 8 between a tapered inner circumferential face of a stator 2 decreases because of centrifugal force or thermal expansion, a sensor 10 detects the condition and a servo motor 11 is driven by a control signal fed from a controller 12 to move a bearing box 6b downward through a thread coupling 13 so as to move the rotor 3 through an upper bearing box 6a which is moved downward by means of a spring 7a corresponding to the downward motion of the bearing box 6b and a shaft 9 thus maintaining the gap 8 constant. Consequently, a constant gap 8 is maintained at all times thereby the rotor and the stator do not contact even if said gap is very small and a high discharging speed can be obtained over a wide range from low vacuum to high vacuum.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明はIC及び半導体の製造等における薄膜形成の使
用に好適なねじ溝式真空ポンプの関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a thread groove type vacuum pump suitable for use in forming thin films in the manufacture of ICs and semiconductors.

(2)従来の技術 従来この種のねじ溝式真空ポンプとして、固定子の内周
面又は回転子の外周面のいずれか一方あるいは両方にね
じ溝を有し、僅小の間隙をもって回転子が固定子内で回
転する式のものにおいて、前記固定子の内周面及び回転
子の外周面のそれぞれが軸線方向の全長にわたって同一
径の円筒面に形成されているのが一般的である。
(2) Prior Art Conventionally, this type of thread groove type vacuum pump has thread grooves on either or both of the inner peripheral surface of the stator or the outer peripheral surface of the rotor, and the rotor can be rotated with a small gap. In a type that rotates within a stator, the inner peripheral surface of the stator and the outer peripheral surface of the rotor are generally each formed into a cylindrical surface having the same diameter over the entire length in the axial direction.

(3)発明が解決しようとする問題点 ねじ溝式真空ポンプにおいては、その性能が固定子と回
転子との間隙に大きく依存し、間隙が小さい程排気速度
、及び耐背圧性能が向上することは知られている。とこ
ろが従来のねじ溝式真空ポンプによれば固定子の内周面
及び回転子の外周面のそれぞれが軸線方向の全長にわた
って同一径の円筒面に形成されているので、回転子外径
と回転軸との同軸度の工作精度上の点と、回転中におけ
る回転子直径の膨張との関係から固定子と回転子との間
隙を比較的広くして両者の接触による事故を防止せざる
を得なかった。
(3) Problems to be solved by the invention In thread groove vacuum pumps, the performance largely depends on the gap between the stator and rotor, and the smaller the gap, the better the pumping speed and back pressure resistance. This is known. However, in conventional thread groove type vacuum pumps, the inner circumferential surface of the stator and the outer circumferential surface of the rotor are each formed into a cylindrical surface with the same diameter over the entire length in the axial direction, so the outer diameter of the rotor and the rotation axis are different. Due to the machining accuracy of coaxiality with the stator and the expansion of the rotor diameter during rotation, it is necessary to make the gap between the stator and rotor relatively wide to prevent accidents due to contact between the two. Ta.

しかし、近年IC及び半導体の製造等の薄膜応用工業の
発展にともない、ねじ溝式真空ポンプの性能向上が望ま
れるようになり、特に大きな排気速度で低真空から高真
空まで広い範囲に能力を拡大し、このポンプのみで大気
圧まで圧縮可能な真空ポンプが要望されてきた。
However, in recent years, with the development of thin film application industries such as IC and semiconductor manufacturing, there has been a desire to improve the performance of thread groove vacuum pumps, and the ability has been expanded to a wide range from low vacuum to high vacuum with particularly high pumping speed. However, there has been a demand for a vacuum pump that can compress to atmospheric pressure with just this pump.

ところが高真空から大気圧まで圧縮可能なポンプを得よ
うとすると回転子を小型にしてその回転子直径を小さく
し、回転中の回転子の遠心力及び高温の気体や多量の気
体の圧縮排気により生ずる熱による膨張の影響を小さく
して間隙を小さく確保せざるを得す、その結果排気速度
が微小となってしまう欠点があった。
However, in order to obtain a pump that can be compressed from high vacuum to atmospheric pressure, the rotor must be made smaller and its rotor diameter smaller. It is necessary to ensure a small gap by minimizing the effect of expansion due to the generated heat, which has the disadvantage that the exhaust speed becomes extremely small.

そこで本発明は、回転子の直径を大きくし、大気圧まで
圧縮し得て、且つ大きな排気速度が発生できるようにし
たねじ溝式真空ポンプを提供す・ることを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a thread groove type vacuum pump that has a large rotor diameter, can compress to atmospheric pressure, and can generate a high pumping speed.

(4)問題点を解決するための手段 この目的を達成すべく本発明は固定子の内周面と回転子
の外周面とを同一勾配のテーパー状に形成すると共に該
固定子に前記間隙の変化量を検出するセンサーを設け、
該固定子又は回転子を、該センサーからの検出信号によ
り制御手段を介して前記間隙が一定となるよう軸線方向
に移動制御可能に形成したことを特徴とする。
(4) Means for solving the problem In order to achieve this object, the present invention forms the inner circumferential surface of the stator and the outer circumferential surface of the rotor into a tapered shape with the same slope, and the stator has the above-mentioned gap. A sensor is installed to detect the amount of change.
The invention is characterized in that the stator or rotor is configured to be movable in the axial direction so that the gap becomes constant using a control means based on a detection signal from the sensor.

(5)作用 運転中回転子の回転速度の変動による遠心力の変化や、
高温の気体や多量の気体の圧縮排気により生ずる熱によ
り回転子の膨張や収縮があっても、センサーにより間隙
の変化量を検出し、該センサーからの検出信号に応じて
制御手段を介して回転子又は固定子を軸線方向に移動制
Aして前記間隙を一定の僅小状態に保持し、低真空から
高真空の広い範囲にわたって大きな排気速度が得られる
(5) Changes in centrifugal force due to fluctuations in the rotational speed of the rotor during operation,
Even if the rotor expands or contracts due to the heat generated by compressing and exhausting high-temperature gas or a large amount of gas, a sensor detects the amount of change in the gap, and the rotation is controlled by a control means in accordance with the detection signal from the sensor. By controlling the movement of the child or stator in the axial direction A to maintain the gap in a constant and very small state, a large pumping speed can be obtained over a wide range from low vacuum to high vacuum.

(6)′実 施 例 本発明の1実施例を第1図により説明する。(6)' Implementation example One embodiment of the present invention will be explained with reference to FIG.

(1)はねじ溝真空ポンプのハウジング、(2)は該ハ
ウジング(1)の内周面に固定した固定子、(3)は該
固定子(2)内に設けた回転子を示し、該固定子(2)
の内周面は上すぼまりのテーパー状に形成されていると
共にねじ溝(4)が形成されており、又前記回転子(3
)は高速回転が可能にすべく軽量にして剛性の金属例え
ばアルミニウム合金等からなり外周面を上すぼまりのテ
ーパー状に形成した。ここで前記固定子(2)の内周面
と回転子(3)の外周面は同一勾配に形成されている。
(1) shows the housing of the thread groove vacuum pump, (2) shows the stator fixed to the inner peripheral surface of the housing (1), and (3) shows the rotor installed in the stator (2). Stator (2)
The inner circumferential surface of the rotor (3) is formed into a tapered shape that tapers upward and is provided with a thread groove (4).
) is made of a light and rigid metal, such as an aluminum alloy, to enable high-speed rotation, and its outer peripheral surface is tapered upward. Here, the inner peripheral surface of the stator (2) and the outer peripheral surface of the rotor (3) are formed to have the same slope.

(5)はモータハウジングを示し、該モータハウジング
(5)は略円板部(5a)とその中央部に形成した透孔
(5b)と円筒部(5C)とからなり、該円筒部(5C
)が前記回転子(2)の凹部(2a)内に嵌入するよう
に円板部(5a)の周縁を前記ハウジング(1)及び固
定子(2)の下端面に固定した。そして前記モータハウ
ジング(5)の円筒部(5C)の上端部内周面に上軸受
箱(6a)が上下動自在に嵌入されていると共に透孔(
5b)内に下軸受箱(6b)が上下動自在に嵌入されて
いる。ここで前記上軸受箱(6a)はスプリング(7a
)の弾発力により下方に向かうようになっていると共に
前記下軸受箱(6b)は回転防止用キー(7b)により
回転が規制されている。そして、前記上軸受箱(6a)
と下軸受箱(6b)に軸受(8)(8)を介して軸(9
)を回動自在に支持し、該軸(9)に前記回転子(3)
を、その外周面と前記固定子(2)の内周面との間に微
小な例えば0.1mmの間隙(J)が存するように固定
した。
(5) indicates a motor housing, and the motor housing (5) is composed of a substantially disc portion (5a), a through hole (5b) formed in the center thereof, and a cylindrical portion (5C).
) was fixed to the lower end surfaces of the housing (1) and stator (2) so that the disc part (5a) was fitted into the recess (2a) of the rotor (2). An upper bearing box (6a) is fitted into the inner circumferential surface of the upper end portion of the cylindrical portion (5C) of the motor housing (5) so as to be movable up and down.
A lower bearing box (6b) is fitted into the lower bearing box (6b) so as to be vertically movable. Here, the upper bearing box (6a) has a spring (7a).
), and the rotation of the lower bearing box (6b) is restricted by a rotation prevention key (7b). And the upper bearing box (6a)
and the shaft (9) through the bearings (8) (8) to the lower bearing box (6b).
) is rotatably supported, and the rotor (3) is attached to the shaft (9).
was fixed such that a minute gap (J) of, for example, 0.1 mm existed between its outer peripheral surface and the inner peripheral surface of the stator (2).

(10)は前記固定子(2)に設けられ前記間隙の変位
量を検出する例えばうず電流式のギアツブセンサーから
なるセンサー、(11)は前記モータハウジング(5)
の下面に設けられているサーボモータ、(12)は該セ
ンサー(’10)からの検出信号により前記サーボモー
タ(11)に制御信号を発生する制御手段であるコント
ローラを示し、該コントローラ(12)は後述するよう
な機能を有する。
(10) is a sensor that is provided on the stator (2) and detects the amount of displacement of the gap, for example, an eddy current type gear knob sensor; (11) is a sensor that is installed on the motor housing (5);
The servo motor (12) is a controller that is a control means for generating a control signal to the servo motor (11) based on a detection signal from the sensor ('10), and the controller (12) is provided on the lower surface of the servo motor. has the functions described below.

又前記サーボモータ(11)はねじカップリング(13
)を介して前記下軸受箱(6b)の下面中央の螺杆(6
C)に連結されている。尚(14)は前記モータハウジ
ング(4)内に設けられ前記回転子(3)を高速回転す
るモータ、(14a)はそのステータ、(14b)はロ
ータ、(15)は吸気口、(16)は排気口を示す。
Further, the servo motor (11) is connected to a screw coupling (13).
) at the center of the lower surface of the lower bearing box (6b).
C). In addition, (14) is a motor provided in the motor housing (4) and rotates the rotor (3) at high speed, (14a) is its stator, (14b) is a rotor, (15) is an intake port, and (16) indicates an exhaust port.

次に前記実施例のねじ溝式真空ポンプの作動について説
明する。
Next, the operation of the thread groove type vacuum pump of the above embodiment will be explained.

モータ(14)の駆動により回転子(3)を静止状態か
ら徐々に回転速度を上げて高速回転し、これに応じて、
該回転子(3)が遠心力や熱により膨張して間隙Cl)
を減小するが、この減小による変化量をセンサー(lO
)により検出して検出信号を発生する。そしてこの検出
信号を受けたコントローラー(12)は前記間隙(δ)
が所定の値例えばO,1mmに戻るように制御信号を発
生し、サーボモータ(11)を回転してねじカップリン
グ(13)を介して下軸受箱(6b)を下動し、これに
応じてスプリング(7a)の弾発により下動する上軸受
箱(6a)と共に軸(9)とこれに固定の回転子(3)
を下動し、間隙(J’)を増大して一定の間隙(g)に
なるようにする、又逆に回転子(3)の回転速度が低下
して間隙(J)が増大するようなときにはコントローラ
(12)からの制御信号によりサーボモータ(13)は
逆回転して下軸受箱(6b)を上動し、これに応じて軸
(9)と共に回転子(3)を上動して間隙(E)を減小
させて一定の間隙(S)となるようにする、このような
制御作用により運転中回転子(3)の回転速度の変動に
よる遠心力や熱により回転子(3)の膨張等があっても
常に一定の間隙(J)が確保されてこの間隙(S)が僅
小であっても回転子(3)と固定子(2)が接触するこ
となく、大きな排気速度が低真空から高真空までの広い
範囲にわたって得られる。
Driven by the motor (14), the rotor (3) is rotated at high speed by gradually increasing the rotation speed from a stationary state, and accordingly,
The rotor (3) expands due to centrifugal force and heat and the gap Cl)
The amount of change due to this reduction is measured by a sensor (lO
) to generate a detection signal. Then, the controller (12) receiving this detection signal detects the gap (δ).
A control signal is generated so that the servo motor (11) is rotated to move the lower bearing box (6b) downward via the screw coupling (13), and the The shaft (9) and the rotor (3) fixed thereto together with the upper bearing box (6a) which moves downward by the spring (7a).
, the gap (J') is increased to a constant gap (g), or conversely, the rotational speed of the rotor (3) is decreased and the gap (J) is increased. Sometimes, the servo motor (13) reversely rotates according to a control signal from the controller (12) to move the lower bearing box (6b) upward, and accordingly moves the rotor (3) upward together with the shaft (9). Due to this control action that reduces the gap (E) to a constant gap (S), the rotor (3) is damaged by centrifugal force and heat due to fluctuations in the rotational speed of the rotor (3) during operation. Even if there is expansion etc., a constant gap (J) is always maintained, and even if this gap (S) is very small, the rotor (3) and stator (2) will not come into contact with each other, and a high exhaust speed can be achieved. can be obtained over a wide range from low vacuum to high vacuum.

ここで、例えば外径200tamのアルミニウム合金製
の回転子(3)を2400Or p mで回転するとそ
の外径は遠心力により0.5mm伸びる。
Here, for example, when the rotor (3) made of aluminum alloy and having an outer diameter of 200 tam is rotated at 2400 Or p m, its outer diameter increases by 0.5 mm due to centrifugal force.

回転子(3)の外周面と固定子(2)の内周面の傾斜面
の勾配を115とすると1回転子(3)を軸方向に下向
きに2.5■移動させれば静止時と同じ間隙となる。
Assuming that the slope of the slope between the outer circumferential surface of the rotor (3) and the inner circumferential surface of the stator (2) is 115, if one rotor (3) is moved 2.5 cm downward in the axial direction, it will be at rest. The gap will be the same.

間隙(Σ)を小とする事はねじ溝式真空ポンプの圧縮性
能のアップに寄与する事は明らかな事である。
It is clear that reducing the gap (Σ) contributes to improving the compression performance of the thread groove vacuum pump.

例えば間隙(S)が0.08mmの時、流量10 To
rrJl /sの窒素ガスをITorrから大気圧(7
60Torr)まで圧縮する為に必要な回転子直径20
0mm、回転数2400Or p mのねじ溝真空ポン
プの軸方向必要長さは300mmであり、同一条件で間
隙(r)だけQ、5+lImにした時の軸方向必要長さ
は1300hmにもなる。
For example, when the gap (S) is 0.08 mm, the flow rate is 10 To
Nitrogen gas at rrJl/s is pumped from ITorr to atmospheric pressure (7
Rotor diameter 20 required to compress to 60Torr)
The required length in the axial direction of a thread groove vacuum pump with a diameter of 0 mm and a rotation speed of 2400 Or p m is 300 mm, and when the gap (r) is set to Q and 5+lIm under the same conditions, the required length in the axial direction becomes 1300 hm.

尚、前記実施例とは異なり、回転子(2)及び回転子(
3)のテーパーを下すぼまり形にしても、又軸方向の可
動性を固定子(2)側にもたせてもよく、又ねじyt(
4)を回転子、(3)の外周あるいは回転子と固定子の
両方に設けてもよく、更にターボ分子ポンプ部とねじ溝
分子ポンプ部とからなる複合分子ポンプの該ねじ溝ポン
プ部に本発明を適用してもよい。
Note that, unlike the above embodiment, the rotor (2) and the rotor (
3) may be tapered downward, or the axial movability may be provided on the stator (2) side, or the screw yt (
4) may be provided on the rotor, the outer periphery of (3), or both the rotor and the stator, and furthermore, it may be provided on the thread groove pump part of a composite molecular pump consisting of a turbo molecular pump part and a thread groove molecular pump part. The invention may be applied.

第2図は他の実施例を示し、この実施例においては、固
定子(2)が下すぼまりのテーパー状に形成されている
と共にハウジング(1)内に移動自在に形成されており
、更に該固定子(2)はその上端面において該ハウジン
グ′(1)との間に皿バネ(17)が介在していると共
に下端面において円板部(5a)との間に断面く字形で
環状のバイメタル(lla)を介在し、該バイメタル(
lla)の屈曲部の内面にヒータ(llb)を介入した
。ここで回転子(3)はモータハウジング(5)に固定
の軸受(8)(8)に支持され上下動しない。かくて、
′回転子(3)の回転により膨張して間隙CS)を減小
すると、この減小をセンサー(10)により検出し、こ
の検出信号を受けたコントローラー(12)はこの検出
信号に応じた電力をヒータ(llb)に供給してバイメ
タル(lla)の屈曲を大にし、かくて固定子(2)は
皿バネ(17)の弾発力により少許下動して間隙(8)
が所定の値例えば0.1mmに戻る。又逆に回転子(3
)の回転速度が低下して間隙i)が増大するようなとき
はコントローラ(12)からヒータ(llb)への電力
供給が減小してバイメタル(11a)の屈曲が小となっ
て固定子(2)を皿バネ(17)の弾発に抗して上動し
1間隙(、i’)が減小して所定の値に戻る。
FIG. 2 shows another embodiment, in which the stator (2) is formed in a tapered shape with a downward concavity and is movably formed in the housing (1), and further The stator (2) has a disc spring (17) interposed between it and the housing '(1) on its upper end surface, and an annular disc spring (17) with a dogleg-shaped cross section on its lower end surface. The bimetal (lla) is interposed between the bimetal (lla)
A heater (llb) was inserted on the inner surface of the bent portion of the lla). Here, the rotor (3) is supported by bearings (8) (8) fixed to the motor housing (5) and does not move up and down. Thus,
'When the rotor (3) expands due to rotation and reduces the gap CS), this reduction is detected by the sensor (10), and the controller (12) that receives this detection signal adjusts the power according to this detection signal. is supplied to the heater (llb) to increase the bending of the bimetal (lla), and the stator (2) is moved slightly downward by the elastic force of the disc spring (17) to close the gap (8).
returns to a predetermined value, for example 0.1 mm. On the other hand, the rotor (3
) decreases and the gap i) increases, the power supply from the controller (12) to the heater (llb) decreases, the bending of the bimetal (11a) decreases, and the stator ( 2) is moved upward against the spring of the disc spring (17), and the gap (, i') decreases by 1 and returns to a predetermined value.

(7)発明の効果 このように本発明によると固定子の内周面と回転子の外
周面とを同一勾配のテーパー状に形成し、該固定子又は
回転子を1間隙の変位量を検出するセンサーからの検出
信号により制御手段を介して前記間隙が一定となる軸線
方向に移動制御可能に形成したので、運転中回転子の回
転の変動による遠心力の変化や、高温の気体や多量の気
体の圧縮排気により生ずる熱による回転子の膨張や収縮
があっても、前記間隙が僅小で一定の状態が保持でき、
従って回転子直径の大型のポンプに形成して低真空から
高真空の広い範囲にわたって大きな排気速度を得ること
ができる効果を有する。
(7) Effects of the Invention According to the present invention, the inner circumferential surface of the stator and the outer circumferential surface of the rotor are formed into a tapered shape with the same slope, and the amount of displacement of the stator or rotor by one gap is detected. Since the gap can be controlled to move in the axial direction using a control means based on a detection signal from a sensor that keeps the gap constant during operation, changes in centrifugal force caused by fluctuations in rotation of the rotor, and changes in high temperature gas or large amounts of gas can be avoided. Even if the rotor expands or contracts due to heat generated by compressing and exhausting gas, the gap is small and can maintain a constant state,
Therefore, by forming a pump with a large rotor diameter, it is possible to obtain a large pumping speed over a wide range from low vacuum to high vacuum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のねじ溝式真空ポンプの1実施例の断面
図、第2図は他の実施例の断面図である。 (2)・・・固定子 (3)・・・回転子 (4)・・・ねじ溝 (10)・・・センサー (12)・・・コントローラ
FIG. 1 is a sectional view of one embodiment of the thread groove type vacuum pump of the present invention, and FIG. 2 is a sectional view of another embodiment. (2)...Stator (3)...Rotor (4)...Thread groove (10)...Sensor (12)...Controller

Claims (1)

【特許請求の範囲】[Claims] 固定子の内周面又は回転子の外周面のいずれか一方ある
いは両方にねじ溝を有し、僅小の間隙をもって回転子が
固定子内で回転する式のねじ溝式真空ポンプにおいて、
固定子の内周面と回転子の外周面とを同一勾配のテーパ
ー状に形成すると共に該固定子に前記間隙の変化量を検
出するセンサーを設け、該固定子又は回転子を、該セン
サーからの検出信号により制御手段を介して前記間隙が
一定となる様軸線方向に移動制御可能に形成したことを
特徴とするねじ溝式真空ポンプ。
In a thread groove type vacuum pump, which has a thread groove on either or both of the inner peripheral surface of the stator or the outer peripheral surface of the rotor, and the rotor rotates within the stator with a small gap,
The inner circumferential surface of the stator and the outer circumferential surface of the rotor are formed into a tapered shape with the same slope, and a sensor for detecting the amount of change in the gap is provided on the stator, and the stator or rotor is connected to the sensor. 1. A screw groove type vacuum pump, characterized in that the vacuum pump is configured to be able to be controlled to move in the axial direction so that the gap becomes constant through a control means based on a detection signal of the vacuum pump.
JP61302089A 1986-12-18 1986-12-18 Theread groove type vacuum pump Pending JPS63154891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302089A JPS63154891A (en) 1986-12-18 1986-12-18 Theread groove type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302089A JPS63154891A (en) 1986-12-18 1986-12-18 Theread groove type vacuum pump

Publications (1)

Publication Number Publication Date
JPS63154891A true JPS63154891A (en) 1988-06-28

Family

ID=17904792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302089A Pending JPS63154891A (en) 1986-12-18 1986-12-18 Theread groove type vacuum pump

Country Status (1)

Country Link
JP (1) JPS63154891A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0378163A2 (en) * 1989-01-09 1990-07-18 Alcatel Cit Gaede-type vacuum pump
JPH0388997A (en) * 1989-08-28 1991-04-15 Alcatel Cit Primary vacuum pump
US5020969A (en) * 1988-09-28 1991-06-04 Hitachi, Ltd. Turbo vacuum pump
JPH0466395U (en) * 1990-10-22 1992-06-11
US5165872A (en) * 1989-07-20 1992-11-24 Leybold Aktiengesellschaft Gas friction pump having a bell-shaped rotor
US5632597A (en) * 1995-03-31 1997-05-27 Osaka Vacuum, Ltd. Thread groove type vacuum pump
JP2000205183A (en) * 1999-01-13 2000-07-25 Mitsubishi Heavy Ind Ltd Turbo-molecular pump
WO2004015272A1 (en) * 2002-06-04 2004-02-19 Leybold Vakuum Gmbh Evacuating device
WO2009001765A1 (en) * 2007-06-22 2008-12-31 Daikin Industries, Ltd. Single screw compressor and method of assembling the same
WO2022124240A1 (en) * 2020-12-11 2022-06-16 エドワーズ株式会社 Vacuum pump

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020969A (en) * 1988-09-28 1991-06-04 Hitachi, Ltd. Turbo vacuum pump
EP0378163A2 (en) * 1989-01-09 1990-07-18 Alcatel Cit Gaede-type vacuum pump
US5165872A (en) * 1989-07-20 1992-11-24 Leybold Aktiengesellschaft Gas friction pump having a bell-shaped rotor
JPH0388997A (en) * 1989-08-28 1991-04-15 Alcatel Cit Primary vacuum pump
JPH0466395U (en) * 1990-10-22 1992-06-11
US5632597A (en) * 1995-03-31 1997-05-27 Osaka Vacuum, Ltd. Thread groove type vacuum pump
JP2000205183A (en) * 1999-01-13 2000-07-25 Mitsubishi Heavy Ind Ltd Turbo-molecular pump
WO2004015272A1 (en) * 2002-06-04 2004-02-19 Leybold Vakuum Gmbh Evacuating device
US7264439B2 (en) 2002-06-04 2007-09-04 Oerlikon Leybold Vacuum Gmbh Evacuating device
CN100422565C (en) * 2002-06-04 2008-10-01 奥林肯莱博尔德真空技术有限责任公司 Evacuating device
WO2009001765A1 (en) * 2007-06-22 2008-12-31 Daikin Industries, Ltd. Single screw compressor and method of assembling the same
US8485804B2 (en) 2007-06-22 2013-07-16 Daikin Industries, Ltd. Single screw compressor structure and method of assembling single screw compressor including the same
WO2022124240A1 (en) * 2020-12-11 2022-06-16 エドワーズ株式会社 Vacuum pump

Similar Documents

Publication Publication Date Title
AU2008332770B2 (en) Low power electric operated thermostatic mixing valve
US5707213A (en) Molecular vacuum pump with a gas-cooled rotor
JPS63154891A (en) Theread groove type vacuum pump
JP2786955B2 (en) Inlet device for injecting high-speed rotary vacuum pump
US6832888B2 (en) Molecular pump for forming a vacuum
JP2003056307A (en) Turbo machine
WO2018164013A1 (en) Vacuum pump exhaust system, vacuum pump to be provided to vacuum pump exhaust system, purge gas feed device, temperature sensor unit, and vacuum pump exhaust method
JPH10205486A (en) Vacuum pump
US7245097B2 (en) Motor control system and vacuum pump equipped with the motor control system
CN111075928B (en) Radial floating type labyrinth seal between rotating part and static part
JPH11257293A (en) Control device of centrifugal compressor
JP3486000B2 (en) Screw groove vacuum pump
JP2663549B2 (en) Pressure control method for vacuum equipment
EP2956673B1 (en) Scroll compressor.
JP7187186B2 (en) Vacuum pump, stator column, base and vacuum pump exhaust system
CN109578433B (en) High-reliability closed type spool type dynamic pressure bearing
JPH08296584A (en) Bearing pressure regulator for thrust gas bearing
US4708586A (en) Thread groove type vacuum pump
JP3100916B2 (en) Rotary type hydrostatic bearing device
JPH02153294A (en) Variable capacity type vacuum pump
JP2003286992A (en) Turbo molecular pump and method of adjusting pump
JP3485351B2 (en) Axial fluid electric machine
JPS6375389A (en) Thread groove type vacuum pump
JPH04181073A (en) Two-directional noncontact type mechanical seal
JPH07113471A (en) Sealing device