JPH0384825A - Hot cathode - Google Patents
Hot cathodeInfo
- Publication number
- JPH0384825A JPH0384825A JP1220391A JP22039189A JPH0384825A JP H0384825 A JPH0384825 A JP H0384825A JP 1220391 A JP1220391 A JP 1220391A JP 22039189 A JP22039189 A JP 22039189A JP H0384825 A JPH0384825 A JP H0384825A
- Authority
- JP
- Japan
- Prior art keywords
- hot cathode
- cathode
- tangsten
- base portion
- emitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 15
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052788 barium Inorganic materials 0.000 claims abstract description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 3
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 abstract description 12
- 230000004888 barrier function Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 2
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000864 Auger spectrum Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000929 Ru alloy Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- GIDFDWJDIHKDMB-UHFFFAOYSA-N osmium ruthenium Chemical compound [Ru].[Os] GIDFDWJDIHKDMB-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Solid Thermionic Cathode (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ブラウン管、表示管、撮像管、進行波管など
の電子管に用いるに好適な低温動作・高電流密度の熱陰
極に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low-temperature operation, high current density hot cathode suitable for use in electron tubes such as cathode ray tubes, display tubes, image pickup tubes, and traveling wave tubes.
電子管の高性能化、特に高精細度化、高輝度化、をはか
るためには高a流密度陰極を用いることが必要であり、
これに対応できる陰極としては、含浸形陰極が有望視さ
れている。含浸形陰極は、通常、タングステン(W)か
らなる多孔質体にバリウム(Ba)化合物からなるエミ
ッタ剤を含浸した構造が基本となっているが、さらに、
特公昭47−21343号公報記載のように、陰極表面
にオスミウム−ルテニウム(Os −Ru)合金を被覆
し、陰極表面の仕事関数を下げて電子放出能を高める提
案もなされている。In order to improve the performance of electron tubes, especially high definition and high brightness, it is necessary to use a high a current density cathode.
An impregnated cathode is considered to be a promising cathode that can meet this requirement. An impregnated cathode usually has a structure in which a porous body made of tungsten (W) is impregnated with an emitter agent made of a barium (Ba) compound.
As described in Japanese Patent Publication No. 47-21343, a proposal has also been made to coat the cathode surface with an osmium-ruthenium (Os-Ru) alloy to lower the work function of the cathode surface and increase the electron emission ability.
しかしながら、従来技術における含浸形陰極では、例え
ば陰極表面に0s−Ru合金を被覆し、仕事関数を下げ
ることにより電子放出能を高めた場合でも、その動作温
度は約1000℃で、現在量も多く用いられている塗布
形酸化物陰極と比べて、約250℃も高い、このように
、含浸形陰極は、高電流密度は得られるが、動作温度の
高いことが最大の欠点であり、管球に実装した場合に、
周辺電極を高融点金属材料に変更しなければならない上
に、陰極からBaやBaOが多量に蒸発し、他電極に付
着してグリッドエミッションの原因となり、管球特性に
悪影響を与えること、また、長時間加熱に耐え得る信頼
性の高いヒータの設計・製造が非常に困難であること、
などの問題があり、これらが実用化上の大きな障害とな
っていた。However, in conventional impregnated cathodes, even if the cathode surface is coated with 0s-Ru alloy to lower the work function and thereby increase the electron emission ability, the operating temperature is approximately 1000°C, and the current amount is large. Compared to the currently used coated oxide cathode, the impregnated cathode is approximately 250 degrees Celsius higher.Although impregnated cathodes can achieve high current density, their biggest drawback is their high operating temperature, When implemented in
In addition to the need to change the peripheral electrode to a high-melting point metal material, a large amount of Ba and BaO evaporates from the cathode and adheres to other electrodes, causing grid emissions and adversely affecting the tube characteristics. It is extremely difficult to design and manufacture a reliable heater that can withstand long heating times;
These problems have been major obstacles to practical application.
本発明の目的は、上記従来技術の有していた課題を解決
して、従来の含浸形陰極よりも低い動作温度で同等の電
子放出能を有し、かつ、実用化に耐え得る信頼性の高い
熱陰極を提供することにある。The purpose of the present invention is to solve the problems of the prior art as described above, and to provide a cathode which has the same electron emission ability at a lower operating temperature than the conventional impregnated cathode, and which is reliable enough to withstand practical use. The purpose is to provide a high hot cathode.
上記目的は、基体部をWとタングステン酸スカンジウム
とから構成し、エミッタ剤部を少なくともBaを含む酸
化物から構成した含浸形構造の熱陰極とすることによっ
て達成することができる。The above object can be achieved by providing a hot cathode with an impregnated structure in which the base portion is made of W and scandium tungstate, and the emitter agent portion is made of an oxide containing at least Ba.
なお、該陰極表面にWからなる薄膜層を設けることによ
って、その効果をさらに顕著にすることができる。Note that by providing a thin film layer made of W on the surface of the cathode, the effect can be made even more remarkable.
ここで、上記タングステン酸スカンジウムは。Here, the above scandium tungstate is.
5c2W、O,、あるいはS C@ W Ox zのい
ずれかあるいは混合でもよく、単独で使用する場合には
、基体部中の5c2W、01.、S c−W Oz z
の量は、それぞれ、26±5重量%、7±1.5重量%
であることが望ましく、また、混合状態で使用する場合
には、基体部中のScとWとの割合(Sc/W)は重量
比で0,02〜0.04の範囲であることが望ましい。5c2W, O, or S C@W Ox z or a mixture may be used. When used alone, 5c2W, 01. , S c-W Oz z
The amounts are 26±5% by weight and 7±1.5% by weight, respectively.
It is desirable that .
また、基体部の熱陰極全体に対する容積率は0.65〜
0.8の範囲にあることが望ましい。In addition, the volume ratio of the base portion to the entire hot cathode is 0.65~
It is desirable that it be in the range of 0.8.
まず本発明の熱陰極を含む熱陰極構体の概略構成につい
て図示すれば第1図に示す通りで、本発明の熱陰極1は
障壁層としてのカップ7内に挿入され、さらにスリーブ
8およびヒータ9と組合されて熱陰極構体6を形成する
が、熱陰極1は、さらに、W3およびタングステン酸ス
カンジウム4とからなる基体部2と、Baを含む酸化物
からなるエミッタ剤部5とからなることを示す。First, the schematic structure of a hot cathode assembly including a hot cathode of the present invention is shown in FIG. The hot cathode 1 further includes a base portion 2 made of W3 and scandium tungstate 4, and an emitter agent portion 5 made of an oxide containing Ba. show.
ここで、熱陰極lは、ヒータ9による加熱によって、基
体部2のW3と、Baを含むエミッタ剤部5とが反応し
て遊離のBaを形成するとともに、エミッタ剤部5の熱
分解によって遊離Baを形成する9例えば、エミッタ側
部材料としてBa3M10.を使用した場合には、基体
部2中のW3と反応して、下式により、Baが形成され
る。Here, the hot cathode 1 is heated by the heater 9 so that W3 of the base body part 2 and the emitter agent part 5 containing Ba react to form free Ba, and at the same time, Ba is released by thermal decomposition of the emitter agent part 5. For example, use Ba3M10.9 as the emitter side material to form Ba9. When Ba is used, it reacts with W3 in the base portion 2 to form Ba according to the following formula.
BaO= Ba+O・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・(2)このように
して形成されたBaは、また、基体部2中のタングステ
ン酸スカンジウム4と反応して遊離のScを形成する0
例えばタングステン酸スカンジウムとしてSc、W、0
1□を用いた場合、次式の反応によってScが形成され
る。BaO= Ba+O・・・・・・・・・・・・・・・
(2) Ba thus formed also reacts with scandium tungstate 4 in the base portion 2 to form free Sc. 0 to do
For example, as scandium tungstate, Sc, W, 0
When 1□ is used, Sc is formed by the reaction of the following formula.
5c4W30.+3Ba= 3BaWO4+2Sc
・・・・・・・・・(3)以上の反応式(1)、
(2)、(3)によって形成されたBa、O,Scは、
陰極表面に拡散するとともに結合し、陰極表面に単〜数
分子層程度の極めて薄い(Ba、Sc、O)複合化合物
層を形成する。5c4W30. +3Ba= 3BaWO4+2Sc
・・・・・・・・・(3) The above reaction formula (1),
Ba, O, Sc formed by (2) and (3) are
It diffuses and bonds to the cathode surface, forming an extremely thin (Ba, Sc, O) composite compound layer of one to several molecular layers on the cathode surface.
この複合化合物層の形成によって陰極表面の仕事関数が
約1 、2aVに下り、電子放出能が高められる。The formation of this composite compound layer lowers the work function of the cathode surface to about 1.2 aV, increasing the electron emission ability.
該複合化合物層がW上に形成された場合に、電子放出能
向上効果はさらに顕著になる。When the composite compound layer is formed on W, the effect of improving electron emission ability becomes even more remarkable.
基体部2を構成するタングステン酸スカンジウム4とし
ては、Baと反応してScを形成しゃすいSc、W□0
1.あるいはSc、WO1□の使用が効果的であり、単
独あるいは複合した形態で用いられる。The scandium tungstate 4 constituting the base portion 2 is Sc, W□0, which reacts with Ba to form Sc.
1. Alternatively, it is effective to use Sc and WO1□, which may be used alone or in combination.
単独で用いる場合の基体部2中のSc、W30工2、S
c、WO12の量は、それぞれ、26±5重量%、7.
5±1.5重量%の場合が効果的であり、また、複合形
態の場合は、基体部2中のScとWとの比(S c /
W )が重量比で0.02〜0.04の範囲となるよ
うな構成が好適である。また、エミッタ剤部(Baを含
む酸化物)5の材料としては、基体部2のW3と反応し
て安定してBaを生威し得るBad、 Ba3AI!、
0.、 Ba、CaAa、O,、あるいは複合化合物(
Ba、Sr、Ca)Oの使用が効果的であり、その熱陰
極1全体に占める割合は、容積率で0.2〜0.35の
範囲が好適である。このような構成とすることによって
、形成されたBaが無駄なく活用されることになる。Sc, W30 work 2, S in the base part 2 when used alone
The amounts of c and WO12 were 26±5% by weight, 7.
5±1.5% by weight is effective, and in the case of a composite form, the ratio of Sc to W in the base portion 2 (S c /
A structure in which W ) is in the range of 0.02 to 0.04 in terms of weight ratio is suitable. In addition, as the material of the emitter agent part (oxide containing Ba) 5, Bad, Ba3AI!, which can react with W3 of the base part 2 and stably produce Ba, can be used. ,
0. , Ba, CaAa, O, or complex compounds (
It is effective to use Ba, Sr, Ca)O, and the proportion thereof in the entire hot cathode 1 is preferably in the range of 0.2 to 0.35 in terms of volume ratio. With such a configuration, the formed Ba can be utilized without waste.
なお、熱陰極1の特性をより優れたものにするために設
けるW薄層の厚さは、特に制限はないが、製作上は10
0〜300nm程度が適切である。The thickness of the W thin layer provided to improve the characteristics of the hot cathode 1 is not particularly limited;
Approximately 0 to 300 nm is appropriate.
以下、本発明の熱陰極の構成について実施例によって具
体的に説明する。なお、本実施例においては、タングス
テン酸スカンジウムとしてSc、WO□2を用いた場合
について説明する。Hereinafter, the configuration of the hot cathode of the present invention will be specifically explained using examples. In this example, a case will be described in which Sc and WO□2 are used as scandium tungstate.
まず、酸化スカンジウム(scxoa)粉末と酸化タン
グステン(W○、)とを秤量・混合し、大気中で110
0℃2時間加熱してSc、WOl、を合成した。次いで
、平均粒径5tmのW粉末に5〜10重量%の範囲で0
.5重量%ごとに添加量を変えた上記Sc、WOl、を
混合した試料11種を作成、円板状にプレス成形した後
、水素雰囲気中1200℃、1時間の加熱を行い、Wと
S c−W Oizとを固着させて基体部を作成した。First, scandium oxide (scxoa) powder and tungsten oxide (W○,) were weighed and mixed, and
Sc and WOl were synthesized by heating at 0°C for 2 hours. Next, W powder with an average particle size of 5tm was added with 0% by weight in a range of 5 to 10% by weight.
.. Eleven samples were prepared by mixing the above-mentioned Sc and WOL in different amounts by 5% by weight, press-molded into a disk shape, and then heated at 1200°C for 1 hour in a hydrogen atmosphere to mix W and Sc. -W Oiz was fixed to create a base portion.
この場合、プレス成形時の圧力を調整することによって
、得られる基体部の空孔率が16〜42%の範囲に入る
ようにした。さらに、上記のようにして得られた基体部
と、4BaO−CaO−MヨO2の組成からなるエミッ
タ剤とを水素雰囲気中で加熱し、エミッタ剤を基体部空
隙に溶融含浸させて、円形状の熱陰極を作製した。In this case, by adjusting the pressure during press molding, the porosity of the resulting base body was made to fall within the range of 16 to 42%. Furthermore, the base body obtained as described above and an emitter agent having a composition of 4BaO-CaO-MyoO2 are heated in a hydrogen atmosphere to melt and impregnate the emitter agent into the voids of the base body to form a circular shape. A hot cathode was fabricated.
以上のようにして得られた熱陰極をカップ状の障壁層、
スリーブおよびヒータと組合わせて熱陰極構体を形成し
、該熱陰極構体と陽極とからなるダイオード方式により
、10−’Paの高真空中で、陽極に正のパルス電圧を
印加して電子放出特性の測定を行った0本発明陰極の代
表的な特性を第2図■に、また、比較として、従来型の
0s−Ru合金を500nm被覆した含浸形陰極の特性
を同図■に示す、ここで5図の横軸は陰極温度、縦軸は
零電界飽和電流密度を示す。この結果から、例えば、1
0A/ci+”の電流密度を得るに必要な陰極温度は従
来形の含浸形陰極では約1000℃であるのに対して、
本発明熱陰極の場合800〜850であり、本発明熱陰
極は従来形含浸形陰極に比べて動作温度を150〜20
0℃低くすることができることがわがる。The hot cathode obtained as described above is used as a cup-shaped barrier layer.
A hot cathode structure is formed in combination with a sleeve and a heater, and a positive pulse voltage is applied to the anode in a high vacuum of 10-'Pa using a diode system consisting of the hot cathode structure and an anode to develop electron emission characteristics. Typical characteristics of the cathode of the present invention, which were measured, are shown in Figure 2. For comparison, characteristics of an impregnated cathode coated with a conventional 0s-Ru alloy to a thickness of 500 nm are shown in Figure 2. In Figure 5, the horizontal axis shows the cathode temperature, and the vertical axis shows the zero electric field saturation current density. From this result, for example, 1
The cathode temperature required to obtain a current density of 0A/ci+" is approximately 1000°C for a conventional impregnated cathode, whereas
In the case of the hot cathode of the present invention, the operating temperature is 800 to 850, and the hot cathode of the present invention has an operating temperature of 150 to 20
It turns out that it is possible to lower the temperature by 0°C.
本発明の熱陰極で動作温度を下げることができるのは、
陰極表面に約1,2eV程度の低い仕事関数を有する単
分子層〜数分子層程度の薄い(Ba、 Sc、O)複合
化合物層が形成されていることによるものである。第3
図は本発明熱陰極表面についてオージェ分析を行った場
合のオージェスペクトルを示したもので、この結果から
、W上に単分子層程度の薄い(Ba、 Sc、0)複合
化合物層が形成されていることがわかる。The operating temperature can be lowered with the hot cathode of the present invention because:
This is because a thin (Ba, Sc, O) composite compound layer of about a monomolecular layer to several molecular layers is formed on the surface of the cathode and has a low work function of about 1.2 eV. Third
The figure shows the Auger spectrum obtained when Auger analysis was performed on the surface of the hot cathode of the present invention. From this result, a thin (Ba, Sc, 0) composite compound layer as thin as a monomolecular layer was formed on W. I know that there is.
また、上記の実施例において、最良の電子放出を示した
試料の基本組成はS c、 W 0227重量%であり
、また、最良の値に対して90%以上の特性が得られた
のは、Sc、WO□25.5〜8.5重量%の範囲の試
料であった。また、基体空孔率と電子放出特性との関係
については、空孔率が20%以上であればほぼ一定の値
が得られた。しかし、熱陰極自体の強度を考慮した場合
、空孔率の上限は約35%が適切である。(空孔率を容
積率に換算すると、上記は、それぞれ、0.8および0
.65となる)。In addition, in the above examples, the basic composition of the sample that showed the best electron emission was S c, W 0227% by weight, and the characteristics that were 90% or more of the best value were obtained by: The samples contained Sc and WO□ in a range of 25.5 to 8.5% by weight. Further, regarding the relationship between the substrate porosity and the electron emission characteristics, a substantially constant value was obtained when the porosity was 20% or more. However, when the strength of the hot cathode itself is considered, an appropriate upper limit of the porosity is about 35%. (When converting the porosity into a volume ratio, the above values are 0.8 and 0, respectively.
.. 65).
なお、上記の例においては、基体部に用いるタングステ
ン酸スカンジウムとしてS C,W O工2を用いた場
合について説明したが、S C,W○1□の代りに5c
2W、O工2を用いても同様な効果が得られ、また、両
者を混合して用いた場合にも同様な効果が得られた。こ
こで、同等な効果の得られたSc*W30−aの量は2
6±5重量%であった。また。In addition, in the above example, a case was explained in which SC, WO 2 was used as scandium tungstate for the base part, but 5C was used instead of SC, W○1□.
A similar effect was obtained using 2W and O-process 2, and a similar effect was also obtained when a mixture of the two was used. Here, the amount of Sc*W30-a that achieved the same effect is 2
It was 6±5% by weight. Also.
混合して用いた場合については、基体部のScとWとの
重量比(S c / W )が0.02〜0.04の場
合に同等の効果が認められた。When used as a mixture, similar effects were observed when the weight ratio (Sc/W) of Sc and W in the base was 0.02 to 0.04.
さらに、上記例において、熱陰極表面にWの薄層を設け
たが、これはW上に(Ba、Sc、O)複合化合物層が
形成された場合に低仕事関数の表面が得られる原理に基
づく。W薄層の厚さについては特に制約は認められなか
ったが、製作上は100〜300n@程度が適切であっ
た。Furthermore, in the above example, a thin layer of W was provided on the hot cathode surface, which is based on the principle that a surface with a low work function is obtained when a (Ba, Sc, O) composite compound layer is formed on W. Based on. Although no particular restrictions were found regarding the thickness of the W thin layer, a thickness of about 100 to 300 n@ was appropriate for manufacturing purposes.
以上述べてきたように、熱陰極を本発明構成の熱陰極と
することによって、従来技術の有していた課題を解決し
て、低温動作・高電流密度で、かつ、実用化に耐え得る
、信頼性の高い熱陰極を提供することができた。具体的
には、従来の含浸形陰極と比較して、同一電流密度を得
るに必要な動作温度を150°〜200℃低くすること
ができ、その結果、陰極からのBa、BaOの蒸発速度
を1.5〜2桁程度下げることが可能となり、グリッド
エミッションによる管球特性劣化を格段に減少させるこ
とが可能となった。As described above, by using a hot cathode having the structure of the present invention, the problems of the conventional technology can be solved, and the hot cathode can operate at a low temperature, have a high current density, and can withstand practical use. We were able to provide a highly reliable hot cathode. Specifically, compared to a conventional impregnated cathode, the operating temperature required to obtain the same current density can be lowered by 150° to 200°C, and as a result, the evaporation rate of Ba and BaO from the cathode can be reduced. It has become possible to lower this by about 1.5 to 2 orders of magnitude, and it has become possible to significantly reduce the deterioration of tube characteristics due to grid emissions.
なお、動作温度の低下によって、現在量も多く使用され
ている塗布形酸化物陰極用のヒータがそのまま利用でき
るようになり、ヒータの信頼性向上とともに、低消費電
力化が可能となった。Note that the reduction in operating temperature has made it possible to use heaters for coated oxide cathodes, which are currently widely used, as is, making it possible to improve heater reliability and reduce power consumption.
第1図は本発明熱陰極の概略構成を示す図で、(a)は
本発明熱陰極の一部断面斜視図、(b)は本発明熱陰極
を用いた熱陰極構体を示す断面図、第2図は本発明熱陰
極と従来の含浸形陰極との電子放出特性の比較を示す図
、第3図は本発明熱陰極表面のオージェスペクトル図で
ある。
l・・・熱陰極 2・・・基体部3・・・タ
ングステン(W)
4・・・タングステン酸スカンジウム
5・・・エミッタ側部 6・・・熱陰極構体7・・
・障壁層(カップ) 8・・・スリーブ9・・・ヒータ
第1
図
第2
図
+oy(柁対逼船
+K”1FIG. 1 is a diagram showing a schematic configuration of the hot cathode of the present invention, (a) is a partially sectional perspective view of the hot cathode of the present invention, (b) is a cross-sectional view showing a hot cathode structure using the hot cathode of the present invention, FIG. 2 is a diagram showing a comparison of electron emission characteristics between the hot cathode of the present invention and a conventional impregnated cathode, and FIG. 3 is an Auger spectrum diagram of the surface of the hot cathode of the present invention. l...Hot cathode 2...Base part 3...Tungsten (W) 4...Scandium tungstate 5...Emitter side part 6...Hot cathode structure 7...
・Barrier layer (cup) 8...Sleeve 9...Heater 1 Fig. 2 Fig. 2
Claims (1)
とからなる基体部と、少なくともバリウム(Ba)を含
む酸化物からなるエミッタ剤部とからなることを特徴と
する熱陰極。 2、表面にWからなる薄層を設けたことを特徴とする特
許請求の範囲第1項記載の熱陰極。[Scope of Claims] 1. A hot cathode comprising a base portion made of tungsten (W) and scandium tungstate, and an emitter agent portion made of an oxide containing at least barium (Ba). 2. The hot cathode according to claim 1, characterized in that a thin layer made of W is provided on the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1220391A JPH0384825A (en) | 1989-08-29 | 1989-08-29 | Hot cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1220391A JPH0384825A (en) | 1989-08-29 | 1989-08-29 | Hot cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0384825A true JPH0384825A (en) | 1991-04-10 |
Family
ID=16750381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1220391A Pending JPH0384825A (en) | 1989-08-29 | 1989-08-29 | Hot cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0384825A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541684A (en) * | 1992-04-20 | 1996-07-30 | Olympus Optical Co. Ltd. | Camera having photographic frame size changing means controlled by an external operating member |
-
1989
- 1989-08-29 JP JP1220391A patent/JPH0384825A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5541684A (en) * | 1992-04-20 | 1996-07-30 | Olympus Optical Co. Ltd. | Camera having photographic frame size changing means controlled by an external operating member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900009071B1 (en) | Impregnated Cathode | |
JPS58154131A (en) | Impregnation type cathode | |
Hasker et al. | Scandium supply after ion bombardment on scandate cathodes | |
KR970007292B1 (en) | Electrode for discharge light source | |
JPH0384825A (en) | Hot cathode | |
JP2002260520A (en) | Metal cathode and heat-dissipating cathode structure having the same | |
JP2585232B2 (en) | Impregnated cathode | |
JPH09129118A (en) | Cathode for electron tube | |
JPS59191226A (en) | Cathode body of electron tube or the like | |
JPH0782800B2 (en) | Electron tube cathode | |
JPS5979934A (en) | Impregnated cathode | |
US5951352A (en) | Methods of making thermionic cathode using oxygen deficient and fully oxidized material to enhance emissions | |
JPH0311520A (en) | Impregnated type cathode | |
JPS60170136A (en) | Impregnated cathode | |
JPH02186524A (en) | Cathode for electronic tube | |
JPS60170137A (en) | Hot cathode | |
JPH04286827A (en) | Impregnated cathode | |
JPS6032232A (en) | Impregnated cathode | |
JPS62213030A (en) | Impregnated type cathode | |
JPS63221527A (en) | Impregnated cathode | |
JPS61198529A (en) | Cathode for electron tube | |
JPH04220925A (en) | Cathode for electron tube | |
JPH03230445A (en) | Cathode for electron tube | |
JPH03105827A (en) | Impregnated type cathode | |
JPS6290819A (en) | Cathode for electron tube |