JPH03105827A - Impregnated type cathode - Google Patents

Impregnated type cathode

Info

Publication number
JPH03105827A
JPH03105827A JP1242006A JP24200689A JPH03105827A JP H03105827 A JPH03105827 A JP H03105827A JP 1242006 A JP1242006 A JP 1242006A JP 24200689 A JP24200689 A JP 24200689A JP H03105827 A JPH03105827 A JP H03105827A
Authority
JP
Japan
Prior art keywords
cathode
thin film
impregnated
layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242006A
Other languages
Japanese (ja)
Inventor
Isato Watabe
渡部 勇人
Yoshihiko Yamamoto
山本 恵彦
Susumu Sasaki
進 佐々木
Tomio Yaguchi
富雄 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1242006A priority Critical patent/JPH03105827A/en
Publication of JPH03105827A publication Critical patent/JPH03105827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a long life of impregnated type cathode without generating the exhausting of scandium(Sc) by providing an intermediate membrane layer separately as an Sc feeding source at the lower side of the membrane layer of an Sc system impregnated type cathode in which the membrane layer including Sc is formed. CONSTITUTION:When a membrane layer 6 which consists of W, and an oxide including W and Sc, is formed on the surface of a cathode 1 impregnating electron emitting substance including Ba in the pores of a heat-resisting porous base body, a mixture or a compound of Re, Os, Ru, Ni, Pt, W, Ta, Mo, and the like, including Sc is used as an intermediate layer 5. As a result, the Sc being the component element of a single molecule complex layer of Ba, Sc, and O can be easily fed to the surface of the cathode 1. Consequently, even after the reaction of Ba and the membrane layer 6 is ended, the Sc can be fed from the intermediate layer 5 to the surface, and the service life property can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は,高精細ブラウン管用等に使用される高電流密
度カソードに関するものである。
The present invention relates to a high current density cathode used for high definition cathode ray tubes and the like.

【従来の技術】[Conventional technology]

表示管,ブラウン管,撮像管等の高精細化には高電流密
度の含浸形カソード、特にSc系含浸形カソードが有望
視されているSSC系の含浸形カソードは、特開昭63
−91924号に示されるように、Wの焼結体の内部に
電子放出材料を含浸したカソード表面に、W及びWとS
cを含む酸化物からなる薄膜層を設けている.上記カソ
ードは、動作時にカソード表面にBa,Sc及びOから
なる低仕事関数の単分子ないし数分子程度の(Ba:S
c:O)複合層が形成されていることが特徴である。 Sc系含浸形カソードでは、ヒータで加熱することによ
り,下地カソード内で耐熱性多孔質体と電子放出物質が
反応し、生或したBaが細孔内を通り表面に達する.ま
たBaは薄膜層を通過するさせる. 従来のW及びWとScを含む酸化物からなる薄膜層を表
面に形成した含浸形カソードでは、(Ba:sc:O)
複合層の構戊元素であるScは、Baが薄膜層を通過す
る際に生戒するScのみであり、長時間動作させると薄
膜層部の変質とBaの供給量の減少によってScの生成
量が減少し、カソード表面の仕事関数が高くなり,電子
放出特性の低下につながった.
Impregnated cathodes with high current density, especially Sc-based impregnated cathodes, are seen as promising for high-definition display tubes, cathode ray tubes, image pickup tubes, etc. SSC-based impregnated cathodes are described in Japanese Patent Laid-Open No. 63
As shown in No.-91924, W and W and S
A thin film layer made of an oxide containing c is provided. During operation, the cathode has a single molecule to several molecules of low work function consisting of Ba, Sc, and O (Ba:S) on the surface of the cathode.
c:O) It is characterized by the formation of a composite layer. In the Sc-based impregnated cathode, when heated with a heater, the heat-resistant porous material and the electron-emitting substance react within the underlying cathode, and the generated Ba passes through the pores and reaches the surface. In addition, Ba is allowed to pass through the thin film layer. In the conventional impregnated cathode in which a thin film layer made of W and an oxide containing W and Sc is formed on the surface, (Ba:sc:O)
Sc, which is a constituent element of the composite layer, is the only Sc that survives when Ba passes through the thin film layer.If operated for a long time, the amount of Sc produced will decrease due to deterioration of the thin film layer and a decrease in the amount of Ba supplied. decreased, the work function of the cathode surface increased, and the electron emission characteristics deteriorated.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記従来技術による含浸形カソードは、動作時において
カソード表面に低仕事関数の(Ba:SCOO)の複合
層を形成することによって電子放出特性を向上させてい
る.しかしながら長時間動作させると単分子複合M構戊
分子であるScが減少し,電子放出特性の劣下が生じる
ため短寿命になるという問題があった. 本発明の目的は、Scが枯渇しない長寿命の含浸形カソ
ードを得ることにある. [課題を解決するための手段】 上記目的は、Scを含む薄膜層を形成したSc系の含浸
形カソードにおいて,上記薄H層の下部に新たにScの
供給源として薄膜中間層を設けた新構成の含浸形カソー
ドにより達成される.
The impregnated cathode according to the prior art has improved electron emission characteristics by forming a composite layer of (Ba:SCOO) with a low work function on the surface of the cathode during operation. However, when operated for a long time, Sc, which is a monomolecular composite M-structure molecule, decreases, resulting in a decrease in electron emission characteristics, resulting in a shortened lifespan. An object of the present invention is to obtain a long-life impregnated cathode that does not become depleted of Sc. [Means for Solving the Problems] The above object is to provide a new Sc-based impregnated cathode in which a thin film layer containing Sc is formed, in which a thin intermediate layer is newly provided as a supply source of Sc under the thin H layer. This is achieved by an impregnated cathode configuration.

【作用】[Effect]

あらかじめ薄膜層下部にScの供給源として、カソード
動作中の加熱によりScがカソード表面に偏析しやすい
混合物もしくは化合物を設けているため、(Ba:Se
:0)単分子複合層へのScの供給が長時間安定に行わ
れ,寿命特性を向上することが可能となる.
Since a mixture or compound that is likely to segregate Sc on the cathode surface due to heating during cathode operation is provided in advance as a supply source of Sc at the bottom of the thin film layer, (Ba:Se
:0) Sc is stably supplied to the monomolecular composite layer for a long time, making it possible to improve the life characteristics.

【実施例】【Example】

次に本発明の実施例を図表をもとに説明する.実施例1 第1図は本発明による含浸形カソードの断面図、第2図
はカソードの電子放出特性の経時変化を示す測定図であ
るウ 第1図において、カソードを形或する下地含浸形カソー
ドは、粒径5μmのW絹をプレス或形し水素中で仮焼結
したのち真空中で焼結して作製し?空孔率28%の多孔
質基体に、4BaO−AI,O,・CaOの組或を有す
る電子放出物質を水素雰囲気中で溶融含浸させたもので
ある.上記下地含浸形カソード1を、カップ2に入れた
のちスリーブ3に挿入して、上記カップ2の下部にはス
リーブ3内に加熱用ヒータ4を設けている.さらに上記
下地含浸形カソード1の表面にReと5重量%Scの混
合物からなる薄膜中間層5と、5重量%Scを含むWと
S e a W= O−xとからなる薄膜JW6を設け
ている, この薄膜層5.6はスパッタリング装置を用いて形成し
た。また、膜組成は誘導結合プラズマ発光分析(ICP
S法)及び蛍光Xli分析(FLX法)によって求めた
。スパッタリング用のターゲットは、それぞれReとS
cの混合物、W粉とSc2W,O,■粉とを種々の組或
比で混合しブレス或形・焼結したものである。さらにR
eに対するSciJl度を種々変えた。なお.ReとS
cの混合物は真空焼結炉で1300℃で約1時間処理を
行い合威した。 上記のようにして薄膜層5,6を形成した含浸形カソー
ドは、アルミナを′fIN.覆したWヒータ4を用いて
I Q.’Torr台の真空容器内で約900℃(輝度
温度)に加熱し、アノード及びカソードの平行平板から
なる2極形式でパルス電圧を印加し、電子放出能の測定
を行った。 第2図は種々の場合におけるカソードの動作温度900
℃での電子放出特性である。含浸形カソード1の表面に
5重量%のScを含むWからなる薄膜層を300nm形
成しただけの従来技術によるカソードの特性7と、上記
薄膜層下部に5重量%のSc含むReの薄膜中間層をl
oonm形或した本実施例のカソードの特性8をそれぞ
れ示している. 本発明のカソードの特性は、薄膜中間M5を形成しない
従来カソードに比べ,初期において同等もしくは多少高
い値を示し、加熱処理に伴う電子放出特性の経時変化で
は、従来カソードより約10倍程度良い特性を維持する
ことができた.カソード表面のSc濃度の変化を、オー
ジェ分析法を用いて調べた.その結果、本発明のカソー
ドの表面Sc濃度は、1150℃で約5時間加熱すると
ほぼ一定値に達し,しかも100hの加熱後においても
、加熱初期(1150℃,5h)の値の80%の濃度を
示した。これに対し、Scを含むReの薄膜中間WI5
がない従来のカソードのSc量はiooh加熱後におい
て30%以下となった・ 次に、薄膜中間IW5のRe中のScの組或をそれぞれ
1,5,10,15,20,25,30重量%に変化さ
せたカソードの電子放出特性の測定を行った.その結果
を第l表に示す. 上記カソードの特性は1〜20重量%のI!i囲おいて
はほとんど同等の特性を示すが、25〜30重量%の範
囲では逆に悪い特性を示した.一方、Sc量を1重量%
以下にすることはターゲット中のScが不均一になり,
膜組成の均一性が低下する問題が生じた. 実施例2 実施例1の薄膜中間層5としてSeとReの代わりにS
cを含むOs,Ru,W,Pt,Ta,MOを用いた。 各薄膜中間層に含まれるScの量は5重量%であった。 その時の電子放出特性の結果を第2表に示す。 示すことが確認された。しかしながらSc量を変化させ
たところ、Os,Ru,PtについてはReと同範囲で
高い特性を示したが、W t T a j tMoでは
1〜5重量%の範囲で同等の特性を示し、その最適範囲
が狭いことが分かった. 実施例3 実施例1のカソードにおいて、薄膜中間Nj5の膜厚が
それぞれ20,50,100,200,300,400
,500,600,700nmのカソードを作製し、電
子放出特性の測定を行った。 その結果を第3表に示す. 第2表は初期放出電流密度と100h加熱後の値を比較
を示しており、上記元素も同等の効果をこの結果によれ
ば,50〜500nmの範囲で初期値・寿命特性とも実
施例1と同様な特性を示したが、50nm以下では、初
期特性は良いものの加熱に伴う特性の劣下が大きく,ま
た500nm以上では初期値・寿命特性とも上記の効果
が見られなかった. 実施例4 上記実施例1のカソードにおいて、薄膜中間層5を10
0rmmとし、薄膜層6の膜厚をそれぞれ30,50,
100,200,300,400,500,600,8
00nmのカソードを作製し、電子放出特性の測定を行
った。その結果を第4表に示す. この結果によれば,50〜500nmの範囲では.Sc
添加の効果が見られるものの、30nm以下では上記カ
ソード特性に比べ加熱に伴う寿命特性の劣化が早《、6
00nm以上では、Sc添加の効果が見られなかった。 上記のとおり本発明のカソードにおいては、SC濃度の
減少は従来例に比較し少なく、カソード寿命は著しく改
善されることは明かである。
Next, examples of the present invention will be explained based on diagrams. Example 1 FIG. 1 is a cross-sectional view of an impregnated cathode according to the present invention, and FIG. 2 is a measurement diagram showing changes over time in the electron emission characteristics of the cathode. is made by pressing or shaping W silk with a grain size of 5 μm, pre-sintering it in hydrogen, and then sintering it in vacuum. A porous substrate with a porosity of 28% is melted and impregnated with an electron-emitting material having a composition of 4BaO-AI,O,.CaO in a hydrogen atmosphere. The base-impregnated cathode 1 is placed in a cup 2 and then inserted into a sleeve 3, and a heater 4 is provided in the sleeve 3 at the bottom of the cup 2. Further, on the surface of the base-impregnated cathode 1, a thin film intermediate layer 5 made of a mixture of Re and 5% by weight Sc, and a thin film JW6 made of W containing 5% by weight Sc and S e a W = O-x are provided. This thin film layer 5.6 was formed using a sputtering device. In addition, the film composition was determined by inductively coupled plasma emission spectroscopy (ICP).
S method) and fluorescence Xli analysis (FLX method). The targets for sputtering are Re and S, respectively.
A mixture of W powder and Sc2W, O, and ■ powder is mixed in various ratios and pressed, shaped, and sintered. Further R
The SciJl degree for e was varied. In addition. Re and S
The mixture c was sintered in a vacuum sintering furnace at 1300° C. for about 1 hour. The impregnated cathode on which the thin film layers 5 and 6 were formed as described above was made of alumina of 'fIN. IQ. using the overturned W heater 4. It was heated to about 900° C. (brightness temperature) in a vacuum chamber on a Torr table, and a pulse voltage was applied in a two-pole format consisting of parallel plates of an anode and a cathode, and the electron emission ability was measured. Figure 2 shows the cathode operating temperature 900 in various cases.
This is the electron emission characteristic at °C. Characteristics 7 of a cathode according to the prior art in which a thin film layer of W containing 5% by weight of Sc is formed on the surface of the impregnated cathode 1 to a thickness of 300 nm, and a thin intermediate layer of Re containing 5% by weight of Sc below the thin film layer. l
Characteristics 8 of the cathode of the present embodiment in the oonm type are shown. The characteristics of the cathode of the present invention are the same or slightly higher at the initial stage compared to the conventional cathode that does not form the thin film intermediate M5, and the electron emission characteristics change over time due to heat treatment, which is about 10 times better than that of the conventional cathode. was able to maintain. Changes in the Sc concentration on the cathode surface were investigated using Auger analysis. As a result, the surface Sc concentration of the cathode of the present invention reaches a nearly constant value after heating at 1150°C for about 5 hours, and even after 100h of heating, the concentration remains 80% of the value at the initial stage of heating (1150°C, 5h). showed that. On the other hand, Re thin film intermediate WI5 containing Sc
The amount of Sc in the conventional cathode was 30% or less after iooh heating.Next, the amount of Sc in Re of thin film intermediate IW5 was 1, 5, 10, 15, 20, 25, and 30% by weight, respectively. The electron emission characteristics of the cathode were measured by changing the %. The results are shown in Table I. The characteristics of the above cathode are 1 to 20% by weight of I! In the range of 25 to 30% by weight, the properties were almost the same, but in the range of 25 to 30% by weight, the properties were worse. On the other hand, the amount of Sc was 1% by weight.
Doing the following will result in uneven Sc in the target,
A problem arose in which the uniformity of the film composition decreased. Example 2 As the thin film intermediate layer 5 of Example 1, S was used instead of Se and Re.
Os, Ru, W, Pt, Ta, and MO containing c were used. The amount of Sc contained in each thin film intermediate layer was 5% by weight. The results of the electron emission characteristics at that time are shown in Table 2. It was confirmed that However, when the amount of Sc was changed, Os, Ru, and Pt showed high properties in the same range as Re, but WtTajtMo showed the same properties in the range of 1 to 5% by weight. It turns out that the optimal range is narrow. Example 3 In the cathode of Example 1, the thickness of the thin film intermediate Nj5 is 20, 50, 100, 200, 300, and 400, respectively.
, 500, 600, and 700 nm cathodes were prepared and their electron emission characteristics were measured. The results are shown in Table 3. Table 2 shows a comparison between the initial emission current density and the value after 100 hours of heating. According to the results, the above elements have the same effect as Example 1 in terms of initial value and lifetime characteristics in the range of 50 to 500 nm. Similar characteristics were shown, but at a wavelength of 50 nm or less, the initial properties were good, but the properties deteriorated significantly with heating, and at a wavelength of 500 nm or more, the above-mentioned effects were not observed in both initial value and lifetime properties. Example 4 In the cathode of Example 1 above, the thin film intermediate layer 5 was
0 rpm, and the film thickness of the thin film layer 6 is 30, 50, and 30, respectively.
100, 200, 300, 400, 500, 600, 8
A 00 nm cathode was prepared and its electron emission characteristics were measured. The results are shown in Table 4. According to this result, in the range of 50 to 500 nm. Sc
Although the effect of addition can be seen, below 30 nm, the life characteristics deteriorate more quickly with heating than the cathode characteristics described above.
00 nm or more, no effect of Sc addition was observed. As described above, in the cathode of the present invention, it is clear that the SC concentration decreases less than in the conventional example, and the cathode life is significantly improved.

【発明の効果】【Effect of the invention】

上記のように本発明による含浸形カソードは、耐熱多孔
質基体内の空孔部にBaを含む電子放出物質を含浸した
カソード表面に、W及びWとScを含む酸化物からなる
薄I!!!層を形或する際に、SCを含むRs,Os,
Ru,Ni,Pt,W,Ta,Moなどの混合物もしく
は化合物を中間層に用いることにより、電子放出特性向
上に必要な(Ba,Sc,O)の単分子複合層構成元素
であるScをカソード表面に,供給しやすくしたもので
ある.従来カソードは下地カソードからBaが表面に供
給され薄膜層と反応し、Scが生成されるが、長時間動
作させると薄膜層部の変質とBaの供給量の減少によっ
てScの生成量が減少し,短寿命になってしまった.し
かし、本発明のカソードにおいては、従来の薄膜層にさ
らにScを表面に析出しやすい混合物もしくは化合物を
中間層に用いることにより、Baと薄膜層の反応がなく
なってからも上記中間層からScを表面に供給すること
ができ寿命特性の向上の効果がある。
As described above, the impregnated cathode according to the present invention has a thin I. ! ! When forming the layer, Rs including SC, Os,
By using a mixture or compound of Ru, Ni, Pt, W, Ta, Mo, etc. in the intermediate layer, Sc, which is an element constituting a monomolecular composite layer of (Ba, Sc, O) necessary for improving electron emission characteristics, can be used as a cathode. This makes it easier to supply it to the surface. In the conventional cathode, Ba is supplied to the surface from the underlying cathode and reacts with the thin film layer to generate Sc, but when operated for a long time, the amount of Sc generated decreases due to deterioration of the thin film layer and a decrease in the amount of Ba supplied. , its lifespan has become short. However, in the cathode of the present invention, by using in the intermediate layer a mixture or compound that tends to precipitate Sc on the surface of the conventional thin film layer, Sc can be removed from the intermediate layer even after the reaction between Ba and the thin film layer has ceased. It can be supplied to the surface and has the effect of improving life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の含浸形カソード断面の断面模式図、
第2図は、カソードの電子放出特性の経時変化を示す測
定図である. 符号の説明 1・・・含浸形基体,2・・・カップ,3・・・スリー
ブ,4・・・ヒータ,5・・・ReとScからなる薄膜
中間M,6・Wとs csW,O.,の薄膜層 0 第1図 第2図 50 100 熱処理時間(h)
FIG. 1 is a schematic cross-sectional view of the impregnated cathode of the present invention;
Figure 2 is a measurement diagram showing the change over time in the electron emission characteristics of the cathode. Explanation of symbols 1... Impregnated base, 2... Cup, 3... Sleeve, 4... Heater, 5... Thin film intermediate M, 6, W and s csW, O consisting of Re and Sc. .. , thin film layer 0 Figure 1 Figure 2 50 100 Heat treatment time (h)

Claims (1)

【特許請求の範囲】 1、耐熱多孔質金属基体に電子放出物質を含浸させ、上
記カソードの電子放出面に上記の電子放出面の仕事関数
を低下させる薄膜層としてタングステン(W)と酸化ス
カンジウム(Sc_2O_3)、タングステン酸化スカ
ンジウム(Sc_2W_3O_1_2もしくはSc_5
WO_1_2)の混合体からなる薄膜層が形成されてい
るカソードにおいて、上記基体と上記薄膜層との間にス
カンジウム(Sc)を含むSc供給源の薄膜中間層を設
けたことを特徴とする含浸形カソード。 2、特許請求の範囲第1項記載のカソードにおいて、上
記Scの供給源の薄膜中間層として、加熱することによ
ってScがカソード表面に偏析する材料を用いることを
特徴とする含浸形カソード。 3、特許請求の範囲第2項記載のカソードにおいて、上
記Sc供給源の薄膜中間層がRe、Ni、Os、Ru、
Pt、W、Ta、Moのうち少なくとも一種とScから
なる混合物もしくは化合物であることを特徴とする含浸
形カソード。 4、特許請求の範囲第1項ないし第3項記載のカソード
において、上記Scの供給源の薄膜中間層の膜厚が50
〜500nmであることを特徴とする含浸形カソード。 5、特許請求の範囲第1項〜第4項記載のカソードにお
いて、上記仕事関数を低下させる薄膜層の膜厚が50〜
500nmであることを特徴とする含浸形カソード。 6、特許請求の範囲第1項〜第5項記載のカソードにお
いて、上記Scの供給源の薄膜中間層中のScの含有量
が、Re、Os、Ru、Ptの混合物もしくは化合物の
場合は1〜20重量%、Ni、W、Ta、Moとの混合
物もしくは化合物の場合は1〜5重量%であることを特
徴とする含浸形カソード。
[Claims] 1. A heat-resistant porous metal substrate is impregnated with an electron-emitting substance, and tungsten (W) and scandium oxide ( Sc_2O_3), tungsten scandium oxide (Sc_2W_3O_1_2 or Sc_5
An impregnated type cathode having a thin film layer formed of a mixture of WO_1_2), characterized in that a thin film intermediate layer containing scandium (Sc) as a Sc source is provided between the base body and the thin film layer. cathode. 2. An impregnated cathode according to claim 1, characterized in that the Sc supply source thin film intermediate layer is made of a material that causes Sc to segregate on the cathode surface when heated. 3. In the cathode according to claim 2, the thin film intermediate layer of the Sc supply source includes Re, Ni, Os, Ru,
An impregnated cathode characterized in that it is a mixture or compound consisting of at least one of Pt, W, Ta, and Mo and Sc. 4. In the cathode according to claims 1 to 3, the thickness of the thin film intermediate layer of the Sc supply source is 50%.
An impregnated cathode characterized in that the wavelength is ~500 nm. 5. In the cathode according to claims 1 to 4, the thin film layer that lowers the work function has a thickness of 50 to 50.
An impregnated cathode characterized by a wavelength of 500 nm. 6. In the cathode according to claims 1 to 5, when the Sc content in the thin film intermediate layer as the Sc source is a mixture or compound of Re, Os, Ru, and Pt, the content is 1. -20% by weight, and in the case of a mixture or compound with Ni, W, Ta, Mo, 1 to 5% by weight.
JP1242006A 1989-09-20 1989-09-20 Impregnated type cathode Pending JPH03105827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242006A JPH03105827A (en) 1989-09-20 1989-09-20 Impregnated type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242006A JPH03105827A (en) 1989-09-20 1989-09-20 Impregnated type cathode

Publications (1)

Publication Number Publication Date
JPH03105827A true JPH03105827A (en) 1991-05-02

Family

ID=17082859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242006A Pending JPH03105827A (en) 1989-09-20 1989-09-20 Impregnated type cathode

Country Status (1)

Country Link
JP (1) JPH03105827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
CN105803285A (en) * 2016-03-21 2016-07-27 合肥工业大学 Ultra-fine grain Sc2O3 doped W-based composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
US6304024B1 (en) 1995-06-09 2001-10-16 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region
US6447355B1 (en) 1995-06-09 2002-09-10 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region
CN105803285A (en) * 2016-03-21 2016-07-27 合肥工业大学 Ultra-fine grain Sc2O3 doped W-based composite material and preparation method thereof
CN105803285B (en) * 2016-03-21 2017-08-11 合肥工业大学 A kind of Ultra-fine Grained Sc2O3Adulterate W based composites and preparation method thereof

Similar Documents

Publication Publication Date Title
KR900009071B1 (en) Impregnated cathode
JPS58154131A (en) Impregnation type cathode
JP3137961B2 (en) Electron emission electrode
US4855637A (en) Oxidation resistant impregnated cathode
Hasker et al. Scandium supply after ion bombardment on scandate cathodes
JPH03105827A (en) Impregnated type cathode
KR920001334B1 (en) Dispenser cathode
JP3078287B1 (en) Manufacturing method of electron emission material
JP2585232B2 (en) Impregnated cathode
JP3137960B2 (en) Electron emission material
JPH0325824A (en) Impregnated cathode
JP2001006521A (en) Cathode body structure and color picture tube
JPH09129118A (en) Cathode for electron tube
JP2001167687A (en) Electron-emitting material, electrode and discharge lamp
JP3190320B2 (en) Method for manufacturing electron emission material film
JP4544868B2 (en) Manufacturing method of electrode material for cold cathode fluorescent lamp and manufacturing method of discharge electrode
KR920001333B1 (en) Dispenser cathode
JPH0927263A (en) Cold cathode element
JP3462818B2 (en) Electron emitting material, method of manufacturing the same, electrode, and discharge lamp
JP3424165B2 (en) Phosphor manufacturing apparatus and phosphor manufacturing container
JPH04286827A (en) Impregnated cathode
JPS62133632A (en) Impregnated type cathode
JPH08329837A (en) Manufacture of impregnated cathode
KR920004898B1 (en) Impregnated ype cathode
JPS6032232A (en) Impregnated cathode