JPS5918539A - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPS5918539A
JPS5918539A JP57127518A JP12751882A JPS5918539A JP S5918539 A JPS5918539 A JP S5918539A JP 57127518 A JP57127518 A JP 57127518A JP 12751882 A JP12751882 A JP 12751882A JP S5918539 A JPS5918539 A JP S5918539A
Authority
JP
Japan
Prior art keywords
cathode
impregnated
electron emission
barium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57127518A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Toshiyuki Aida
会田 敏之
Yoshihiko Yamamoto
山本 恵彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57127518A priority Critical patent/JPS5918539A/en
Publication of JPS5918539A publication Critical patent/JPS5918539A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Abstract

PURPOSE:To obtain an impregnated cathode that improves electron emission performance and controls the evaporation of barium and barium oxide by providing a scandium oxide coat on the electron emission surface of the impregnated cathod with a specific thickness. CONSTITUTION:For example, a compound obtained by blending 4BaO, Al2O3, and CaO with a porus tungusten substrate is heated and melted under a hydrogen atmosphere and the substrate is impregnated with an electron emission material. Then excessive electron emission material remaining on the substrate is removed. This cathode is contained in a sputtering device that uses scandium oxide, etc. as the target and the electron emission surface of the cathode is coated with scandium. An indirect heat type cathode is created by welding together the cathode coated with the scandium oxide and a cup-type barrier layer consisting of a tantalm sleeve 5 of 25mum thickness and tantalm using laser beams. As a result, electron emission performance can be improved.

Description

【発明の詳細な説明】 本発明はブラウン管、撮像管等の電子管に用いる含浸形
陰極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impregnated cathode for use in electron tubes such as cathode ray tubes and image pickup tubes.

含浸形陰極は電子管の高性能化を計るだめの陰極として
有望視されている。含浸形陰極は多孔質金属基体の空孔
部に電子放出物質を含浸したものである。多孔質金属基
体はほとんどがタングステンで製造されているが、タン
グステンに限らず、モリブデン、タンタルなどの耐熱金
属を含むもので良い。電子放出物質としては、酸化バリ
ウムと酸化アルミニウム、酸化カルシウム、酸化マグネ
シウムなどのうち少なくとも1種を含む化合物あるいは
混合物を含浸の出発材料として用いているのが一般的で
ある。多孔質金属基体は金属粉末をプレス成形して焼結
することによって製造される。
The impregnated cathode is seen as a promising cathode for improving the performance of electron tubes. An impregnated cathode is one in which the pores of a porous metal substrate are impregnated with an electron-emitting substance. Most porous metal substrates are manufactured from tungsten, but are not limited to tungsten, and may also contain heat-resistant metals such as molybdenum and tantalum. As the electron-emitting substance, a compound or mixture containing barium oxide and at least one of aluminum oxide, calcium oxide, magnesium oxide, etc. is generally used as a starting material for impregnation. The porous metal substrate is manufactured by press-molding and sintering metal powder.

多孔質金属基体の空孔率は17〜30%程度が適当とさ
れている。基体内に空孔が均一に分布するためには、焼
結時に金属粉末同士の拡散が進んだ状態では分布が悪く
、粒末同士が比較的軽く結合するような焼結条件を選ぶ
必要がある。含浸形陰極は、多孔質金属基体上に、バリ
ウム・アルミネート化合物をのせ、還元性や非酸化性雰
囲気中で加熱熔融して基体の空孔内に含浸させることに
よって製造される。また、バリウム・アルミネート化合
物熔融浴中に多孔質金属基体を浸漬することによって基
体の空孔部に含浸することができる。
It is said that the appropriate porosity of the porous metal substrate is about 17 to 30%. In order to uniformly distribute the pores within the substrate, it is necessary to select sintering conditions that will result in poor distribution when the metal powders are diffused together during sintering, and the particles will bond relatively lightly to each other. . The impregnated cathode is manufactured by placing a barium aluminate compound on a porous metal substrate, heating and melting it in a reducing or non-oxidizing atmosphere, and impregnating it into the pores of the substrate. Further, the pores of the substrate can be impregnated by immersing the porous metal substrate in a barium aluminate compound molten bath.

このような含浸形隘極の動作状態においては、多孔質金
属基体とバリウム・アルミネート化合物が反応しバリウ
ムを生成し、基体の表面、すなわち電子放出面に到達し
、表面拡散して電子放射に適した単原子層を形成する。
In the operating state of such an impregnated pole, the porous metal substrate and the barium aluminate compound react to generate barium, which reaches the surface of the substrate, that is, the electron emitting surface, and diffuses into the surface to emit electrons. Form a suitable monoatomic layer.

このような含浸形陰極は高い電子放出能を長時間に紅っ
て可能とする陰極として有望視され、ブラウン管、撮像
管などの小型電子管用として開発が進められている。し
かし、高い電子放出能を有する反面、動作温度が105
0〜1200cと高いために、バリウムや酸化バリウム
の蒸発が多くなり、他の電極へ付着し、管球の特性に悪
影響を及ぼす。また、高温のために、酸化物陰極で用い
ている電極やスリーブ材質を変更する必要がある。さら
に、含浸形陰極を加熱するヒータ温度が高くなるために
、長時間の使用が出来ないなど欠点を有している。その
ために、低温動作が可能なI電極の探索が活発であるが
実現していない。
Such an impregnated cathode is seen as a promising cathode that can exhibit high electron emission performance over a long period of time, and is being developed for use in small electron tubes such as cathode ray tubes and image pickup tubes. However, although it has high electron emission ability, the operating temperature is 105
Since the temperature is as high as 0 to 1200c, a large amount of barium and barium oxide evaporates and adheres to other electrodes, which adversely affects the characteristics of the bulb. Additionally, due to the high temperature, it is necessary to change the electrode and sleeve materials used in the oxide cathode. Furthermore, since the heater temperature for heating the impregnated cathode becomes high, it has drawbacks such as being unable to be used for a long time. For this reason, there is active search for an I electrode that can operate at low temperatures, but this has not yet been realized.

一方、動作温度を低くする方法として、電子放射面に、
オスミウム、ルテニウム、オスミウム−ルテニウム合金
、イリジウムなどを数百nm被覆して用いる方法が採ら
れている。これによると、動作温度は900〜1050
0程度に低下する。被覆は蒸着やスパッタなどによって
行なわれる。被覆するかわシに、多孔質金属基体内に、
オスミウム、オスミウム−ルテニウム合金、ルテニウム
On the other hand, as a way to lower the operating temperature,
A method is adopted in which osmium, ruthenium, osmium-ruthenium alloy, iridium, or the like is coated to a thickness of several hundred nanometers. According to this, the operating temperature is 900-1050
It decreases to about 0. The coating is performed by vapor deposition, sputtering, or the like. Inside the porous metal substrate,
Osmium, osmium-ruthenium alloy, ruthenium.

( イリジウムなどガ;分散させて、電子放出物質を含浸し
た含浸形陰極においても、被覆した場合と同じ結果が得
られている。
(An impregnated cathode made by dispersing and impregnating an electron-emitting substance such as iridium has also obtained the same results as a coated cathode.)

本発明の目的は、電子放出能を鍋め、しかもバリウム、
酸化バリウムの蒸発量を抑えた含浸形陰極を提供するこ
とである。
The object of the present invention is to improve the electron emission ability of barium,
An object of the present invention is to provide an impregnated cathode in which the amount of barium oxide evaporated is suppressed.

上記目的を達成するために、本発明にょる含浸形陰極は
、従来の含浸形陰極の電子放出面に酸化スカンジウムを
設けたことを要旨とする。
In order to achieve the above object, the impregnated cathode according to the present invention is characterized in that scandium oxide is provided on the electron emitting surface of the conventional impregnated cathode.

本発明による含浸形陰極は、多孔質金属体の原料粉末を
、プレス成形、焼結の工程などから作製した多孔質金属
体を用い、該金属体の空孔部に、水素中あるいは非酸化
性雰囲気中で、電子放出物質を溶融して含浸させた含浸
形陰極の電子放出面にスパッタなどにより酸化スカンジ
ウムを被着させることによって製造されるが、その方法
を以下に一層詳しく説明する。
The impregnated cathode according to the present invention uses a porous metal body produced by press-molding, sintering, etc. from raw material powder of the porous metal body, and fills the pores of the metal body with hydrogen or non-oxidizing material. It is manufactured by depositing scandium oxide by sputtering or the like on the electron emitting surface of an impregnated cathode that is impregnated with an electron emitting material by melting it in an atmosphere, and the method will be explained in more detail below.

多孔質金属体は、粒度調整された原料粉末を用い、陰極
形状にプレス成形、焼結によって製造する。また、焼結
後に切削加工などによって陰極形状に加工して作製して
も何ら差支えない。この多孔質金属体の細孔部に含浸す
る電子放出物質としてはバリウム・アルミネート化合物
の他に、炭酸バリウム、酸化アルミニウム、炭酸カルシ
ウムの混合物を含浸時の出発原料としても良い。この3
つの組み合せで良い電子放出特性を示した組成は、(炭
酸バリウム):(酸化アルミニウム):(炭酸カルシウ
ム)=4:1:1〜5:2:3であった。このように製
造した含浸形隘極に、スパッタによって酸化スカンジウ
ム膜を被着して製造する。
The porous metal body is manufactured by press molding into a cathode shape and sintering using raw material powder whose particle size has been adjusted. Moreover, there is no problem even if the cathode shape is processed by cutting or the like after sintering. As the electron-emitting substance to be impregnated into the pores of this porous metal body, in addition to the barium aluminate compound, a mixture of barium carbonate, aluminum oxide, and calcium carbonate may be used as a starting material for impregnation. This 3
The compositions that showed good electron emission characteristics in combination were (barium carbonate): (aluminum oxide): (calcium carbonate) = 4:1:1 to 5:2:3. A scandium oxide film is deposited on the impregnated electrode thus produced by sputtering.

以上述べた含浸形隘極の構成物質から代表として多孔質
金属体はタングステン、電子放出物質としてバリウム・
アルミネート化合物を選んで説明する。まず、粒度調整
を実施したタングステン粉末を用意し、円筒状プレス治
具を用いてプレス成形を行なう。プレス成形には必要に
応じてポリビニール・アルコールなどをバインダーとし
て使用する。次いで水素中で1000〜1200t?に
加熱してバインダーを除くとともに、取シ扱い易いよう
に仮焼結を行なったのち、真空中あるいは水素中などの
非酸化性雰囲気中で、17oo〜2000cに加熱し、
17〜30%の空孔を有する多孔質タングステン体を作
る。空孔率はタングステン粉末の粒径、プレス成形圧力
、焼結条件によって任童に選択出来るが、通常3〜8μ
mの粒径を用い、1〜10 tOn /crn2の圧力
で成形を行ない、焼結は1700〜2000tZ”、 
0.5〜3時間程度の焼結条件によって行なわれる。粉
末同士の拡散が異面程度のものが空孔が均一に分布し、
拡散が十分に進行し、粉末粒子の移動があるものは、同
じ空孔率でも分布が不揃いで、閉鎖孔が多い。切削加工
によって陰極形状にする場合には強度が必要とするため
拡散を進めなければならないが、最初から陰極形状を想
定してプレス成形する場合には、陰極としての強度があ
れば良いととになる。このように製造した基体上に、バ
リウム・アルミネート化合物をのせ、水素中で約170
0cに加熱熔融して空孔に流し込んで含浸形陰極を製造
する。
Among the constituent materials of the impregnated pole described above, the porous metal body is typically tungsten, and the electron emitting material is barium.
Select and explain an aluminate compound. First, tungsten powder whose particle size has been adjusted is prepared and press-molded using a cylindrical press jig. For press molding, polyvinyl alcohol, alcohol, etc. are used as a binder as necessary. Then 1000-1200 tons in hydrogen? After heating to remove the binder and pre-sintering to make it easier to handle, heat it to 17oo~2000c in a non-oxidizing atmosphere such as vacuum or hydrogen.
Create a porous tungsten body with 17-30% porosity. The porosity can be selected depending on the particle size of the tungsten powder, press molding pressure, and sintering conditions, but it is usually 3 to 8μ.
Using a particle size of
Sintering is performed under sintering conditions for about 0.5 to 3 hours. Powders are evenly distributed when the particles are dispersed to a different degree.
If diffusion has progressed sufficiently and there is movement of powder particles, even if the porosity is the same, the distribution is uneven and there are many closed pores. When cutting into a cathode shape, strength is required and diffusion must proceed, but when press forming with the cathode shape in mind from the beginning, it is sufficient to have the strength as a cathode. Become. A barium aluminate compound was placed on the substrate thus produced, and the barium aluminate compound was heated to about 170% in hydrogen.
An impregnated cathode is manufactured by heating and melting it to 0C and pouring it into the holes.

以上のようにして製造した含浸形陰極の断面模型図をg
1図に示す。1は多孔質タングステン基体、2は空孔部
、3はバリウム・アルミネート化合物である。第2図に
このように製造した含浸形陰極の飽和電流特性10を示
す。この含浸形陰極は動作温度が高く、バリウムや酸化
バリウムの蒸発量が多くなり、管球を作製した場合には
他の電極に悪影響を及ぼしたりして管球特性の劣化につ
ながったり、陰極を加熱するヒータ温度を高くする必要
があり、短寿命になるなどの欠点を持っている。動作温
度を下げるだめの方法として、この含浸形陰極表面にオ
スミウム(まだはルテニウム。
A cross-sectional model diagram of the impregnated cathode manufactured as described above is shown in g.
Shown in Figure 1. 1 is a porous tungsten base, 2 is a hole, and 3 is a barium aluminate compound. FIG. 2 shows the saturation current characteristics 10 of the impregnated cathode manufactured in this manner. This impregnated cathode has a high operating temperature, and a large amount of barium and barium oxide evaporates.When a tube is fabricated, this may have an adverse effect on other electrodes, leading to deterioration of the tube characteristics, or the cathode may be damaged. It has drawbacks such as the need to raise the temperature of the heater for heating, resulting in a short lifespan. As a way to lower the operating temperature, the surface of this impregnated cathode is coated with osmium (but still ruthenium).

イリジウムあるいはこれらの合金)を約5 Q Qnm
程度被着させることによって動作温度を100〜150
C下げることに成功している。オスミウムを被覆した含
浸形陰極特性を第2図の11に示す。
iridium or alloys thereof) to about 5 Q Qnm
The operating temperature can be increased to 100-150℃ by coating the
We have succeeded in lowering C. The characteristics of the impregnated cathode coated with osmium are shown in 11 in FIG.

オスミウムの代りに酸化スカンジウムを被着させること
によって、オスミウム被覆含浸形陰極11よシも動作温
度を低く出来ることがわかった。酸化スカンジウムの被
着は高速スパッタによって被着させた。酸化スカンジウ
ムは、0,1μm以上から顕著な効果が見られた。酸化
スカンジウムが厚すぎると酸化物陰極と同様な振る舞い
し、またスパッタ時間など作業時間、コストから考え1
00μm以下が望ましい。したがって0.1〜1100
Atの酸化スカンジウム膜を被着させることが望ましい
。酸化スカンジウムの代シにスカンジウムを蒸着などで
被着したのち、大気に取り出し酸化を実施して、酸化ス
カンジウムとしても良い。このようにして製造した本発
明の含浸形陰極の飽和電流特性12を第2図に示す。従
来の含浸形陰極よりも250〜300 C,オスミウム
被覆含浸形陰極よシも100〜150Cも動作温度を低
下出来、バリウム、酸化バリウムなど電子放出物質の蒸
発量が減や、加熱用ヒータが長寿命化になるなど有利で
あった。
It has been found that the operating temperature of the osmium-coated impregnated cathode 11 can be lowered by depositing scandium oxide instead of osmium. The scandium oxide was deposited by high speed sputtering. With scandium oxide, a remarkable effect was seen from 0.1 μm or more. If scandium oxide is too thick, it will behave in the same way as an oxide cathode, and from the viewpoint of work time and cost such as sputtering time,
00 μm or less is desirable. Therefore 0.1-1100
It is desirable to deposit a scandium oxide film of At. Instead of scandium oxide, scandium may be deposited by vapor deposition or the like, and then taken out to the atmosphere and oxidized to form scandium oxide. FIG. 2 shows the saturation current characteristics 12 of the impregnated cathode of the present invention manufactured in this manner. The operating temperature can be lowered by 250 to 300 C compared to the conventional impregnated cathode, and 100 to 150 C lower than that of the osmium-coated impregnated cathode, and the amount of evaporation of electron-emitting substances such as barium and barium oxide is reduced, and the heating time is longer. It was advantageous in that it had a longer lifespan.

本発明によれば、以上説明したように、従来の製造法に
、酸化スカンジウムを付加することによって動作温度を
大巾に低く使用出来る。動作温度を100〜300c低
くしたことにょシ、バリウム、酸化バリウムの蒸発速度
を1.5〜3桁程度低くすることが出来同時に長寿命化
が計れる。本発明による含浸形陰極は従来型の含浸形陰
極、オスミウム被覆含浸形陰極よシも優れた特性を有す
る含浸形陰極と言える。
According to the present invention, as explained above, by adding scandium oxide to the conventional manufacturing method, the operating temperature can be significantly lowered. By lowering the operating temperature by 100 to 300c, the evaporation rate of barium and barium oxide can be lowered by about 1.5 to 3 orders of magnitude, and at the same time, the service life can be extended. The impregnated cathode according to the present invention can be said to have superior properties to conventional impregnated cathodes and osmium-coated impregnated cathodes.

以下、本発明を実施例によって説明する。Hereinafter, the present invention will be explained by examples.

粒径5μmのタングステン粉末を用意して、この中から
15mgを1ヶ分として、1.5mmφの円筒プレス治
具を使用してプレス成形を行なった。
Tungsten powder with a particle size of 5 μm was prepared, and 15 mg of the powder was press-molded using a cylindrical press jig with a diameter of 1.5 mm.

コノフレス成形には、ポリビニール・アルコールをバイ
ンダーとして用いた。成形圧力は4 ton/cm t
で実施した。ついで水素中で10000.1時間の仮焼
結を行ない、バインダーを除くとともに、取り扱い易い
ようにした。つぎに、1×1O−1l’porr以下の
圧力の真空中で1900C,1時間の焼結を実施し、多
孔質タングステン基体を作った。
Polyvinyl alcohol was used as a binder for Konofres molding. Molding pressure is 4 ton/cmt
It was carried out in Then, it was pre-sintered in hydrogen for 10,000.1 hours to remove the binder and make it easier to handle. Next, sintering was performed at 1900 C for 1 hour in a vacuum at a pressure of 1×1 O-1 l'porr or less to produce a porous tungsten substrate.

この時の空孔率は26%であった。このようにして製造
した多孔質タングステン基体に、4BaO・Al2O5
・CaOの配合からなる化合物を、水素雰囲気中で17
40t:’で3分間加熱熔融して電子放出物質を含浸し
た。次いで、基体上に残った余分な(9) 電子放出物質を取り除いた。この陰極を酸化スカンジウ
ムをターゲットとしたスパッタ装置に入れ、陰極の電子
放出面に約30μm被着した。この酸化スカンジウムを
被覆した含浸形陰極を厚さ25μmのタンタル・スリー
ブ5とタンタルからなるカップ状の障壁層6をレーザ・
ビームで溶接し、傍熱形陰極を作シ、スリーブ内にタン
グステン・ヒータ7を設けて、陽極−陰極からなる2極
管を作製し、パルス電源を用いて陰極の飽和電流を測定
した結果を第2図の12に示す。
The porosity at this time was 26%. 4BaO・Al2O5
・A compound consisting of a mixture of CaO is heated to 17% in a hydrogen atmosphere.
The material was heated and melted at 40 t:' for 3 minutes to impregnate the electron emitting material. Next, the excess (9) electron-emitting material remaining on the substrate was removed. This cathode was placed in a sputtering device using scandium oxide as a target, and about 30 μm of the material was deposited on the electron emitting surface of the cathode. This impregnated cathode coated with scandium oxide is coated with a tantalum sleeve 5 having a thickness of 25 μm and a cup-shaped barrier layer 6 made of tantalum.
An indirectly heated cathode was made by beam welding, a tungsten heater 7 was installed inside the sleeve, a diode consisting of an anode and a cathode was made, and the saturation current of the cathode was measured using a pulsed power source. It is shown at 12 in FIG.

以上、本発明によれば、従来の含浸形陰極の製造工程を
大巾に変更することな〈従来のオスミウム被覆の代りに
酸化スカンジウムを被着することによって、動作温度を
従来型の被覆なし含浸形陰極よシも250〜300C,
オスミウム被覆含浸形陰極よシも100〜150C低く
することが出来、また、動作温度を低く出来た結果、バ
リウム。
As described above, according to the present invention, the operating temperature can be lowered by depositing scandium oxide instead of the conventional osmium coating without significantly changing the manufacturing process of conventional impregnated cathodes. The shape of the cathode is also 250~300C,
The osmium-coated impregnated cathode can also be lowered by 100 to 150C, and as a result of the lower operating temperature, barium.

酸化バリウムの蒸発速度を1.5〜3桁小さく出来るな
ど優れた特性を有する含浸形陰極が得られる。
An impregnated cathode can be obtained which has excellent properties such as being able to reduce the evaporation rate of barium oxide by 1.5 to 3 orders of magnitude.

【図面の簡単な説明】[Brief explanation of the drawing]

(10) 第1図は含浸形陰極の断面模型図、第2図は、従来法で
作製した含浸形陰極と本発明による含浸形陰極を比較し
た図である。 1・・・多孔質タングステン基体、2・・・空孔部、3
・・・バリウム・アルミネート化合物、4・・・含浸形
陰極、5・・・タンタルスリーブ、6・・・タンタル障
壁層、7・・・タングステン芯線、8・・・絶縁被覆層
、9・・・傍熱含浸形陰極、10・・・従来の含浸形陰
極の飽和電流特性、11・・・オスミウムを被覆して特
性を改善した含浸形陰極の飽和電流特性、12・・・本
発明によ(11) 第1図
(10) FIG. 1 is a cross-sectional model diagram of an impregnated cathode, and FIG. 2 is a diagram comparing an impregnated cathode produced by a conventional method and an impregnated cathode according to the present invention. DESCRIPTION OF SYMBOLS 1... Porous tungsten base body, 2... Hole part, 3
... barium aluminate compound, 4 ... impregnated cathode, 5 ... tantalum sleeve, 6 ... tantalum barrier layer, 7 ... tungsten core wire, 8 ... insulation coating layer, 9 ...・Indirectly heated impregnated cathode, 10...Saturation current characteristics of conventional impregnated cathode, 11...Saturation current characteristics of impregnated cathode whose characteristics have been improved by coating with osmium, 12...Saturation current characteristics of the impregnated cathode according to the present invention (11) Figure 1

Claims (1)

【特許請求の範囲】 1、多孔質金属体と電子放出物質とからなる含浸形陰極
において、電子放出表面に酸化スカンジウム膜を設けた
ことを特徴とする含浸形陰極。 2 酸化スカンジウム膜の厚さを0.1〜100μmと
したことを特徴とする特許請求の範囲第1項記載の含浸
形陰極。
[Scope of Claims] 1. An impregnated cathode comprising a porous metal body and an electron-emitting substance, characterized in that a scandium oxide film is provided on the electron-emitting surface. 2. The impregnated cathode according to claim 1, wherein the thickness of the scandium oxide film is 0.1 to 100 μm.
JP57127518A 1982-07-23 1982-07-23 Impregnated cathode Pending JPS5918539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127518A JPS5918539A (en) 1982-07-23 1982-07-23 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127518A JPS5918539A (en) 1982-07-23 1982-07-23 Impregnated cathode

Publications (1)

Publication Number Publication Date
JPS5918539A true JPS5918539A (en) 1984-01-30

Family

ID=14961992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127518A Pending JPS5918539A (en) 1982-07-23 1982-07-23 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPS5918539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113526A (en) * 1984-06-29 1986-01-21 Hitachi Ltd Impregnated cathode
JPS61271732A (en) * 1985-05-25 1986-12-02 Mitsubishi Electric Corp Electron tube cathode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113526A (en) * 1984-06-29 1986-01-21 Hitachi Ltd Impregnated cathode
JPS61271732A (en) * 1985-05-25 1986-12-02 Mitsubishi Electric Corp Electron tube cathode

Similar Documents

Publication Publication Date Title
JPS58154131A (en) Impregnation type cathode
US4400648A (en) Impregnated cathode
US3558966A (en) Directly heated dispenser cathode
JPS61183838A (en) Impregnated type cathode
JPS6113526A (en) Impregnated cathode
US2142331A (en) Electron emitting cathode
JPS5918539A (en) Impregnated cathode
EP0637046B1 (en) Thermoionic emissive cathode method of fabricating the same thermoionic emissive cathode and electron beam apparatus
JPH0630214B2 (en) Impregnated cathode and manufacturing method thereof
JPS612226A (en) Impregnated cathode
JPS5979934A (en) Impregnated cathode
JPS58192237A (en) Impregnation type cathode
JPS62133632A (en) Impregnated type cathode
JPH04280029A (en) Impregnation type cathode
JPS6017831A (en) Impregnated cathode
JPS60170136A (en) Impregnated cathode
JPS6032232A (en) Impregnated cathode
JP3068160B2 (en) Impregnated cathode and method for producing the same
KR100235995B1 (en) Impregnation treatment type cathode
JPS6334832A (en) Manufacture of impregnated cathode
KR920004551B1 (en) Dispensor cathode
JPH11224599A (en) Manufacture of impregnated cathode
JP2004241249A (en) Impregnation type cathode and its manufacturing method
JPH0562413B2 (en)
JPH0345856B2 (en)