JP2627437B2 - Compound vacuum pump - Google Patents

Compound vacuum pump

Info

Publication number
JP2627437B2
JP2627437B2 JP63226533A JP22653388A JP2627437B2 JP 2627437 B2 JP2627437 B2 JP 2627437B2 JP 63226533 A JP63226533 A JP 63226533A JP 22653388 A JP22653388 A JP 22653388A JP 2627437 B2 JP2627437 B2 JP 2627437B2
Authority
JP
Japan
Prior art keywords
pump section
pump
rotating disk
rotor
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63226533A
Other languages
Japanese (ja)
Other versions
JPH0275796A (en
Inventor
達治 池上
哲郎 大林
恵一 吉田
昌司 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP63226533A priority Critical patent/JP2627437B2/en
Priority to DE3919529A priority patent/DE3919529C2/en
Publication of JPH0275796A publication Critical patent/JPH0275796A/en
Priority to US07/582,783 priority patent/US5074747A/en
Priority to US07/769,409 priority patent/US5221179A/en
Priority to US07/769,410 priority patent/US5219269A/en
Priority to US07/769,463 priority patent/US5160250A/en
Priority to US07/769,365 priority patent/US5217346A/en
Application granted granted Critical
Publication of JP2627437B2 publication Critical patent/JP2627437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は粒子加速器、核融合実験、同位体分離等の実
験研究装置、電子顕微鏡、表面分析計等の分析計測装
置、及び半導体製造真空装置等の工業用真空装置におい
て、大気圧から高真空及び超高真空にわたる吸入圧範囲
で清浄な真空を確実に生成にできる有用な複合分子ポン
プに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial application field The present invention relates to an experimental research device such as a particle accelerator, a nuclear fusion experiment, an isotope separation, an analytical measuring device such as an electron microscope and a surface analyzer, and a semiconductor manufacturing vacuum. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a useful composite molecular pump capable of reliably generating a clean vacuum in an industrial vacuum device such as a device in a suction pressure range from atmospheric pressure to high vacuum and ultrahigh vacuum.

(2)従来の技術 従来この種の複合分子ポンプとして、第20図の如く吸
気口(a)と排気口(b)とを有する筐体(c)内に、
該吸気口(a)側からターボ分子ポンプ部(d)、ねじ
溝ポンプ部(e)及び渦流ポンプ部(f)を順次配設し
たものが知られている。尚(h)はこれらターボ分子ポ
ンプ部(d)、ねじ溝ポンプ(e)及び渦流ポンプ部
(f)のロータ(g)の回転軸、(i)は該回転軸
(h)を回転させるモータを示す。
(2) Prior Art Conventionally, as a composite molecular pump of this type, a casing (c) having an intake port (a) and an exhaust port (b) as shown in FIG.
It is known that a turbo molecular pump section (d), a thread groove pump section (e) and a vortex pump section (f) are sequentially arranged from the intake port (a) side. (H) is a rotation axis of the rotor (g) of the turbo molecular pump section (d), the thread groove pump (e) and the vortex pump section (f), and (i) is a motor for rotating the rotation axis (h). Is shown.

(3)発明が解決しようとする問題点 この従来の複合分子ポンプによれば、十分に安定した
圧縮性能をもたせ、且つ排気速度を伸長させるために、
渦流ポンプ部(f)を8段以上に形成し更に該渦流ポン
プ部(f)の前段のねじ溝ポンプ部(e)のロータ外径
を渦流ポンプ部(f)の外径と同等以上とする構成にな
っている。
(3) Problems to be Solved by the Invention According to the conventional composite molecular pump, in order to obtain a sufficiently stable compression performance and elongate the pumping speed,
The vortex pump section (f) is formed in eight or more stages, and the outer diameter of the rotor of the thread groove pump section (e) at the preceding stage of the vortex pump section (f) is equal to or greater than the outer diameter of the vortex pump section (f). It has a configuration.

又ターボ分子ポンプ部(d)の排気性能を特に分子量
の小さい水素(H2)等に対して十分もたせるためにはね
じ溝ポンプ部(e)の排気速度を十分大きくしなければ
ならないため、ねじ溝ポンプ部(e)のねじ溝の幅を広
くし、更に圧縮比を十分高くするためねじ溝の全長を長
くすることが必要となり、その結果ねじ溝ポンプ部
(e)のロータは軸方向に対して伸長した構成となり、
総合したロータ(g)はその全長が比較的長く、且つ外
径も大きくなる。
In addition, in order to make the exhaust performance of the turbo molecular pump section (d) sufficient especially for hydrogen (H 2 ) having a small molecular weight, the exhaust speed of the thread groove pump section (e) must be made sufficiently high. It is necessary to increase the width of the thread groove of the groove pump part (e) and further increase the total length of the screw groove in order to sufficiently increase the compression ratio. As a result, the rotor of the thread groove pump part (e) is axially moved. In contrast, the configuration is extended
The overall rotor (g) has a relatively long overall length and a large outer diameter.

かくて従来の複合分子ポンプにおいては、ロータが一
体形状で軸端創荷方式をとっているため、ロータ(g)
の高速回転に伴い回転軸(h)に曲げモーメントが働き
振動を誘発する。しかもねじ溝ポンプ部(e)は肉厚の
外筒部分が大となると共に、重くて、総合したロータ
(g)の全長が長くなるから、回転軸廻りの慣性モーメ
ントIzが大になると共に、軸中心線に直交する、x軸及
びy軸の廻りの慣性モーメントIx及びIyが非常に大きく
なる。高速回転する回転体が振動が少なく安定した高速
運転をできるためには、Ix、IyがIzと同等か又はより小
であることが必要である。第20図の従来の複合分子ポン
プではIx、IyがIzよりも大になり、振動が少なく安定し
た高速運転をできるように動釣合をとることが困難とな
る問題点があった。
Thus, in the conventional compound molecular pump, the rotor (g)
A bending moment acts on the rotation axis (h) with the high-speed rotation of, causing vibration. Moreover, the thread groove pump section (e) has a large outer cylinder portion and is heavy, and the overall length of the rotor (g) is long. Therefore, the moment of inertia Iz around the rotation axis becomes large, The moments of inertia Ix and Iy about the x-axis and the y-axis, which are orthogonal to the axis center line, become very large. In order for the rotating body that rotates at high speed to perform stable high-speed operation with little vibration, it is necessary that Ix and Iy be equal to or smaller than Iz. In the conventional composite molecular pump shown in FIG. 20, Ix and Iy were larger than Iz, and there was a problem that it was difficult to achieve dynamic balance so that stable high-speed operation with less vibration could be achieved.

本発明は、これらの問題点を解消し、大気圧から超高
真空にわたる圧力範囲で大きな排気速度を有する複合分
子ポンプを安価に提供することを目的とする。
An object of the present invention is to solve these problems and to provide an inexpensive composite molecular pump having a large pumping speed in a pressure range from atmospheric pressure to ultrahigh vacuum.

(4)問題点を解決するための手段 この問題を達成すべく本発明は、吸気口と排気口を有
する筐体内に、該吸気口側からターボ分子ポンプ部、円
周溝真空ポンプ部及び渦流ポンプ部を順次配設し、該円
周溝ポンプ部は、複数の回転円板の周辺部を切欠いて形
成した切込段部と該回転円板が介入されるステータに形
成の環状の凹部とにより前記各回転円板の周辺部に形成
された通風路と、隣り合う該通風路間を連通する連通路
とからなることを特徴とする。
(4) Means for Solving the Problems In order to achieve this problem, the present invention provides a turbo molecular pump section, a circumferential groove vacuum pump section, and a vortex flow in a housing having an intake port and an exhaust port from the intake port side. A pump portion is sequentially arranged, the circumferential groove pump portion has a notch step formed by cutting out a peripheral portion of a plurality of rotating disks, and an annular concave portion formed in a stator in which the rotating disks are interposed. And a ventilation path formed in a peripheral portion of each rotating disk and a communication path communicating between adjacent ventilation paths.

(5)作用 運転の初期状態において、吸気口に流入した気体は主
として渦流ポンプ部で乱流状態となって圧縮排気され、
その後該流入気体は分子流状態でターボ分子ポンプ部に
流入し該ターボ分子ポンプ部の高速回転する動翼と静翼
とによりこの部分を移送圧縮される。そして連設された
円周溝ポンプ部において、この圧縮移動された気体は高
速回転する回転円板、特にその周辺部の気体摩擦による
モレキュラードラッグ効果による輸送効果を生じて大き
な排気速度と十分な圧縮作用を受けて分子流から粘性流
となり、次の渦流ポンプ部の吸入口に流入し、更に該渦
流ポンプ部において圧縮されほヾ大気圧まで圧縮されて
排気口から大気に放出される。
(5) Operation In the initial state of the operation, the gas that has flowed into the intake port becomes a turbulent state mainly in the vortex pump section and is compressed and exhausted.
Thereafter, the inflowing gas flows into the turbo molecular pump section in a molecular flow state, and is transferred and compressed by the high-speed rotating blades and stationary vanes of the turbo molecular pump section. In the continuous circumferential groove pump section, the compressed and moved gas produces a transport effect due to the molecular drag effect due to gas friction of the rotating disk rotating at a high speed, particularly the peripheral portion thereof, so that a large pumping speed and sufficient compression are obtained. Under the action, the molecular flow becomes a viscous flow, flows into the suction port of the next vortex pump section, is further compressed in the vortex pump section, is compressed to approximately atmospheric pressure, and is discharged from the exhaust port to the atmosphere.

(6)実 施 例 本発明の複合真空ポンプの1実施例を第1図乃至第8
図に従って説明する。
(6) Embodiment FIGS. 1 to 8 show one embodiment of the composite vacuum pump of the present invention.
Description will be made with reference to the drawings.

(1)は筐体を示し、該筐体(1)内には上部にター
ボ分子ポンプ部(2)とその下方に円周溝ポンプ部
(3)と更にその下方に渦流ポンプ部(4)が設けられ
ており、前記ターボ分子ポンプ部(2)はロータ(5)
の外周面に突設した多数の動翼(2a)と前記筐体(1)
の内周面に突設した多数の静翼(2b)とからなり、又前
記円周溝ポンプ部(3)は前記ロータ(5)の外周面に
3枚の回転円板(3a)が突設されており、これら回転円
板(3a)はその上方から下方になるに従って板厚を順次
大から小にすると共に両面の周辺部を切欠いて切込段部
(3b)(3b)に形成し、これら各回転円板(3a)の切込
段部(3b)(3b)の切込み深さを上方から下方になるに
従って前述と同様に大から小にした。又(3c)は前記筐
体(1)の内面に固定したステータを示し、該ステータ
(3c)は前記回転円板(3a)に相当する位置において該
回転円板(3a)が介入される環状の凹部(3d)が形成さ
れており、該凹部(3d)と前記切込段部(3b)(3b)に
より前記各回転円板(3a)の周辺部の両面に通風路(3
e)(3e)を形成した。
(1) shows a housing. In the housing (1), a turbo-molecular pump portion (2) is provided at an upper portion, a circumferential groove pump portion (3) is provided below the turbo-molecular pump portion (3), and a vortex pump portion (4) is provided thereunder. And the turbo molecular pump section (2) is provided with a rotor (5).
Blades (2a) protruding from the outer peripheral surface of the housing and the housing (1)
And a plurality of stationary blades (2b) protruding from the inner peripheral surface of the rotor, and the circumferential groove pump section (3) has three rotating disks (3a) projecting from the outer peripheral surface of the rotor (5). These rotating disks (3a) are formed in the notch steps (3b) (3b) by gradually reducing the thickness from the top to the bottom and cutting out the peripheral portions on both sides. The cutting depth of the cutting steps (3b) and (3b) of each of the rotating disks (3a) was changed from large to small in the same manner as described above from the top to the bottom. Reference numeral (3c) denotes a stator fixed to the inner surface of the housing (1), and the stator (3c) has an annular shape in which the rotating disk (3a) is interposed at a position corresponding to the rotating disk (3a). Recesses (3d) are formed, and the recesses (3d) and the cut notches (3b) (3b) form ventilation passages (3d) on both surfaces of the peripheral portion of each of the rotating disks (3a).
e) Formed (3e).

ここで各回転円板(3a)の通風路(3e)(3e)におけ
る回転円板(3a)側とステータ(3c)側の対向面間の距
離bは前述の如く切込段部(3b)(3b)の切込み深さに
応じて上方から下方になるに従って大から小になる。そ
して前記各凹部(3d)に、前記回転円板(3a)の周辺部
が通過する部分を截除した隔壁(3f)を前記ステータ
(3c)より突設して該隔壁(3f)により通風路(3e)
(3e)を区切り、隣り合う回転円板(3a)(3a)の通風
路(3e)(3e)及び(3e)(3e)において上流側の回転
円板(3a)の通風路(3e)(3e)の隔壁(3f)の他側の
終端部と下流側の回転円板(3a)の通風路(3e)(3e)
の隔壁(3f)の1側の始端部との間を連通路(3g)によ
り連通し、更にこれら隔壁(3f)及び連通路(3g)を第
2図乃至第8図の如く上流側から下流側に至るに従って
その位置を順次ずらせて形成し、かくて吸気口(12)か
らの気体分子は連通路(3g)を介して送られながら各回
転円板(3a)の通風路(3e)(3e)において順次圧縮さ
れ、相当に高い圧縮比が得られる。そして最も上流側の
回転円板(3a)の通風路(3e)(3e)の隔壁(3f)の1
側の始端部を第1図の如くターボ分子ポンプ部(2)か
らの第1中間吸気口(6)に、又最も下流側の回転円板
(3a)の通風路(3e)(3e)の隔壁(3f)の他側の終端
部を第1図の前記渦流ポンプ部(4)の第2中間吸気口
(7)に連通した。
Here, the distance b between the opposed surfaces of the rotating disk (3a) side and the stator (3c) side in the ventilation path (3e) (3e) of each rotating disk (3a) is, as described above, the notch step (3b) According to the cutting depth of (3b), the size decreases from large to small as going from top to bottom. In each of the recesses (3d), a partition wall (3f) obtained by cutting off a portion through which the peripheral portion of the rotating disk (3a) passes is provided so as to protrude from the stator (3c), and a ventilation path is formed by the partition wall (3f). (3e)
(3e), the ventilation paths (3e) and (3e) of the adjacent rotating disks (3a) and (3a) and the ventilation paths (3e) and (3e) of the upstream rotating disk (3a) in (3e) and (3e) 3e) Ventilation path (3e) (3e) of the other end of partition wall (3f) and downstream rotating disk (3a)
A communication path (3g) communicates with the first end of the partition wall (3f) through the communication path (3g), and further connects the partition wall (3f) and the communication path (3g) from the upstream side to the downstream side as shown in FIGS. The gas molecules from the intake port (12) are sent through the communication path (3g) while passing through the air passages (3e) (3e) of the respective rotating disks (3a). Compression is performed sequentially in 3e), and a considerably high compression ratio is obtained. And one of the partition walls (3f) of the ventilation passages (3e) and (3e) of the most upstream rotating disk (3a).
As shown in FIG. 1, the starting end of the side is connected to the first intermediate intake port (6) from the turbo molecular pump section (2), and the ventilation paths (3e) and (3e) of the most downstream rotating disk (3a). The other end of the partition wall (3f) was connected to the second intermediate intake port (7) of the vortex pump section (4) in FIG.

又渦流ポンプ部(4)は前記ロータ(5)の外周面に
突設し放射状の凹部(4d)を有する多数のラジアルブレ
ード(4a)とこれらにそれぞれ対向する吸込流路(4b)
を有するステータ(4c)とからなり、該流路(4b)の終
端部を第1図の如く排気口(13)に連通した。
The vortex pump section (4) is provided on the outer peripheral surface of the rotor (5) with a plurality of radial blades (4a) having radial recesses (4d) and suction passages (4b) respectively facing the blades.
The end of the flow path (4b) communicates with the exhaust port (13) as shown in FIG.

又前記各ポンプ部(2)、(3)、(4)のロータ
(5)の軸(5a)は、前記筐体(1)の下方部のモータ
筐体(1a)から上方に突出する円筒(1b)の上方部に設
けた上部軸受(8a)及び該モータ筐体(1a)の底板(1
c)に設けた下部軸受(8b)によって支持され、又前記
軸(5a)の下方部には前記モータ筐体(1a)内に設けた
インダクションモータ、ヒステリシスモータ等からなる
高周波モータ(9)のロータ(9a)が固定されていると
共に、該軸(5a)の下端部は前記底板(1c)の下方に設
けた潤滑油槽(10)内の潤滑油中に没入しており、前記
高周波モータ(9)の駆動による前記軸(5a)の高速回
転による遠心力によって潤滑油が該軸(5a)の中心孔
(11)及びその枝孔(11a)(11a)を経て前記上部軸受
(8a)に供給される。又下部軸受(8b)は前記モータ筐
体(1a)の内周に設けた溝より潤滑油が供給される。
The shaft (5a) of the rotor (5) of each of the pump sections (2), (3) and (4) is a cylinder projecting upward from the motor housing (1a) below the housing (1). The upper bearing (8a) provided on the upper part of (1b) and the bottom plate (1) of the motor housing (1a)
c) is supported by a lower bearing (8b) provided at the lower part of the shaft (5a), and a high-frequency motor (9) comprising an induction motor, a hysteresis motor, etc. provided in the motor housing (1a). The rotor (9a) is fixed, and the lower end of the shaft (5a) is immersed in lubricating oil in a lubricating oil tank (10) provided below the bottom plate (1c). Due to the centrifugal force generated by the high-speed rotation of the shaft (5a) by the drive of 9), the lubricating oil flows into the upper bearing (8a) through the center hole (11) of the shaft (5a) and its branch holes (11a) (11a). Supplied. The lower bearing (8b) is supplied with lubricating oil from a groove provided on the inner periphery of the motor housing (1a).

かくて前記各ポンプ部(2)、(3)、(4)の動翼
(2a)、回転円板(3a)、ラジアルブレード(4a)はロ
ータ(5)に一体に構成されているので高速回転によっ
ても振動も小さく騒音が殆ど発生しない。尚(12)は吸
気口、(13)は排気口を示す。
Thus, since the rotor blade (2a), the rotating disk (3a) and the radial blade (4a) of each of the pump sections (2), (3) and (4) are integrally formed with the rotor (5), high speed operation is achieved. Vibration is small due to rotation, and almost no noise is generated. (12) indicates an intake port, and (13) indicates an exhaust port.

次に上記実施例の複合真空ポンプの作動を説明する。 Next, the operation of the composite vacuum pump of the above embodiment will be described.

高周波モータ(9)の駆動によりロータ(5)が回転
し始めると、その初期状態において吸気口(12)に流入
した気体は、乱流から中間流状態となりターボ分子ポン
プ部(2)の回転する動翼(2a)に衝突し、該動翼(2
a)と前記筐体(1)から突設した静翼(2b)との作用
により、該動翼(2a)の移動する円周方向と、軸に平行
な下方向の運動量が与えられ、積層された前記動翼(2
a)及び静翼(2b)の回転により下方に圧縮移動する。
尚、分子ポンプ部(2)は始動時の加速中は、密度の高
い気体がポンプ内に存在することによる風損と、回転体
の慣性モーメントに対する加速トルクが大きくなるが、
前記高周波モータ(9)の入力電流が過大にならないよ
うに回転数を制御している。
When the rotor (5) starts rotating by driving the high-frequency motor (9), the gas that has flowed into the intake port (12) in the initial state changes from a turbulent flow to an intermediate flow state, and the turbo molecular pump section (2) rotates. The blade (2a) collides with the blade (2a).
a) and a stationary blade (2b) protruding from the housing (1) gives momentum in the circumferential direction in which the moving blade (2a) moves and in the downward direction parallel to the axis. The moving blade (2
Compression movement is caused by the rotation of a) and the stationary blade (2b).
During acceleration at the time of starting, the molecular pump section (2) increases windage loss due to the presence of high-density gas in the pump and acceleration torque with respect to the moment of inertia of the rotating body.
The number of rotations is controlled so that the input current of the high frequency motor (9) does not become excessive.

次に前記分子ポンプ部(2)により圧縮移動された気
体は第1中間吸気口(6)を経て前記ロータ(5)に一
体に形成された円周溝ポンプ部(3)の回転円板(3a)
の最も高速回転移動する周辺部の切込段部(3b)(3b)
の両面に当ってこの時の気体分子摩擦によるモレキュラ
ードラッグ効果により輸送効果が生じ連通路(3g)を介
して各回転円板(3a)の通風路(3e)(3e)を第2図の
矢印の如く順次輸送され、分子流から粘性流にある圧力
領域において排気作用を生じて全体として大きな圧縮比
を実現し、第2中間吸気口(7)を経て前記ロータ
(5)に一体に形成された渦流ポンプ部(4)のラジア
ルブレード(4a)の回転により圧縮される。そしてその
圧縮比は1.45〜2.0であり、該ラジアルブレード(4a)
を10段前後の多数段重ねることにより約70の圧縮比が得
られ、かくてこの圧縮比により、渦流ポンプ部では700P
a(5.2トル)以下から大気圧の領域にわたる吸入圧から
大気圧まで圧縮できる。従って本実施例の複合真空ポン
プによれば大気圧から超高真空まで大きな排気速度で気
体を排気可能となる。
Next, the gas compressed and moved by the molecular pump section (2) passes through a first intermediate intake port (6) and is rotated by a rotating disk (3) of a circumferential groove pump section (3) formed integrally with the rotor (5). 3a)
Notch step (3b) (3b) of the peripheral part that rotates at the highest speed
The transport effect occurs due to the molecular drag effect due to gas molecule friction at this time on both surfaces of the rotating disk (3a) and the ventilation paths (3e) and (3e) of each rotating disk (3a) through the communication path (3g) in FIG. And in the pressure region in which the flow is from molecular flow to viscous flow, an exhaust action is produced to realize a large compression ratio as a whole, and is formed integrally with the rotor (5) through the second intermediate intake port (7). It is compressed by the rotation of the radial blade (4a) of the swirling pump section (4). The compression ratio is 1.45 to 2.0, and the radial blade (4a)
Approximately 70 compression ratios can be obtained by stacking around 10 stages in a vortex pump section.
It can be compressed from suction pressures below a (5.2 torr) to atmospheric pressure to atmospheric pressure. Therefore, according to the composite vacuum pump of the present embodiment, gas can be exhausted at a large exhaust speed from the atmospheric pressure to the ultrahigh vacuum.

ここで、発明者の実験によれば、ターボ分子ポンプ部
(2)の動翼(2a)の外径を200mmとし円周溝ポンプ部
(3)を3段とし渦流ポンプ部(4)のロータ外径を13
0mmとしたものを用意して、吸気口圧力−排気速度曲線
を求めたところ第9図のグラフが得られ、このグラフの
曲線は従来の複合真空ポンプに補助真空ポンプを接続し
た場合と略同一曲線であり、このことにより実施例の真
空ポンプは補助真空ポンプが不必要で1台の真空ポンプ
により大気圧から超高真空まで排気できることがわか
る。又第10図乃至第12図は円周溝ポンプ部(3)の第2
実施例を示し、該実施例においては前記各回転円板(3
a)の通風路(3e)(3e)における回転円板(3a)側と
ステータ(3c)側の対向面間の距離bが始端部から終端
部に向って徐々に小となるように形成し、圧縮性能を向
上したものである。
Here, according to the experiment of the inventor, the outer diameter of the rotor blade (2a) of the turbo molecular pump section (2) is 200 mm, the circumferential groove pump section (3) is three stages, and the rotor of the vortex pump section (4) is provided. 13 outer diameter
A sample having a diameter of 0 mm was prepared, and an inlet pressure-evacuation speed curve was obtained. The graph of FIG. 9 was obtained, and the curve of this graph was almost the same as that obtained when an auxiliary vacuum pump was connected to a conventional composite vacuum pump. This is a curve, which indicates that the vacuum pump of the embodiment does not require an auxiliary vacuum pump and can be evacuated from atmospheric pressure to ultra-high vacuum by one vacuum pump. 10 to 12 show the second embodiment of the circumferential groove pump section (3).
An embodiment will be described. In this embodiment, each of the rotating disks (3
The distance b between the rotating disk (3a) side and the opposing surface on the stator (3c) side in the ventilation path (3e) (3e) of (a) is formed so as to gradually become smaller from the start end to the end. , With improved compression performance.

第13図は円周溝ポンプ部の第3実施例を示し、該実施
例においては、前記各回転円板(3a)の周辺部の切込段
部(3b)(3b)の個所の肉厚を外方になるに従って徐々
に薄く形成すると共に、これら切込段部(3b)(3b)と
これらに対向する前記凹部(3d)の内面との間の距離b
は半径方向のいずれの位置でも等しくなるように該凹部
(3d)を外方に向うのに従って間隔が狭くなるように形
成したものである。
FIG. 13 shows a third embodiment of the circumferential groove pump portion, in which the thickness of the notch steps (3b) and (3b) at the periphery of each of the rotating disks (3a) is shown. Are formed gradually thinner toward the outside, and the distance b between the cut step portions (3b) and (3b) and the inner surface of the concave portion (3d) opposed thereto is reduced.
Is formed such that the interval becomes narrower as the concave portion (3d) is directed outward so that it becomes equal at any position in the radial direction.

第14図乃至第17図は円周溝ポンプ部(3)の第4実施
例を示し、各回転円板(3a)の吸気口と吐出口を中心に
対して対称の位置に2個所設け、並列に排気圧縮するよ
うにして、排気速度を2倍にしたものである。
FIGS. 14 to 17 show a fourth embodiment of the circumferential groove pump portion (3), provided at two locations symmetrical with respect to the center of the intake port and the discharge port of each rotary disk (3a). The exhaust speed is doubled by performing exhaust compression in parallel.

第18図は渦流ポンプ部(4)の第2実施例を示し、吸
込流路(4d)をラジアルブレード(4a)の両側に並列に
設けたもので次の段の通風路断面を並列部の70%とした
構造を示す。
FIG. 18 shows a second embodiment of the vortex pump section (4), in which suction passages (4d) are provided in parallel on both sides of a radial blade (4a). The structure is set to 70%.

第19図は渦流ポンプ部(4)の第3実施例を示し、一
枚のラジアルブレード(4a)の両面に凹部(4b)を設け
4段のポンプ要素を構成したものを示したものである。
FIG. 19 shows a third embodiment of the vortex pump part (4), in which concave parts (4b) are provided on both surfaces of one radial blade (4a) to constitute a four-stage pump element. .

そして第18図の実施例のものと第19図の実施例のもの
1〜2個とを組合せる等、少ない段重ねによっても実質
上多数段のラジアルブレードの渦流ポンプ部に相当す
る。
Even if a small number of stages such as a combination of the embodiment of FIG. 18 and one or two of the embodiment of FIG. 19 is used, it substantially corresponds to a vortex pump of a multi-stage radial blade.

(7)発明の効果 このように本発明によると吸気口と排気口とを有する
筐体内に、いづれも排気圧縮作動部に真空ポンプ油が全
く存在しないターボ分子ポンプ部、円周溝ポンプ部及び
渦流ポンプ部とを吸気口側から順次配設し、吸気口から
の気体をターボ分子ポンプ部において一旦圧縮移送して
から円周溝ポンプ部においてその回転円板の特に高速に
回転する周辺部により前記気体が気体分子摩擦によるモ
レキュラードラッグで効率的な輸送効果を生ずると共
に、円周溝ポンプ部の排気速度を決定する第1段目の回
転円板の通風路への吸気口を半径方向に大きな寸法をと
ることが可能となり、かくて大きな排気速度を得ること
ができ、更に渦流ポンプ部に設けた多数のラジアルブレ
ードにより高い圧縮比が得られ、大気圧から超高真空に
わたる吸入範囲で各圧力分野に対応して十分な排気速度
を気体の分子量及び化学性質に関係なく得られ、且つ吸
気口側から排気口側に至る回転体は円周溝ポンプ部の大
きな排気性能の効果により、従来より軸方向の長さを著
しく短縮し得て各ポンプ部のロータが小型に一体化で
き、回転軸の端部に結合した単ロータ形に構成可能とな
り、振動の発生を抑止できると共に、小型軽量なロータ
に高精度の加工を要求されず、かくてコンパクトで且つ
軽量でオイルフリーの清浄な真空を生成できる真空ポン
プが廉価に得られる効果を有する。さらに本発明による
複合真空ポンプは、アルミニウム合金で一体化したロー
タ及びステータに耐食性をコーティングすることにより
有害な腐食性のガスに対する耐食性をもち、潤滑油が汚
染されることがなく、また構成するポンプ部がすべて気
体に対して遠心方向の流速を与えるものであり、各段の
吐出口を半径方向の外周部に設けてあって、ポンプがプ
ロセスガスと共に粉粒体を吸入したり、あるいは圧縮中
に化学反応により粉粒体を生じても、支障なく運転し、
粉粒を排気口に順次排出する効果を有するから、半導体
製造真空装置等において極めて有用で経済的効果が大き
い。
(7) Advantageous Effects of the Invention According to the present invention, as described above, a turbo molecular pump portion, a circumferential groove pump portion, and a vacuum pump oil in which no vacuum pump oil is present in an exhaust compression operation portion are provided in a housing having an intake port and an exhaust port. The vortex pump section is sequentially arranged from the suction port side, and the gas from the suction port is compressed and transferred once in the turbo-molecular pump section, and then, in the circumferential groove pump section, particularly by the peripheral portion of the rotating disk that rotates at high speed. The gas produces an efficient transport effect by molecular drag due to gas molecule friction, and a radially larger intake port to the ventilation passage of the first rotating disk that determines the exhaust speed of the circumferential groove pump portion. Dimensions can be obtained, and thus a large pumping speed can be obtained.In addition, a high compression ratio can be obtained by a large number of radial blades provided in the vortex pump section, and the pressure can be increased from atmospheric pressure to ultra-high vacuum. Sufficient pumping speed can be obtained regardless of the molecular weight and chemical properties of the gas in the suction range, and the rotating body from the suction port side to the exhaust port side has the large pumping performance of the circumferential groove pump section. The effect of (1) is that the length in the axial direction can be significantly shortened compared to the past, the rotor of each pump can be integrated compactly, and it can be configured as a single rotor type connected to the end of the rotating shaft, thus suppressing the generation of vibration. It is possible to obtain a vacuum pump which can generate a clean vacuum which is compact, lightweight and oil-free without requiring high-precision machining for a small and lightweight rotor. Further, the composite vacuum pump according to the present invention has a corrosion resistance against harmful corrosive gas by coating the rotor and the stator integrated with an aluminum alloy with corrosion resistance, does not contaminate the lubricating oil, and constitutes the pump. All the parts provide centrifugal flow velocity to the gas, and the discharge ports of each stage are provided on the radially outer peripheral part, and the pump sucks the powder and granules together with the process gas or compresses Even if powder particles are generated by the chemical reaction,
Since it has an effect of sequentially discharging powder particles to an exhaust port, it is extremely useful and has a large economic effect in a semiconductor manufacturing vacuum apparatus or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の複合真空ポンプの第1実施例の全体の
断面図、第2図は第1図のI−I線截断面図、第3図は
第2図のII−II線截断面図、第4図は第2図のIII−III
線截断面図、第5図は第2図のIV−IV線截断面図、第6
図は第2図のV−V線截断面図、第7図は第2図のVI−
VI線截断面図、第8図は第2図のVII−VII線截断面図、
第9図は吸気口圧力と排気速度との関係を示すグラフ、
第10図乃至第12図は円周溝ポンプ部の第2実施例の部分
断面図、第13図は円周溝ポンプ部の第3実施例の部分断
面図、第14図は円周溝ポンプ部の第4実施例を示す第2
図に相当する断面図、第15図は第14図のI−I線截断面
図、第16図は第14図のII−II線截断面図、第17図は第14
図のIII−III截断面図、第18図は渦流ポンプ部の第2実
施例を示すロータの個所の縦断面図、第19図は渦流ポン
プ部の第3実施例を示すロータの個所の縦断面図、第20
図は従来の複合分子ポンプの断面図である。 (1)……筐体 (2)……ターボ分子ポンプ部 (3)……円周溝ポンプ部 (4)……渦流ポンプ部 (12)……吸気口 (13)……排気口
1 is an overall sectional view of a first embodiment of a composite vacuum pump according to the present invention, FIG. 2 is a sectional view taken along line II of FIG. 1, and FIG. 3 is a sectional view taken along line II-II of FIG. Fig. 4 is III-III in Fig. 2.
5 is a sectional view taken along the line IV-IV in FIG. 2, and FIG.
The drawing is a sectional view taken along the line VV of FIG. 2, and FIG.
FIG. 8 is a sectional view taken along line VII-VII of FIG. 2,
FIG. 9 is a graph showing the relationship between the inlet pressure and the exhaust speed,
10 to 12 are partial cross-sectional views of a second embodiment of the circumferential groove pump section, FIG. 13 is a partial cross-sectional view of the third embodiment of the circumferential groove pump section, and FIG. 14 is a circumferential groove pump. Second Example of the Fourth Embodiment
FIG. 15 is a sectional view taken along line II of FIG. 14, FIG. 16 is a sectional view taken along line II-II of FIG. 14, and FIG.
FIG. 18 is a vertical sectional view of a portion of a rotor showing a second embodiment of the vortex pump section, and FIG. 19 is a longitudinal section of a rotor section showing a third embodiment of the vortex pump section. Aerial view, 20th
The figure is a cross-sectional view of a conventional composite molecular pump. (1) Housing (2) Turbo molecular pump section (3) Circular groove pump section (4) Swirl pump section (12) Suction port (13) Exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 昌司 東京都八王子市椚田町1221 株式会社大 阪真空機器製作所八王子工場内 (56)参考文献 特開 昭57−59098(JP,A) 特開 昭63−85290(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Iguchi 1221 Kuginodacho, Hachioji-shi, Tokyo Osaka Vacuum Equipment Co., Ltd. Hachioji factory (56) References JP-A-57-59098 (JP, A) JP-A Sho 63-85290 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気口と排気口を有する筐体内に、該吸気
口側からターボ分子ポンプ部、円周溝ポンプ部及び渦流
ポンプ部を順次配設し、該円周溝ポンプ部は、複数の回
転円板の周辺部を切欠いて形成した切込段部と該回転円
板が介入されるステータに形成の環状の凹部とにより前
記各回転円板の周辺部に形成された通風路と、隣り合う
該通風路間を連通する連通路とからなることを特徴とす
る複合真空ポンプ。
1. A turbo molecular pump section, a circumferential groove pump section, and a vortex pump section are sequentially disposed in a housing having an intake port and an exhaust port from the intake port side. A notch step formed by cutting out the peripheral portion of the rotating disk and an annular recess formed in the stator in which the rotating disk is interposed, a ventilation path formed in the peripheral portion of each rotating disk, A composite vacuum pump comprising: a communication path that communicates between adjacent ventilation paths.
JP63226533A 1988-07-13 1988-09-12 Compound vacuum pump Expired - Fee Related JP2627437B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63226533A JP2627437B2 (en) 1988-09-12 1988-09-12 Compound vacuum pump
DE3919529A DE3919529C2 (en) 1988-07-13 1989-06-15 Vacuum pump
US07/582,783 US5074747A (en) 1988-07-13 1990-09-14 Vacuum pump
US07/769,409 US5221179A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,410 US5219269A (en) 1988-07-13 1991-10-01 Vacuum pump
US07/769,463 US5160250A (en) 1988-07-13 1991-10-01 Vacuum pump with a peripheral groove pump unit
US07/769,365 US5217346A (en) 1988-07-13 1991-10-01 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226533A JP2627437B2 (en) 1988-09-12 1988-09-12 Compound vacuum pump

Publications (2)

Publication Number Publication Date
JPH0275796A JPH0275796A (en) 1990-03-15
JP2627437B2 true JP2627437B2 (en) 1997-07-09

Family

ID=16846630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226533A Expired - Fee Related JP2627437B2 (en) 1988-07-13 1988-09-12 Compound vacuum pump

Country Status (1)

Country Link
JP (1) JP2627437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106917778A (en) * 2015-12-25 2017-07-04 埃地沃兹日本有限公司 Vavuum pump and the quiet alar part of the segmentation for using wherein

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655315B2 (en) * 1994-06-29 1997-09-17 日本真空技術株式会社 Leak detection device using compound molecular pump
CN114352553B (en) * 2021-12-31 2024-01-09 北京中科科仪股份有限公司 Vortex mechanism and compound molecular pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422822A (en) * 1980-08-11 1983-12-27 Norman Milleron Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith
JPS60116895A (en) * 1983-11-30 1985-06-24 Hitachi Ltd Vacuum pump
JPS6163385A (en) * 1984-09-05 1986-04-01 Hitachi Ltd Manufacture of rotor of turbo-molecular pump
JPS6385290A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump
JPS63118394U (en) * 1987-01-26 1988-07-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106917778A (en) * 2015-12-25 2017-07-04 埃地沃兹日本有限公司 Vavuum pump and the quiet alar part of the segmentation for using wherein

Also Published As

Publication number Publication date
JPH0275796A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
US5160250A (en) Vacuum pump with a peripheral groove pump unit
EP0568069B1 (en) Turbomolecular vacuum pumps
US5219269A (en) Vacuum pump
KR20000062974A (en) Turbo-molecular pump
US6508631B1 (en) Radial flow turbomolecular vacuum pump
JPH0826877B2 (en) Turbo molecular pump
JPH0783189A (en) Turbo vacuum pump
JP5319118B2 (en) Vacuum pump
JP2627437B2 (en) Compound vacuum pump
US6412173B1 (en) Miniature turbomolecular pump
KR20010053279A (en) Turbo-molecular pump
JP2009074537A (en) Radially staged microscale turbomolecular pump
JP2007507658A (en) Vacuum pump
EP0477924B1 (en) Turbo vacuum pump
US5217346A (en) Vacuum pump
JP2628351B2 (en) Compound molecular pump
JPH10141277A (en) Double discharge-type gas friction pump
JP2501275Y2 (en) Jegbaan type vacuum pump
JP2724840B2 (en) Compound vacuum pump
JPH02264196A (en) Turbine vacuum pump
CN1012518B (en) Composite molecular pump
JP2696370B2 (en) Circumferential groove vacuum pump
JP2761486B2 (en) Circumferential groove vacuum pump
JPH03237297A (en) Turbo-molecular pump
JPH01170795A (en) Vortex turbo-machinery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees