JPS6032232A - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPS6032232A
JPS6032232A JP58141051A JP14105183A JPS6032232A JP S6032232 A JPS6032232 A JP S6032232A JP 58141051 A JP58141051 A JP 58141051A JP 14105183 A JP14105183 A JP 14105183A JP S6032232 A JPS6032232 A JP S6032232A
Authority
JP
Japan
Prior art keywords
oxide
barium
porous substrate
impregnated
impregnated cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58141051A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Yoshihiko Yamamoto
山本 恵彦
Toshiyuki Aida
会田 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58141051A priority Critical patent/JPS6032232A/en
Publication of JPS6032232A publication Critical patent/JPS6032232A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Abstract

PURPOSE:To obtain an impregnated cathode capable of being put in practical use while checking evaporation speed of barium and barium oxide by impregnating the thin hole parts of a heat-resisting porous substrate, in which particles of hafunium oxide, zirconium oxide and titanium oxide are dispersed, with an electron emissive substance. CONSTITUTION:The thin hole parts 3 inside a porous substrate 4 made of material powder 1 of a heat-resisting porous substrate of tungsten, molybdenum, tantalum, rhenium and hafunium oxide, zirconium oxide, titanium oxide or oxide powder 2 containing these are impregnated with an electron emissive substance while, for instance, the electron emissive surface is coated with osmium, iridium, rhenium, ruthenium or an alloy selected from a group thereof. Thereby, the former manufacturing process can be applied to and also the evaporation amount of barium and barium oxide can be lowered by 0.5-3 figures than the impregnated cathode of the former type with no change of the tublar bulb manufacturing process.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ブラウン管・撮像管等の′電子管に用いる含
浸形陰極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an impregnated cathode used in electron tubes such as cathode ray tubes and image pickup tubes.

〔発明の背景〕[Background of the invention]

含浸形陰極は高電流密度陰極で、電子管の商性能化を計
るための陰極として有望視されている。
The impregnated cathode is a high current density cathode and is seen as a promising cathode for improving the commercial performance of electron tubes.

含浸形隘極は多孔質基体の細孔部に電子放出物質を含浸
したものである。多孔質基体はほとんどの場合・タング
ステンから製造されているが、モリブデン、タンタル、
オスミウム、ルテニウム、イリジウム、レニウムなどの
金属を含む場合もある。
An impregnated electrode is one in which the pores of a porous substrate are impregnated with an electron-emitting substance. Porous substrates are most often made from tungsten, but also molybdenum, tantalum,
It may also contain metals such as osmium, ruthenium, iridium, and rhenium.

電子放出物質として酸化バリウムと酸化アルミニウム、
酸化カルシウム、酸化マグネシウムなどのうち少くとも
1種を含む化合物あるいは混合物を原料として用いてい
るのが一般的である。多孔質基体の細孔率は17〜30
%の範囲で選ばれている。多孔質基体は粒状物質を焼結
して製造する。
Barium oxide and aluminum oxide as electron-emitting materials,
Generally, a compound or mixture containing at least one of calcium oxide, magnesium oxide, etc. is used as a raw material. The porosity of the porous substrate is 17-30
It is selected in the range of %. The porous substrate is manufactured by sintering a particulate material.

電子放出物質は加熱溶融・含浸などの方法で、多孔質基
体細孔部に浸み込ませている。
The electron-emitting substance is infiltrated into the pores of the porous substrate by heating, melting, impregnation, or other methods.

含浸形陰極は、動作状態において、多孔質基体と電子放
出物質が反応してバリウムを生成し、基体表面すなわち
電子放出面に到達し・表面拡散して′電子放出に適した
バリウム単原子層を形成する。
In an impregnated cathode, during operation, the porous substrate and the electron-emitting substance react to generate barium, which reaches the substrate surface, that is, the electron-emitting surface, and diffuses on the surface to form a barium monoatomic layer suitable for electron emission. Form.

このような含浸形陰極は、長時間に亘って、高い電子放
出能を維持することから、ブラウン管、撮像管などの陰
極として開発が進められている。しかし、高い電子放出
能を有する反面、動作温度が1000−1200でと高
いため、ノ(リウムや酸化バリウムの蒸発が多くなり、
他の電極へ付着し、管球の特性に悪影響を及ぼすために
、実用化への障害になっている・ 〔発明の目的〕 本発明の目的は、バリウム及び(孜化)(リウムのyi
’%発速度全速度、実用化に耐え得るような含浸形1姦
、極を提供することにある。
Since such an impregnated cathode maintains high electron emission ability over a long period of time, it is being developed as a cathode for cathode ray tubes, image pickup tubes, and the like. However, although it has a high electron emission ability, the operating temperature is as high as 1000-1200℃, which increases the evaporation of nitric acid and barium oxide.
It adheres to other electrodes and adversely affects the characteristics of the tube, which is an obstacle to its practical application.
The purpose is to provide an impregnated type with a full rate of % firing rate that can withstand practical use.

〔発明の概要〕[Summary of the invention]

上記目的を達成するためには、2点の考え方がある。第
1点目は、含浸形陰極の電子放出能を高め動作温度を下
げる方法。現在は、電子放出面にオスミウム、イリジウ
ム、ルテニウムなどの金属を被着させ電子放出能を改善
している。しかし、未だ不完全である。第2点目として
は、ノクリウム及び酸化バリウムの生成及び蒸発速度を
抑制する。
There are two ways to think about achieving the above objective. The first method is to increase the electron emission ability of the impregnated cathode and lower its operating temperature. Currently, metals such as osmium, iridium, and ruthenium are coated on the electron-emitting surface to improve the electron-emitting ability. However, it is still incomplete. The second point is to suppress the production and evaporation rate of nocurium and barium oxide.

これには・多孔質基体もしくは電子放出物質に工夫を加
える必要がある。また、多孔質基体の細孔率を小さくし
てもよいが限度がある。
For this purpose, it is necessary to add some innovation to the porous substrate or the electron-emitting material. Furthermore, the porosity of the porous substrate may be reduced, but there is a limit.

本発明の含浸形陰極は、第2点目の多孔質基体を工夫し
・しかも製造方法は従来の方法を変えることなく、バリ
ウム及び酸化バリウムを抑制したものである。具体的に
は本発明の含浸形陰極は、酸化ハフニウム、酸化ジルコ
ニウム、酸化チタニウムあるいはこれらを含む酸化物粒
子が、 1Ii−1熱多孔質基体に分散している多孔質
基体と細孔部に含浸させられた電子放出物質からなる。
In the impregnated cathode of the present invention, the second point is that the porous substrate is devised, and the production method suppresses barium and barium oxide without changing the conventional method. Specifically, the impregnated cathode of the present invention comprises a porous substrate and pores in which hafnium oxide, zirconium oxide, titanium oxide, or oxide particles containing these particles are dispersed in a 1Ii-1 thermally porous substrate. consists of emitted electron-emitting materials.

さらに、電子放出面にオスミウム・イリジウム、ルテニ
ウム・レニウムあるいはこれらを含む合金を被着した溝
道が好ましい。酸化ハフニウム(Hf02) −1’l
&化ジルコニウム(ZrO2)、酸化チタニウム(Ti
O2)を含む酸化物としては、希土類元素・(Hf02
゜zrO□、Tj02の少なくとも一種を含む)あるい
は、アルカリ土類金属’ (Hf02. Zr 02 
Furthermore, a groove in which osmium/iridium, ruthenium/rhenium, or an alloy containing these is coated on the electron emitting surface is preferable. Hafnium oxide (Hf02) -1'l
Zirconium oxide (ZrO2), titanium oxide (Ti
Examples of oxides containing rare earth elements (Hf02)
゜zrO□, Tj02) or alkaline earth metal' (Hf02. Zr02
.

T I 02 の少なくとも一層を含む)などがある。(including at least one layer of TI02).

これらの物質を2腫以上混合して用い、あるいは、さら
に、HfO2、ZrO2、Tj02との混合物を用いて
もさしつかえない。
Two or more of these substances may be used as a mixture, or a mixture with HfO2, ZrO2, and Tj02 may be used.

本発明による含浸形陰極は、耐熱多孔質基体の原料粉末
と酸化・・レニウム、酸化ジルコニウム、酸化チタニウ
ムあるいはこれらを含む酸化物粉末を秤量、混合、プレ
ス成形、焼結の工程などから作製した多孔質基体内の細
孔部に電子放出物質を含浸させ、さらに、電子放出面に
オスミウム、イリジウム、レニウム・ルテニウムあるい
はこれらの群から選ばれた合金を被着して製造される。
The impregnated cathode according to the present invention has a porous structure made by weighing, mixing, press-molding, sintering, etc. raw material powder of a heat-resistant porous substrate and rhenium oxide, zirconium oxide, titanium oxide, or oxide powder containing these. It is manufactured by impregnating the pores in the solid substrate with an electron-emitting substance, and then coating the electron-emitting surface with osmium, iridium, rhenium/ruthenium, or an alloy selected from these groups.

その方法を以下に一層詳しく説明する。多孔質基体は・
2踵以上の粉末を用い、混合、陰極形状にプレス成形、
焼結によって製造する。2種以上の粉末のうち少なくと
も1種類には従来から使用されている元素を用いる。す
なわち・タングステン・モリブデン・タンタル、レニウ
ムあるいはこれらを含む合金、あるいは電子放出面に、
被着することによって特性を改善することができる元素
(オスミウム、イリジウム、ルテニウム、あるいはこれ
らを含む合金)との混合粉末を用いる。もう1種類には
、酸化−・レニウム、酸化ジルコニウム・酸化チタニウ
ムあるいはこれらを含む酸化物粒子が用いられる。以上
、述べた2種類の群から代表として、タングステンと酸
化−・レニウム、さらに電子放出面に被着する元素とし
てオスミウムを選んで説明する。まず、タングステン粉
末と酸化ハフニウムを用意する。いずれの粉末も粒度調
整されていることが望ましい。両方の粒径が同じである
か、あるいは酸化−・レニウム粉末の小さいことが望ま
しい。基体内に分散させる酸化ノ・レニウム配合量が小
さい場合には、基体毒成分のタングステン粉末粒よりも
小さい方が良い。用意したタングステンを末と酸化・・
レニウム粉末を適当量配合して・乳鉢等で十分混合した
のち・円筒状プレス治具を用いてプレス成形を行なう・
プレス成形には必要に応じてポリビニール・アルコール
などをバインダーとして使用する。ついで、水素中で1
000〜1200 ′cに加熱してバインダーを除〈と
ともに、取扱い易いように仮焼結を行ったのち、真空中
で1700〜2000 ’Cに加熱して焼結することに
よって15〜30%の細孔率を有する多孔質基体、すな
わちタングステン中に酸化ハフニウムが分散した構造を
採る基体を製造することができる。上記焼結は真空中以
外、不活性ガス雰囲気、還元性雰囲気など非酸化性雰囲
気中で実施しても良い。細孔率はタングステン粉末の粒
径、プレス成形圧力、焼結条件によって圧意に選択でき
るが、通常3〜8μm粒径のものを用い、1〜10to
n/cm2の圧力で成形を行ない、焼結は1700〜2
000 ’c・0.5〜3時間程度の焼結条件で行われ
る。粉末同士の拡散が十分に進行し、粉末粒子の移動が
あるものは、同じ細孔率でも分布が不揃いで閉鎖孔が多
い。切削加工によって陰極形状にする場合には強度が必
要とされるために、拡散を進めなければならないが、最
初から陰極形状を想定してプレス成形する場合には、陰
極としての強度があれば良いことになる。酸化ハフニウ
ム分散量は特性上あるいは多孔質基体の強度から、多孔
質基体体積の40%以下が望しい。また、特性上から・
顕著な功果を得るため3%以上であることが望ましい。
The method will be explained in more detail below. The porous substrate is
Using two or more powders, mix, press mold into cathode shape,
Manufactured by sintering. A conventionally used element is used for at least one of the two or more powders. In other words, tungsten, molybdenum, tantalum, rhenium or alloys containing these, or on the electron emitting surface,
A mixed powder containing an element (osmium, iridium, ruthenium, or an alloy containing these) whose properties can be improved by coating is used. The other type is rhenium oxide, zirconium oxide, titanium oxide, or oxide particles containing these. From the two groups mentioned above, tungsten and rhenium oxide are selected as representatives, and osmium is selected as the element deposited on the electron emitting surface for explanation. First, prepare tungsten powder and hafnium oxide. It is desirable that the particle size of any powder be adjusted. It is desirable that both particle sizes be the same or smaller for the rhenium oxide powder. When the amount of rhenium oxide to be dispersed in the substrate is small, it is better to make it smaller than the tungsten powder particles which are the poisonous component of the substrate. Oxidize the prepared tungsten powder...
After mixing the appropriate amount of rhenium powder in a mortar etc., press forming using a cylindrical press jig.
For press molding, polyvinyl alcohol, alcohol, etc. are used as a binder as necessary. Then, in hydrogen
After heating to 1,700 to 1,200'C to remove the binder and pre-sintering to make it easier to handle, the material is heated to 1,700 to 2,000'C in vacuum and sintered to reduce the binder to 15 to 30%. A porous substrate having porosity, that is, a substrate having a structure in which hafnium oxide is dispersed in tungsten, can be manufactured. The above sintering may be performed in a non-oxidizing atmosphere such as an inert gas atmosphere or a reducing atmosphere other than in a vacuum. The porosity can be selected depending on the particle size of the tungsten powder, press molding pressure, and sintering conditions, but usually 3 to 8 μm particle size is used, and 1 to 10 to
Molding is performed at a pressure of n/cm2, and sintering is performed at a pressure of 1700~2
Sintering is carried out under conditions of approximately 000'c and 0.5 to 3 hours. If the powders are sufficiently diffused and the powder particles move, the distribution will be uneven and there will be many closed pores even if the porosity is the same. When making a cathode shape by cutting, strength is required, so diffusion must proceed, but when press forming with the cathode shape in mind from the beginning, it is sufficient to have the strength as a cathode. It turns out. The amount of hafnium oxide dispersed is desirably 40% or less of the volume of the porous substrate due to the characteristics or the strength of the porous substrate. Also, due to its characteristics,
In order to obtain remarkable results, it is desirable that the content be 3% or more.

特性上あるいはカソード強度特性から通常20チ程度が
良い。以上のようにして・多孔質タングステン中に酸化
ハフニウムが分散した基体を製造できる。第1図にその
断面模型図を示す。1はタングステン粒、2は酸化ハフ
ニウム。
From the viewpoint of characteristics or cathode strength characteristics, approximately 20 inches is usually good. In the manner described above, a substrate in which hafnium oxide is dispersed in porous tungsten can be manufactured. Fig. 1 shows a cross-sectional model diagram thereof. 1 is tungsten grain, 2 is hafnium oxide.

3は細孔部、4id多孔質基体を示す。3 indicates a pore portion and a 4id porous substrate.

このようにして製造した多孔質基体上に、バリウム・ア
ルミネート化合物音のせ、水素中で約1700 ’cに
加熱溶融して含浸させることによって含浸形陰極を製造
できる。雷1子放出物質としてはバリウム、アルミネー
ト化合物の他、炭酸バリウム、酸化アルミニウム・炭酸
カルシウムの適当量配合した混合物でも良い。このより
にして製造した含浸形陰極の飽foz流特性は多孔質タ
ングステン基体を用いた時の特性と同じで変化はみられ
ないが、バリウム及び酸化バリウムの蒸発量が、酸化ハ
フニウムの添加量に比例して0.5〜3桁低下した。
An impregnated cathode can be produced by impregnating the thus produced porous substrate with a barium aluminate compound by heating and melting it in hydrogen at about 1700'C. In addition to barium and aluminate compounds, a mixture of barium carbonate, aluminum oxide, and calcium carbonate in appropriate amounts may be used as the lightning bolt emitting substance. The saturated foz flow characteristics of the impregnated cathode manufactured in this way are the same as those when using a porous tungsten substrate, and no change is observed, but the amount of evaporation of barium and barium oxide changes depending on the amount of hafnium oxide added. It decreased proportionally by 0.5 to 3 orders of magnitude.

第2図は動作温度1050′cにおけるバリウム蒸発速
度と多孔質基体中の酸化ハフニウムとの関係を示す。バ
リウム蒸発速度は質量分析計により測定した@ 第3図に示したように・製造した含浸形陰極5はタンタ
ル・スリーブ6、タンタルカップ状からなる障壁層7.
さらに、タングステン芯線8にアルミナなどの絶縁被覆
層9を設けたヒータ10と組み合せ電子管に組み込み1
000〜1200″Cで実装試験を縁υ返したが、電子
放出能の経時変化は従来のものとほとんど同じであった
。しかし。
FIG. 2 shows the relationship between barium evaporation rate and hafnium oxide in a porous substrate at an operating temperature of 1050'c. The barium evaporation rate was measured using a mass spectrometer @ As shown in FIG.
Furthermore, a heater 10 in which a tungsten core wire 8 is provided with an insulating coating layer 9 such as alumina is combined into an electron tube 1.
When the mounting test was repeated at 000 to 1200''C, the change in electron emission ability over time was almost the same as that of the conventional one.However.

グリッド・エミッションは、2万時間経過後でも問題の
発生は見られなかった。また、上記含浸形陰極にオスミ
ウムを被覆しても、上記の傾向は変らないが、同じ電子
放出能を得る温度が約150℃低下したものが得られた
。オスミウムの他に・イリジウム、ルテニウム、レニウ
ムあるいはこれらの群から選ばれた少なくとも10以上
を含む合金でも良く、その時の膜厚は、基体との拡散、
あるいは寿命を考えて0.02〜1μmが望ましい。
There were no problems with grid emissions even after 20,000 hours. Further, even when the impregnated cathode was coated with osmium, the above tendency did not change, but the temperature at which the same electron emission ability was obtained was lowered by about 150°C. In addition to osmium, it is also possible to use iridium, ruthenium, rhenium, or an alloy containing at least 10 or more selected from these groups.
Alternatively, considering the lifespan, the thickness is preferably 0.02 to 1 μm.

これは・従来型に適用した条件と同じであって良い。This may be the same condition as applied to the conventional type.

本発明によれば、以上説明したように・従来の製造工程
を適用でき、また管球作製工程を変更することなく、従
来型の含浸形陰極よりも0.5〜3桁・バリウム及び酸
化バリウム蒸発量を低下させることができ・本発明によ
る含浸形陰極は従来型の含浸形陰極よりも優れた特性を
有する含浸形陰極と言える。
According to the present invention, as explained above, the conventional manufacturing process can be applied, and without changing the tube manufacturing process, the barium and barium oxide The impregnated cathode according to the present invention can reduce the amount of evaporation and can be said to have better characteristics than conventional impregnated cathodes.

〔発明の実施例〕[Embodiments of the invention]

以下・本発明を実施例によって説明する。 The present invention will be explained below by way of examples.

実施例1 粒径5μmのタングステン粉末と粒径2〜3μmの酸化
ハフニウム粉末を用意し、酸化ハフニウムの比率が3.
6,12,20,35,50vOt%(体積百分率)に
なるように秤量し・乳鉢岬 で十分に混合した。実際の戸量値は目標値に対して、±
0.1 voz%であった。次いで、1.511111
1φの円筒ブレス治具を使用して・プレス成形を行った
Example 1 Tungsten powder with a particle size of 5 μm and hafnium oxide powder with a particle size of 2 to 3 μm were prepared, and the ratio of hafnium oxide was 3.
They were weighed to give a volume percentage of 6, 12, 20, 35, and 50 vOt% and thoroughly mixed in a mortar cape. The actual door volume value is ±
It was 0.1 voz%. Then 1.511111
Press molding was performed using a 1φ cylindrical press jig.

このプレス成型には、バインダーとして、ポリピニール
・アルコールを用いた。成形圧力は4ton/副2で行
った。ついて、水素中で1000 ’G 。
In this press molding, polypinyl alcohol was used as a binder. The molding pressure was 4 tons/sub 2. Then, 1000'G in hydrogen.

1時間の仮焼結を行ない・バインダーを除くとともに取
り扱い易いようにした。次いでlXl0−’’:l’o
rr以下の圧力の真空中で、1900 ’c、2時間の
焼結を実施し、基体内に酸化ハフニウムが分散した多孔
質体を作った。このように製造した多孔質基体の細孔率
は15〜25チの範囲に存在していた。このように・製
造した多孔質基体41C炭酸バリウム:酸化アルミニウ
ム:炭酸カルシウムをモル比で4:1:1に秤量・混合
したのち・水素中で1700〜1730’c、3分間加
熱溶融して、酸化ハフニウムが分散している含浸形陰極
を作製した。1700〜1730 ’cに加熱する前に
1000〜1100 ’c で30秒間保持し、上記・
炭酸バリウム、炭酸カルシウムを酸化バリウム、酸化カ
ルシウムに分解した。このようにして作製した含浸形隘
極5を厚さ25μmのタンタル・スリーブ6とタンタル
からなるカップ状の障壁層7をレーザー・ビームで溶接
し、傍熱形陰極を作り・スリーブ内にタングステン芯線
8に絶縁被覆層9を設けたヒーター10を設けて・@催
−陽極からなる2極管を作製し、パルス電源を用いて、
陰極の飽和電流特性を測定した結果、多孔質タングステ
ン基体を用いた含浸形陰極の飽和電流特性と何ら変るこ
とがなかった。また、質量分析計でバリウム蒸発速度を
測定した結果を第2図に示す。第2図は動作温度105
0 ’Cにおける初期蒸発速度を示す。
Temporary sintering was performed for 1 hour to remove the binder and make it easier to handle. Then lXl0−'':l'o
Sintering was carried out at 1900'C for 2 hours in a vacuum at a pressure below rr to produce a porous body in which hafnium oxide was dispersed within the base. The porosity of the porous substrate thus produced was in the range of 15 to 25 inches. After weighing and mixing the thus produced porous substrate 41C barium carbonate: aluminum oxide: calcium carbonate in a molar ratio of 4:1:1, heating and melting in hydrogen at 1700 to 1730'C for 3 minutes, An impregnated cathode containing hafnium oxide dispersed therein was fabricated. Hold at 1000-1100'c for 30 seconds before heating to 1700-1730'c,
Barium carbonate and calcium carbonate were decomposed into barium oxide and calcium oxide. A tantalum sleeve 6 with a thickness of 25 μm and a cup-shaped barrier layer 7 made of tantalum are welded with a laser beam to the impregnated cathode 5 manufactured in this way to form an indirectly heated cathode, and a tungsten core wire is placed inside the sleeve. A diode tube consisting of an anode was prepared by providing a heater 10 with an insulating coating layer 9 on 8, and using a pulse power source,
As a result of measuring the saturation current characteristics of the cathode, it was found that there was no difference in saturation current characteristics from that of an impregnated cathode using a porous tungsten substrate. Furthermore, the results of measuring the barium evaporation rate using a mass spectrometer are shown in FIG. Figure 2 shows operating temperature 105
Initial evaporation rate at 0'C is shown.

縦軸は、バリウム蒸発速度を示し、横軸は虚化・・フニ
ウム添加量を示す。酸化・・フニウムが多孔質体の占め
る割合が増加すると、バリウム蒸発速度が減少すること
が分る。3〜40 VO1%(餐積率)の酸化−・フニ
ウムを多孔質基体中に分散させると多孔質タングステン
基体を用いた含浸形陰極に比べ・0,5〜3桁抑制する
ことができた。また、蒸発エネルギーをめてみると、い
ずれも約3.1e■であった。したがって、バリウム蒸
発速度を1桁低下させることは、動作温度を約100 
’c低下させることに等しい。バリウム蒸発速度の経時
変化も従来の含浸形陰極と同じく加熱時間のマイナス1
/2乗に比例していた。電子放出能の経時変化を調べる
ために、管球に実装して寿命試験に掛けたが・約2万時
間経過しても電子放出能の劣化は見られなく、また、グ
リッド・エミッションも問題にならなかった。
The vertical axis shows the barium evaporation rate, and the horizontal axis shows the amount of depleted...funium added. It can be seen that as the proportion of hunium oxide in the porous body increases, the barium evaporation rate decreases. By dispersing 3 to 40 VO 1% (volume fraction) of hunium oxide in a porous substrate, the reduction could be suppressed by 0.5 to 3 orders of magnitude compared to an impregnated cathode using a porous tungsten substrate. Furthermore, when looking at the evaporation energy, it was approximately 3.1 e■ in all cases. Therefore, reducing the barium evaporation rate by an order of magnitude reduces the operating temperature by approximately 100
'c is equivalent to lowering. Changes in barium evaporation rate over time are the same as with conventional impregnated cathodes, minus 1 of the heating time.
It was proportional to /2. In order to investigate changes in electron emission ability over time, we mounted it in a tube and subjected it to a life test, but no deterioration in electron emission ability was observed even after approximately 20,000 hours, and grid emission was also a problem. did not become.

実施例2 実施例1において製造した含浸形陰極表面に、オスミウ
ムff:電子線蒸着で厚さ0.5μm被覆した陰極を製
造した。このオスミウム被覆した含浸形@極についても
、飽和電流特性は従来のものと変化はなかった。すなわ
ち、同じ電子放出能を得るために、動作温度を約150
℃低くできた。質量分析計で実施例1同様にバリウム蒸
発速度を測定したがバラツキの範囲で実施例1と同じ結
果が得られた。したがって。動作温度が低下した分だけ
、バリウム蒸発速度が小さくなシ、グリッド・エミッシ
ョンに対して非常に大きい効果を持つ。高い電子放出能
を得るために動作温度を高めても、グリッド・エミッシ
ョンという問題の発生を避けることができる含浸形陰極
を得ることができた。
Example 2 A cathode was manufactured in which the surface of the impregnated cathode manufactured in Example 1 was coated with osmium ff to a thickness of 0.5 μm by electron beam evaporation. The saturation current characteristics of this osmium-coated impregnated @electrode were also the same as those of the conventional one. That is, in order to obtain the same electron emission ability, the operating temperature should be adjusted to about 150°C.
I was able to lower the temperature. The barium evaporation rate was measured using a mass spectrometer in the same manner as in Example 1, and the same results as in Example 1 were obtained within the range of variation. therefore. The lower operating temperature reduces the barium evaporation rate, which has a significant effect on grid emissions. It was possible to obtain an impregnated cathode that can avoid the problem of grid emission even if the operating temperature is raised to obtain high electron emission performance.

なお・酸化ハフニウムに代えて酸化ジルコニウム・酸化
チタニウムを用いたときも同様に優れた効果を示した。
Note that similar excellent effects were obtained when zirconium oxide or titanium oxide were used in place of hafnium oxide.

〔発明の効果〕〔Effect of the invention〕

以上1本発明の詳細な説明したように、本発明の含浸形
陰極によれば、タングステン粉末と酸化ハフニウム粉末
から、酸化ハフニウムが分散したような多孔質基体を作
り、これを用いて含浸形陰極を作る方法では、従来の製
造工程あるいは管球作製工程を変更することなく、従来
の含浸形陰極よシも0.5〜3桁バリウム蒸発速度を抑
制でき・その結果・グリッド・エミッションを解消する
ことができるなどの優れた特性を有する含浸形陰極が得
られた。
As described in detail above, according to the impregnated cathode of the present invention, a porous substrate in which hafnium oxide is dispersed is made from tungsten powder and hafnium oxide powder, and this is used to form an impregnated cathode. With this method, the barium evaporation rate can be suppressed by 0.5 to 3 orders of magnitude in conventional impregnated cathodes without changing the conventional manufacturing process or tube manufacturing process, and as a result, grid emissions are eliminated. An impregnated cathode was obtained that had excellent properties such as:

【図面の簡単な説明】[Brief explanation of the drawing]

を示す図、第3図は含浸形陰極、スリーブ、障壁層、ヒ
ータの組立て図を示す図である。 1・・・タングステン粒、2・・・酸化ハフニウム粒、
3・・・細孔部、4・・・酸化・・フニウムが分散した
多孔質基体、5・・・含浸形隘極、6・・・スリーブ、
7・・・カッ代理人 弁理士 骨母例辛
FIG. 3 is a diagram showing an assembly diagram of an impregnated cathode, a sleeve, a barrier layer, and a heater. 1... Tungsten grains, 2... Hafnium oxide grains,
3... Pore portion, 4... Porous substrate in which hunium oxide is dispersed, 5... Impregnated pole, 6... Sleeve,
7...Kat agent, patent attorney, bone mother example

Claims (1)

【特許請求の範囲】 1、耐熱多孔質基体内に酸化ハフニウム粒子、酸化ジル
コニウム粒子、酸化チタニウム粒子あるいは、これらを
含む合金酸化物粒子が少くとも1椋分散している多孔質
基体と、該多孔質基体の細孔部に含浸させられた電子放
出物質からなることを特徴とする含浸形陰極。 2、上記粒子の量が、多孔質基体容積の3〜40チであ
る特許請求の範囲第1項記載の含浸形陰極・ 3、上記の含浸形陰極の電子放出面に、さらにオスミウ
ム、イリジウム、ルテニウム及びレニウムからなる群か
ら選ばれた少なくとも1種の合金からなる厚さ0.02
〜1μmの被覆膜を設けたことを特徴とする特許請求の
範囲第1項又は第2項記載の含浸形陰極。
[Scope of Claims] 1. A porous substrate in which at least one hafnium oxide particle, zirconium oxide particle, titanium oxide particle, or an alloy oxide particle containing these particles is dispersed in the heat-resistant porous substrate; An impregnated cathode comprising an electron-emitting substance impregnated into the pores of a solid substrate. 2. The impregnated cathode according to claim 1, wherein the amount of the particles is 3 to 40 times the volume of the porous substrate. 3. The electron emitting surface of the impregnated cathode is further coated with osmium, iridium, Made of at least one alloy selected from the group consisting of ruthenium and rhenium, thickness 0.02
An impregnated cathode according to claim 1 or 2, characterized in that a coating film of ~1 μm is provided.
JP58141051A 1983-08-03 1983-08-03 Impregnated cathode Pending JPS6032232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141051A JPS6032232A (en) 1983-08-03 1983-08-03 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141051A JPS6032232A (en) 1983-08-03 1983-08-03 Impregnated cathode

Publications (1)

Publication Number Publication Date
JPS6032232A true JPS6032232A (en) 1985-02-19

Family

ID=15283107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141051A Pending JPS6032232A (en) 1983-08-03 1983-08-03 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPS6032232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330355A2 (en) * 1988-02-23 1989-08-30 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube
FR2672425A1 (en) * 1991-02-06 1992-08-07 Samsung Electronic Devices Dispenser cathode for an electron tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330355A2 (en) * 1988-02-23 1989-08-30 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube
FR2672425A1 (en) * 1991-02-06 1992-08-07 Samsung Electronic Devices Dispenser cathode for an electron tube

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
US4625142A (en) Methods of manufacturing a dispenser cathode and dispenser cathode manufactured according to the method
US4675570A (en) Tungsten-iridium impregnated cathode
US20140174913A1 (en) Target for barium-scandate dispenser cathode
JPH03173034A (en) Scan dart cathode and its manufacture
US2142331A (en) Electron emitting cathode
JPS6032232A (en) Impregnated cathode
JPH0628967A (en) Dispenser cathode
JPS612226A (en) Impregnated cathode
JPH01267927A (en) Solid-liquid matrix cathode
JPH0630214B2 (en) Impregnated cathode and manufacturing method thereof
JP2001006521A (en) Cathode body structure and color picture tube
JPS59203343A (en) Impregnated cathode
JPH06103885A (en) Porous sintered base, manufacture thereof and method for evaluating porosity of porous material
JPS60212938A (en) Impregnated cathode
JPS58192237A (en) Impregnation type cathode
JPS5979934A (en) Impregnated cathode
JPH06203738A (en) Cathode for electron tube
JPS5918539A (en) Impregnated cathode
JPH0325824A (en) Impregnated cathode
JPS60170137A (en) Hot cathode
JP2730260B2 (en) Cathode for electron tube
JPS63116330A (en) Impregnated cathode
JP2004241249A (en) Impregnation type cathode and its manufacturing method
JPH04286827A (en) Impregnated cathode