JPH04286827A - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPH04286827A
JPH04286827A JP3052198A JP5219891A JPH04286827A JP H04286827 A JPH04286827 A JP H04286827A JP 3052198 A JP3052198 A JP 3052198A JP 5219891 A JP5219891 A JP 5219891A JP H04286827 A JPH04286827 A JP H04286827A
Authority
JP
Japan
Prior art keywords
cathode
impregnated cathode
impregnated
work function
composite layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3052198A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Yukio Suzuki
鈴木 行男
Shunji Saito
斎藤 駿次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3052198A priority Critical patent/JPH04286827A/en
Publication of JPH04286827A publication Critical patent/JPH04286827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To provide a low-temperature-operation impregnated cathode which is coated with a mixed thin film formed of W and oxide containing W, Sc, O to reduce nonuniform distribution of work function on the surface of the cathode, or to reduce batch field effect. CONSTITUTION:A porous base 1 for a substrate-impregnated cathode pellet 3 is manufactured by heat resistant metal sintered material sized 1-5mum, smaller than that for conventional cathodes. The cavity percentage of the porous base 1 is within 25-32%, to provide a low work function (Ba, Sc, O) composite layer 8 uniformly on the surface of the cathode during operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は表示管,ブラウン管,撮
像管,進行波管などの電子管に用いられる含浸形陰極に
係り、特に、低温動作型であり、かつ高電流密度を得る
ことのできる含浸形陰極に関する。
[Industrial Application Field] The present invention relates to an impregnated cathode used in electron tubes such as display tubes, cathode ray tubes, image pickup tubes, and traveling wave tubes, and in particular, it is a low-temperature operation type and is capable of obtaining high current density. Regarding an impregnated cathode.

【0002】0002

【従来の技術】含浸形陰極は、タングステン(W)など
からなる耐熱多孔質基体にバリウム(Ba)化合物から
なる電子放出物質を含浸した構造が基本である。陰極の
動作温度を下げる方法としては、特公昭47−2134
3号公報記載のように、陰極表面にオスミウム−ルテニ
ウム(Os−Ru)合金などを被覆する方法が一般的で
ある。この多孔質基体は粒径6〜10μmの粒子からな
る焼結体からなり、その空孔率としては18〜20%の
範囲で選ばれている。しかしながら、このような方法で
は、陰極の動作温度は約1000℃と高く、実用化促進
への大きな障害となっていた。
2. Description of the Related Art An impregnated cathode basically has a structure in which a heat-resistant porous substrate made of tungsten (W) or the like is impregnated with an electron-emitting substance made of a barium (Ba) compound. As a method of lowering the operating temperature of the cathode, Japanese Patent Publication No. 47-2134
As described in Japanese Patent No. 3, a common method is to coat the surface of the cathode with an osmium-ruthenium (Os-Ru) alloy. This porous substrate is made of a sintered body consisting of particles with a particle size of 6 to 10 μm, and the porosity is selected in the range of 18 to 20%. However, in such a method, the operating temperature of the cathode is as high as about 1000° C., which has been a major obstacle to promoting practical use.

【0003】さらに、動作温度を下げる方法として、特
開昭61−13526号公報記載のように、Os−Ru
合金の代わりにタングステン(W),スカンジウム(S
c)及び酸素(O)を含む薄膜を被覆する方法がある。 この方法によれば、動作温度800℃で飽和電流密度1
0A/cm2以上が得られ、結果として動作温度を前者
の方法よりも150〜200℃下げることができる。し
かし、W,Sc及びOを含む薄膜を被覆した含浸形陰極
は、高い電子放出能を得るために、陰極表面に高い電界
を印加しなければならない。これは、高い電子放出能を
有する部分と低い電子放出能を有する部分、すなわち仕
事関数の小さい部分と大きい部分が分布することに起因
するパッチ電界効果の存在によるものである。この仕事
関数の不均一分布すなわちパッチ電界効果の存在が、空
間電荷制限領域と温度制限領域の境界を不明瞭とし、低
温下での陰極の使用を難しくしている。
Furthermore, as a method of lowering the operating temperature, Os-Ru
Tungsten (W), scandium (S) instead of alloy
c) and a method of coating a thin film containing oxygen (O). According to this method, the saturation current density is 1 at an operating temperature of 800°C.
0 A/cm 2 or more can be obtained, and as a result, the operating temperature can be lowered by 150 to 200° C. compared to the former method. However, an impregnated cathode coated with a thin film containing W, Sc, and O requires a high electric field to be applied to the cathode surface in order to obtain high electron emission performance. This is due to the existence of a patch field effect caused by the distribution of parts with high electron emission ability and parts with low electron emission ability, that is, parts with small and large work functions. This non-uniform distribution of the work function, ie the presence of the patch field effect, makes the boundary between the space charge limited region and the temperature limited region unclear, making it difficult to use the cathode at low temperatures.

【0004】0004

【発明が解決しようとする課題】上記したように、従来
の含浸形陰極において、動作温度は低いが、陰極表面に
仕事関数の不均一分布が存在するために、高い電子放出
能を得るには高い電界を印加しなければならなく、実用
化を難しくしているという難点があった。
[Problems to be Solved by the Invention] As mentioned above, although the operating temperature of conventional impregnated cathodes is low, it is difficult to obtain high electron emission performance due to the non-uniform distribution of work functions on the cathode surface. The problem was that a high electric field had to be applied, making it difficult to put it into practical use.

【0005】本発明の目的は、W,Sc及びOを含む薄
膜を被覆した含浸形陰極表面の仕事関数の不均一分布を
軽減すなわちパッチ電界効果を低減し、実装に耐え得る
含浸形陰極を提供することにある。
[0005] An object of the present invention is to provide an impregnated cathode that can reduce the non-uniform distribution of the work function on the surface of an impregnated cathode coated with a thin film containing W, Sc, and O, that is, reduce the patch electric field effect, and that can withstand mounting. It's about doing.

【0006】[0006]

【課題を解決するための手段】上記目的は、含浸形陰極
の耐熱多孔質基体を粒径1〜5μmの粒子からなる耐熱
金属焼結体とし、しかも空孔率を25〜32%とするこ
とによって達成することができる。
[Means for solving the problem] The above object is to make the heat-resistant porous substrate of the impregnated cathode a heat-resistant metal sintered body consisting of particles with a particle size of 1 to 5 μm, and to have a porosity of 25 to 32%. This can be achieved by

【0007】[0007]

【作用】図1は本発明の含浸形陰極の概略構造を示す断
面図で、耐熱多孔質基体1と電子放出物質2とからなる
下地含浸形陰極ペレット3,障壁層4,スリーブ5,ヒ
ータ6,及びWとSc2W3O12を含む薄膜7から構
成されている。まず、ヒータ6への通電により陰極を加
熱することによって、下地含浸形陰極ペレット3内にお
いて耐熱多孔質基体1と電子放出物質2とが反応してB
aを生成する。たとえば、電子放出物質2にBa3Al
2O6を,多孔質基体1にWを使用した場合には、次の
式によってBaが生成される。
[Function] FIG. 1 is a sectional view showing the schematic structure of the impregnated cathode of the present invention, which includes a base impregnated cathode pellet 3 consisting of a heat-resistant porous substrate 1 and an electron-emitting substance 2, a barrier layer 4, a sleeve 5, and a heater 6. , and a thin film 7 containing W and Sc2W3O12. First, by heating the cathode by energizing the heater 6, the heat-resistant porous substrate 1 and the electron-emitting substance 2 react with each other in the base-impregnated cathode pellet 3.
Generate a. For example, Ba3Al is used as the electron emitting material 2.
When 2O6 is used and W is used for the porous substrate 1, Ba is generated according to the following formula.

【0008】 (2/3)Ba3Al2O6+(1/3)W→(1/3
)BaWO4+(2/3)BaAl2O4+Ba 生成したBaの一部は陰極表面に拡散すると同時に、他
のBaは薄膜7中のW及びScを含む酸化物と反応して
Scを生成する。たとえば、薄膜7がW及びSc2W3
O12からなる場合、Sc2W3O12とBaが反応し
、次の式によってScが生成される。
(2/3)Ba3Al2O6+(1/3)W→(1/3
)BaWO4+(2/3)BaAl2O4+Ba A part of the generated Ba diffuses to the cathode surface, and at the same time, other Ba reacts with the oxide containing W and Sc in the thin film 7 to generate Sc. For example, if the thin film 7 is W and Sc2W3
In the case of O12, Sc2W3O12 and Ba react to generate Sc according to the following formula.

【0009】 Sc2W3O12+3Ba→3BaWO4+2Sc陰極
表面に拡散したBaおよびScは、電子放出物質2の熱
分解によって生ずる酸素や雰囲気中の酸素と結合して、
薄膜7上に単分子層から数分子層程度の極めて厚さの薄
い(Ba,Sc,O)複合層8を形成する。この複合層
8はその電子放出仕事関数が1.2eVと小さく、高い
電子放出能が得られる要因である。しかし、従来の含浸
形陰極は、この複合層8が陰極表面全領域に均一には形
成されず、島状に形成されていた。(Ba,Sc,O)
複合層8が存在しない部分は、仕事関数が2.0eVと
大きく、仕事関数の不均一分布が観測された。したがっ
て、複合層8と薄膜7との間でパッチ電界効果が存在し
、高い電子放出能を得るためには高い電界を印加しなけ
ればならない。
Sc2W3O12+3Ba→3BaWO4+2Sc Ba and Sc diffused on the cathode surface combine with oxygen generated by thermal decomposition of the electron-emitting substance 2 and oxygen in the atmosphere,
On the thin film 7, an extremely thin (Ba, Sc, O) composite layer 8 of about a monomolecular layer to several molecular layers is formed. This composite layer 8 has a small electron emission work function of 1.2 eV, which is a factor in obtaining high electron emission ability. However, in the conventional impregnated cathode, this composite layer 8 is not uniformly formed over the entire surface area of the cathode, but is formed in an island shape. (Ba, Sc, O)
In the part where the composite layer 8 was not present, the work function was as large as 2.0 eV, and a non-uniform distribution of the work function was observed. Therefore, a patch electric field effect exists between the composite layer 8 and the thin film 7, and a high electric field must be applied to obtain high electron emission performance.

【0010】(Ba,Sc,O)複合層8の形成を注意
深く観察すると、その複合層8は多孔質基体1の細孔部
すなわち電子放出物質2の部分を中心に島状に形成され
ていた。これは生成したBa,Scが陰極表面で拡散速
度が遅く、かつ滞在時間が短いために、(Ba,Sc,
O)複合層8で陰極表面全領域を覆うことができなかっ
た。
When the formation of the (Ba, Sc, O) composite layer 8 was carefully observed, it was found that the composite layer 8 was formed in an island shape centered on the pores of the porous substrate 1, that is, the portion of the electron-emitting material 2. . This is because the generated Ba, Sc has a slow diffusion rate and short residence time on the cathode surface.
O) Composite layer 8 could not cover the entire cathode surface area.

【0011】Ba,Scの拡散速度及び滞在時間を補っ
て陰極表面全領域を(Ba,Sc,O)複合層8で覆う
ためには、多孔質基体1の細孔部間すなわち電子放出物
質2の部分の間隙を縮めれば、(Ba,Sc,O)複合
層8の被覆率が向上して仕事関数の不均一分布が解消さ
れ、パッチ電界効果を低減できる。したがって、多孔質
基体1は従来よりも細粒で製作した金属焼結体とすれば
良い。すなわち、実用的な粒子径については、顕著な効
果が認められたのは1〜5μmの範囲であった。また、
空孔率はBaの生成量を支配し、さらにScの生成量も
左右される。(Ba,Sc,O)複合層8をスムーズに
形成するためには、従来の陰極の空孔率よりも大きい方
が有利である。電子放出特性測定によって実験的に求め
た空孔率については、顕著な効果が認められたのは25
〜32%の範囲で、28%のとき電子放出特性が最良で
あった。
In order to cover the entire cathode surface area with the (Ba, Sc, O) composite layer 8 by compensating for the diffusion rate and residence time of Ba and Sc, it is necessary to By reducing the gap in the region, the coverage of the (Ba, Sc, O) composite layer 8 is improved, the non-uniform distribution of the work function is eliminated, and the patch electric field effect can be reduced. Therefore, the porous substrate 1 may be a metal sintered body made of finer grains than conventional ones. That is, regarding practical particle diameters, significant effects were observed in the range of 1 to 5 μm. Also,
The porosity governs the amount of Ba produced, and also influences the amount of Sc produced. In order to smoothly form the (Ba, Sc, O) composite layer 8, it is advantageous for the porosity to be larger than that of a conventional cathode. Regarding the porosity experimentally determined by measuring electron emission characteristics, a remarkable effect was observed in 25 cases.
In the range of ~32%, the electron emission properties were best at 28%.

【0012】0012

【実施例】以下、本発明の含浸形陰極について実施例に
よって具体的に説明する。
[Examples] The impregnated cathode of the present invention will be explained in detail below with reference to Examples.

【0013】先ず、図1に基づいて、本発明の含浸形陰
極の製作について説明する。粒径1,3,5μmのW粉
末と従来陰極に使用している粒径7μmのW粉末を用意
し、それぞれプレス成形,水素中で仮焼結,真空中で本
焼結を行い、空孔率20,23,25,28,32%で
直径1.2mm,厚さ0.45mmの耐熱多孔質基体1
を製作した。なお、空孔率の調整は、プレス成形圧力、
焼結温度を変えることによって実施した。製作した多孔
質基体1に水素雰囲気中で4BaO・CaO・Al2O
3の組成からなる電子放出物質2を加熱溶融,含浸し、
下地含浸形陰極ペレット3を製作した。次いで、該ペレ
ット3をモリブデン(Mo)からなるカップ状の障壁層
4に挿入し、さらにヒータ6を内包するためのMoスリ
ーブ5に挿入したのち、それらを固着して陰極本体を製
作した。
First, the production of the impregnated cathode of the present invention will be explained based on FIG. We prepared W powder with particle sizes of 1, 3, and 5 μm and W powder with particle size of 7 μm, which is conventionally used for cathodes, and performed press molding, preliminary sintering in hydrogen, and main sintering in vacuum to form pores. Heat-resistant porous substrate 1 with a diameter of 1.2 mm and a thickness of 0.45 mm with a ratio of 20, 23, 25, 28, and 32%
was produced. In addition, the porosity can be adjusted by press molding pressure,
This was done by varying the sintering temperature. 4BaO・CaO・Al2O was applied to the prepared porous substrate 1 in a hydrogen atmosphere.
The electron-emitting material 2 having the composition of 3 is heated and melted and impregnated,
Substrate-impregnated cathode pellet 3 was manufactured. Next, the pellets 3 were inserted into a cup-shaped barrier layer 4 made of molybdenum (Mo), and further into a Mo sleeve 5 for enclosing the heater 6, and then fixed together to produce a cathode body.

【0014】次に、複数物質を同時にスパッタリングす
ることが可能な装置(図示せず)を使用し、W,Sc2
W3O12の2種をスパッタ・ターゲットとして、上記
陰極本体のペレット3表面に上記WとSc2W3O12
からなる混合薄膜7を形成した。
Next, using an apparatus (not shown) capable of sputtering multiple substances simultaneously, W, Sc2
Using two types of W3O12 as sputter targets, the above W and Sc2W3O12 are applied to the surface of the pellet 3 of the cathode body.
A mixed thin film 7 was formed.

【0015】上記の如く形成した含浸形陰極について、
真空度10−7Paクラスの高真空容器内に陽極と陰極
からなる平行平板の2電極を配置し、陰極温度を115
0℃まで加熱して陰極を活性化したのち、陰極温度を8
50℃に下げて陽極に正のパルス電圧を印加したときの
陰極の放出電流を測定した。図2は陰極の放出電流密度
と印加電圧の平方根との関係(ショットキー曲線)を示
す。同図において、曲線21は本発明による含浸形陰極
の放出電流密度特性、曲線22は従来の含浸形陰極の特
性、曲線23は従来の実用的なレベルにあるOs−Ru
被覆含浸形陰極の特性である。
Regarding the impregnated cathode formed as described above,
Two parallel plate electrodes consisting of an anode and a cathode are arranged in a high vacuum container with a vacuum degree of 10-7 Pa class, and the cathode temperature is set to 115
After activating the cathode by heating it to 0℃, the cathode temperature was increased to 8℃.
The emission current of the cathode was measured when the temperature was lowered to 50° C. and a positive pulse voltage was applied to the anode. FIG. 2 shows the relationship (Schottky curve) between the cathode emission current density and the square root of the applied voltage. In the figure, curve 21 is the emission current density characteristic of the impregnated cathode according to the present invention, curve 22 is the characteristic of the conventional impregnated cathode, and curve 23 is the characteristic of the conventional impregnated cathode.
This is a characteristic of a coated impregnated cathode.

【0016】表1は上記実施例で説明した耐熱多孔質基
体の製作条件による陰極の電子放出特性を定性的に優劣
評価した結果で、記号は特性が優れている順にA>B>
C>Dである。A及びBが陰極として実用的なレベルの
ものである。
Table 1 shows the results of a qualitative evaluation of the electron emission characteristics of the cathode according to the manufacturing conditions of the heat-resistant porous substrate explained in the above examples, and the symbols are A>B> in order of superior characteristics.
C>D. A and B are of a practical level as cathodes.

【0017】[0017]

【表1】[Table 1]

【0018】図2から分かるように、本発明による含浸
形陰極の放出電流密度特性21は従来の含浸形陰極の特
性22に比較して高い放出電流密度が得られ、特に低電
界においてはそれが顕著になっている。また、従来の実
用レベルのOs−Ru被覆含浸形陰極の特性23と同様
に、空間電荷制限領域から温度制限領域への移行が明瞭
になった。これは低仕事関数の(Ba,Sc,O)複合
層8の陰極表面での被覆率が向上し、仕事関数の不均一
分布が低減されたことを意味する。また、動作温度(陰
極温度850℃)状態において、陰極表面のオージェ分
析を実施しても明らかに(Ba,Sc,O)複合層8の
被覆率向上が確認された。
As can be seen from FIG. 2, the emission current density characteristic 21 of the impregnated cathode according to the present invention provides a higher emission current density than the characteristic 22 of the conventional impregnated cathode, especially in a low electric field. It's becoming noticeable. Furthermore, similar to characteristic 23 of the conventional Os-Ru coated impregnated cathode at a practical level, the transition from the space charge limited region to the temperature limited region became clear. This means that the coverage of the low work function (Ba, Sc, O) composite layer 8 on the cathode surface was improved and the non-uniform distribution of the work function was reduced. Furthermore, even when Auger analysis of the cathode surface was performed at the operating temperature (cathode temperature of 850° C.), it was clearly confirmed that the coverage of the (Ba, Sc, O) composite layer 8 was improved.

【0019】[0019]

【発明の効果】以上、本発明になるW及びScを含む酸
化物の混合膜を有する含浸形陰極において、耐熱多孔質
基体を従来よりも小粒径の粉末から製作した焼結体とし
、さらに空孔率を25〜32%と従来よりも高くするこ
とによって、陰極表面に低仕事関数の(Ba,Sc,O
)複合層が高い被覆率で容易に形成でき、仕事関数の不
均一分布の低減すなわちパッチ電界効果を低減できる。 したがって、本発明による含浸形陰極は、小さい電界で
も高い放出電流密度が得られ、実用レベルの低温動作形
の含浸形陰極として使用できる。
As described above, in the impregnated cathode having a mixed film of oxides containing W and Sc according to the present invention, the heat-resistant porous substrate is a sintered body made from powder with a smaller particle size than conventional ones, and By increasing the porosity to 25% to 32%, which is higher than before, the cathode surface has low work function (Ba, Sc, O
) A composite layer can be easily formed with a high coverage rate, and the non-uniform distribution of work function can be reduced, that is, the patch electric field effect can be reduced. Therefore, the impregnated cathode according to the present invention can obtain a high emission current density even in a small electric field, and can be used as a practical level impregnated cathode operating at low temperatures.

【0020】また、本発明による含浸形陰極を電子管に
実装した場合に、動作温度を従来のOs−Ru被覆含浸
形陰極よりもさらに150〜200℃下げることができ
るので、陰極表面からのBa及びBaOの蒸発速度を約
1桁低減出来、グリッド・エミッション等に起因する管
球特性の劣化を防止できる。さらに、本発明による含浸
形陰極は低温動作であることから、陰極を加熱するヒー
タの信頼性も大巾に向上する。
Furthermore, when the impregnated cathode according to the present invention is mounted in an electron tube, the operating temperature can be further lowered by 150 to 200°C than the conventional Os-Ru coated impregnated cathode, so that Ba and The evaporation rate of BaO can be reduced by about one order of magnitude, and deterioration of tube characteristics caused by grid emissions etc. can be prevented. Furthermore, since the impregnated cathode according to the present invention operates at low temperatures, the reliability of the heater that heats the cathode is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の含浸形陰極の概略構造を示す断面図で
ある。
FIG. 1 is a sectional view showing a schematic structure of an impregnated cathode of the present invention.

【図2】本発明構成の含浸形陰極と従来の含浸形陰極の
放出電流密度特性を比較した図である。
FIG. 2 is a diagram comparing the emission current density characteristics of an impregnated cathode constructed according to the present invention and a conventional impregnated cathode.

【符号の説明】[Explanation of symbols]

1・・・耐熱多孔質基体、2・・・電子放出物質、3・
・・ペレット、7・・・W及びScを含む酸化物の混合
薄膜、8・・・(Ba,Sc,O)複合層、21・・・
本発明の含浸形陰極の特性、22,23・・・従来の含
浸形陰極の特性。
1... Heat-resistant porous substrate, 2... Electron-emitting material, 3...
... Pellet, 7... Mixed thin film of oxide containing W and Sc, 8... (Ba, Sc, O) composite layer, 21...
Characteristics of the impregnated cathode of the present invention, 22, 23...Characteristics of the conventional impregnated cathode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】耐熱多孔質基体と、その細孔部には電子放
出物質、表面にはタングステン(W),スカンジウム(
Sc)及び酸素(O)を含む薄膜を設けた含浸形陰極に
おいて、前記耐熱多孔質基体は粒径1〜5μmの粒子の
耐熱金属焼結体からなり、かつ25〜32%の空孔率を
有することを特徴とする含浸形陰極。
Claim 1: A heat-resistant porous substrate with an electron-emitting substance in its pores and tungsten (W) and scandium (
In the impregnated cathode provided with a thin film containing Sc) and oxygen (O), the heat-resistant porous substrate is made of a heat-resistant metal sintered body of particles with a particle size of 1 to 5 μm, and has a porosity of 25 to 32%. An impregnated cathode comprising:
JP3052198A 1991-03-18 1991-03-18 Impregnated cathode Pending JPH04286827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3052198A JPH04286827A (en) 1991-03-18 1991-03-18 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3052198A JPH04286827A (en) 1991-03-18 1991-03-18 Impregnated cathode

Publications (1)

Publication Number Publication Date
JPH04286827A true JPH04286827A (en) 1992-10-12

Family

ID=12908091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3052198A Pending JPH04286827A (en) 1991-03-18 1991-03-18 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPH04286827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996042100A1 (en) * 1995-06-09 1996-12-27 Kabushiki Kaisha Toshiba Impregnated cathode structure, cathode substrate used for the structure, electron gun structure using the cathode structure, and electron tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996042100A1 (en) * 1995-06-09 1996-12-27 Kabushiki Kaisha Toshiba Impregnated cathode structure, cathode substrate used for the structure, electron gun structure using the cathode structure, and electron tube
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
US6304024B1 (en) 1995-06-09 2001-10-16 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region
US6447355B1 (en) 1995-06-09 2002-09-10 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region

Similar Documents

Publication Publication Date Title
Hasker et al. Properties and manufacture of top-layer scandate cathodes
JPS58154131A (en) Impregnation type cathode
KR20020068644A (en) Metal cathode and indirectly heated cathode assembly having the same
JPH04286827A (en) Impregnated cathode
US2798010A (en) Method of manufacturing indirectly heated cathodes
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
KR100382060B1 (en) Cathode using a cermet pellet and its manufacturing method
JPS5814017B2 (en) Directly heated cathode for electron tubes
JPS59203343A (en) Impregnated cathode
JP2585232B2 (en) Impregnated cathode
JP3322465B2 (en) Cathode assembly and method of manufacturing the same
KR100393990B1 (en) heater for CRT
KR970009775B1 (en) Manufacture of impregnated type cathode
JPS6032232A (en) Impregnated cathode
JPH0443527A (en) Impregnated cathode and electron tube using impregnated cathode
JPS60170137A (en) Hot cathode
JPH08329837A (en) Manufacture of impregnated cathode
JPS61121233A (en) Manufacture of impregnated cathode
JPH03105827A (en) Impregnated type cathode
JPH05250981A (en) Impregnation type cathode and its manufacturing thereof
JPS63221527A (en) Impregnated cathode
JPH0574337A (en) Manufacture of impregnation-type cathode
JPS5918539A (en) Impregnated cathode
JPH07169383A (en) Impregnated cathode and electron tube or electron beam applying apparatus using same
JPS6364234A (en) Impregnated cathode