JPS59203343A - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPS59203343A
JPS59203343A JP58077432A JP7743283A JPS59203343A JP S59203343 A JPS59203343 A JP S59203343A JP 58077432 A JP58077432 A JP 58077432A JP 7743283 A JP7743283 A JP 7743283A JP S59203343 A JPS59203343 A JP S59203343A
Authority
JP
Japan
Prior art keywords
cathode
impregnated cathode
powder
fine
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58077432A
Other languages
Japanese (ja)
Inventor
Toshiyuki Aida
会田 敏之
Tadanori Taguchi
田口 貞憲
Yoshihiko Yamamoto
山本 恵彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58077432A priority Critical patent/JPS59203343A/en
Publication of JPS59203343A publication Critical patent/JPS59203343A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To improve emitted current characteristics in the low temperature area by providing a uniform layer consisting of fine W powder, scandium oxide, and electron emission material on the surface of a cathode. CONSTITUTION:In an impregnated cathode that is used in a CRT, image pickup tube, etc, an impregnated cathode 9 to which SC2O3 is added is formed by filling a porous W substrate and an air hole section with an electron emitting material consisting of scandium oxide and barium oxide. A layer 10 consisting of fine W powder, SC2O3, and electron emitting material is formed on the surface of such a cathode 9. The particle diameter of the W powder used in the layer 10 ranges from 0.1mum to 2mum. As a result, the electric emission can be improved in the low voltage area and the high current density of a cathode material can be attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はブラウン管、撮像管等の陰極材料に係り、特に
高い電子放出が得られる高性能の含浸形陰極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to cathode materials for cathode ray tubes, image pickup tubes, etc., and particularly to a high-performance impregnated cathode that can provide high electron emission.

〔発明の背景〕[Background of the invention]

通常の含浸形陰極の飽和電流密度は1ooorで3〜4
A/。2である。これに対して、SC酸化物を添加した
含浸形陰極の飽和電流密度は800CでIOA/cn2
の値が得られる。しかし、SC酸化物添加の含浸形陰極
は空間電荷制限領域において、引き出し電圧に対する放
出電流値が低いため(A、 Van Oostrom、
 Appl、 5urf、Sci、 2.1979゜1
73)、低温下で使用するのに難があわ、実用化まで至
っていない。
The saturation current density of a normal impregnated cathode is 3 to 4 at 1ooor.
A/. It is 2. On the other hand, the saturation current density of the impregnated cathode containing SC oxide is IOA/cn2 at 800C.
The value of is obtained. However, the impregnated cathode with SC oxide has a low emission current value with respect to the extraction voltage in the space charge limited region (A, Van Oostrom,
Appl, 5urf, Sci, 2.1979°1
73), it is difficult to use at low temperatures and has not been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明の目的はSC酸化物添加の含浸形陰極の低温領域
における放出電流特性を改善することにある。
An object of the present invention is to improve the emission current characteristics of an impregnated cathode containing SC oxide in a low temperature region.

〔発明の概要〕[Summary of the invention]

SC酸化物添加の含浸形陰極は動作温度において、表面
に不均一なSC酸化物の析出物を形成するため、表面準
位が不均一となり、低電界領域では電子放出しにくい欠
点があった。本発明はSC酸化物添加の含浸形陰極の表
面上に、微細なW粉、スカンジウム酸化物、および電子
放出物質の均一層を設けて、表面準位を均一にし、高い
電子放出を可能にしたところに特徴がある。
The impregnated cathode containing SC oxide has the drawback that non-uniform SC oxide precipitates are formed on the surface at operating temperatures, resulting in non-uniform surface states and difficulty in emitting electrons in a low electric field region. The present invention provides a uniform layer of fine W powder, scandium oxide, and electron-emitting material on the surface of an impregnated cathode containing SC oxide, making the surface level uniform and enabling high electron emission. The place has its characteristics.

上記微細なW粉、スカンジウム酸化物、電子放出物質の
均一層の作製方法は種々考えられるが、例えば陰極表面
上に微細なW粉あるいは多結晶体のW膜を設け、熱処理
法で微細なW粉、スカンジウム酸化物、電子放出物質の
均一層を作製することができる。
Various methods can be considered for producing the above-mentioned uniform layer of fine W powder, scandium oxide, and electron-emitting material. A uniform layer of powder, scandium oxide, and electron-emitting material can be created.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

実施例1 第1図は従来の5C203含有の含浸形陰極の断面図を
示す。1はW粒、2は8 C20i1粒、3は電子放出
物質である。W粒は粒径が5〜110A1である。
Example 1 FIG. 1 shows a cross-sectional view of a conventional impregnated cathode containing 5C203. 1 is a W grain, 2 is one 8 C20i grain, and 3 is an electron emitting material. The W grains have a grain size of 5 to 110A1.

通常の含浸法、(H2気流中、1700CX2分加熱)
で予じめ作製したw−sc2o3の多孔質体の中に含浸
させた。この5C203添加の含浸形陰極の飽和電流特
性を測定して、従来の含浸形陰極およびOs被覆の含浸
形陰極と比較した結果を第2図に示す。
Normal impregnation method (heated at 1700CX for 2 minutes in H2 stream)
It was impregnated into a porous body of w-sc2o3 prepared in advance. The saturation current characteristics of this 5C203-added impregnated cathode were measured and compared with a conventional impregnated cathode and an Os-coated impregnated cathode, and the results are shown in FIG.

4は通常の含浸形陰極の特性、5はOs被覆の含浸形陰
極の特性、6は5C203添加の含浸形陰極の特性であ
る。含浸形陰極に5C203を添加すると飽和電流密度
が著しく向上する。しかし、5C203添加の含浸形陰
極は低電圧の引き出し電圧下では放出電流が低い欠点が
ある。第3図はアノードにMO板を用い、カソードとア
ノード間距離を1叫に設定し、800Cの温度において
カソードから放出される電流を引き出し電圧の平方根で
プロットした結果である。7は8Cx03添加の含浸形
陰極の特性を示し低い引き出し電圧下では放出電流が低
いのが分る。これは含浸形陰極の表面部構造が第1図に
示したように、5c2osや壁孔の偏析などの表面上に
微細なW粉層を設けた場合の結果である。W粉層は下地
のW基体の粒径5〜10μmよシ小さい0.1〜1μm
の微細なものから成り、その厚さは0.5μm〜2μm
とした。このW粉密着の5CzOa添加の含浸形陰極は
低い引き出し電圧下でも放出電流が高いのが分る。これ
はsc、o3添加の含浸形陰極の表面上に微細なW粉層
を設けた場合、高温の動作温度で下地のS C20,成
分と電子放出物質が微細なW粉層の空孔部に浸透して、
表面に均一なW粒、5C203、電子放出物質の層を形
成しただめと考えられる。この構造の模式図を第4図に
示す。9は5C203添加の含浸形陰極、10は表面上
に密着している微細なW粉、5C203、電子放出物質
からなる層である。W粉の粒径が0.1μm11以下で
あると、高温で焼結時にW粉の局部的な粒成長を逆に生
じてしまうため、放出電流と電圧の関係が第3図の7の
特性に低下してしまった。
4 is a characteristic of a normal impregnated cathode, 5 is a characteristic of an Os-coated impregnated cathode, and 6 is a characteristic of an impregnated cathode added with 5C203. Adding 5C203 to the impregnated cathode significantly improves the saturation current density. However, the 5C203-added impregnated cathode has the drawback of low emission current under low extraction voltage. FIG. 3 shows the results of plotting the current emitted from the cathode at a temperature of 800 C using the square root of the extraction voltage, using an MO plate as the anode and setting the distance between the cathode and the anode to 1. No. 7 shows the characteristics of an 8Cx03-added impregnated cathode, and it can be seen that the emission current is low under a low extraction voltage. This is the result when the surface structure of the impregnated cathode is such that a fine W powder layer is provided on the surface of 5c2os or wall hole segregation, as shown in FIG. The W powder layer has a particle size of 0.1 to 1 μm, which is smaller than the particle size of the underlying W substrate, which is 5 to 10 μm.
It consists of fine particles, and its thickness is 0.5 μm to 2 μm.
And so. It can be seen that this 5CzOa-added impregnated cathode in close contact with W powder has a high emission current even under a low extraction voltage. This is because when a fine W powder layer is provided on the surface of an impregnated cathode with SC, O3 added, the underlying SC20, components and electron-emitting substances are absorbed into the pores of the fine W powder layer at high operating temperatures. Penetrate,
This is thought to be due to the formation of a uniform layer of W grains, 5C203, and electron emitting material on the surface. A schematic diagram of this structure is shown in FIG. Reference numeral 9 is an impregnated cathode containing 5C203, and 10 is a layer consisting of fine W powder, 5C203, and an electron-emitting substance that is in close contact with the surface. If the particle size of the W powder is less than 0.1 μm11, local grain growth of the W powder will occur during sintering at high temperatures, and the relationship between the emission current and voltage will change to the characteristic 7 in Figure 3. It has declined.

父、〜や粒の粒径が2μm以上では下地の含浸形陰極の
〜・〜f基体の一次粒径と近くなシすぎて、W粒の均一
分散が雄〃−シくなり、この場合も望ましい結果が得ら
れなかった。
If the grain size of the W grains is 2 μm or more, it will be too close to the primary grain size of the underlying impregnated cathode, making it difficult to uniformly disperse the W grains. The desired results were not achieved.

実施例2 実施例1に記した微細なW粉の替υ、W膜の被覆層を設
けることを行った。W膜は通常のスパッター法で作製し
、膜厚を0.1〜5μmとした。このW膜の被覆しであ
る5C203添加の含浸形陰極の特性を測定したところ
、飽和電流密度では第2図の6の特性、放出電流−電圧
の関係では第3図の8の特性が得られた。これはスパッ
ター法で作製したW膜は0.05〜0,2μmの多結晶
体であるため、熱処理を施すと、下地の含浸形陰極から
、5c203と電子放出物質が拡散してきて、第4図に
示したような均一性の良い表面構造を形成したためであ
る。したがって、W膜被覆の5C203添加の含浸形陰
極も低い引き出し電圧下で高い電子放出をすることが理
解される。膜厚が0.1μm以下ではW膜の被覆が不十
分で、5μm以上では特性を安定化させるエージング時
間が長くなシすぎ、いずれの場合も望ましい結果を得る
ことができなかった。
Example 2 The fine W powder described in Example 1 was replaced with a W film coating layer. The W film was produced by a normal sputtering method and had a film thickness of 0.1 to 5 μm. When we measured the characteristics of the 5C203-added impregnated cathode coated with this W film, we found that the saturation current density had the characteristic 6 in Figure 2, and the emission current-voltage relationship had the characteristic 8 in Figure 3. Ta. This is because the W film produced by the sputtering method is a polycrystalline material with a size of 0.05 to 0.2 μm, so when it is heat-treated, 5c203 and the electron-emitting substance diffuse from the underlying impregnated cathode, as shown in Figure 4. This is because a surface structure with good uniformity as shown in Figure 3 was formed. Therefore, it is understood that the 5C203-added impregnated cathode coated with a W film also emits high electrons under a low extraction voltage. When the film thickness is less than 0.1 μm, the W film coverage is insufficient, and when it is more than 5 μm, the aging time required to stabilize the characteristics is too long, and in either case, desired results could not be obtained.

〔発明の効果〕 本発明によればSC添加の含浸形陰極の低電圧領域にお
ける電子放出を高めることができ、ブラウン管や撮像管
等の陰極材料の高電流密度化に寄与することができる。
[Effects of the Invention] According to the present invention, electron emission in the low voltage region of an impregnated cathode added with SC can be enhanced, and it can contribute to increasing the current density of cathode materials such as cathode ray tubes and image pickup tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5C203添加の含浸形陰極の縦断面図、第2
図は従来法で作製した含浸形陰極と5C203添加含浸
形陰極の飽和電流特性図、第3図は従来の5C203添
加含浸形陰極と本発明の陰極における放出電流と引き出
し電圧の関係図、第4図は本発明の含υ形陰極の縦断面
図である。 1・・・タングステン粒、2・・・酸化スカンジウム粒
、3・・・電子放出物質、4・・・従来の含浸形陰極の
飽和電流特性、5・・・オスミウム被覆含浸形陰極の飽
和電流特性、6・・・5C203添加含浸形陰極の飽和
電流重性、7・・・5C203添加含浸形陰極の放出電
流と電圧の関係、8・・・本発明の含浸形陰極の放出電
流と電圧の関係、9・・・5C203添加含浸形陰極の
拡大断閉 (図 鎖 2 図 第 3  図 、1− 7o心j2[
Figure 1 is a longitudinal cross-sectional view of an impregnated cathode with 5C203 added.
The figure is a saturation current characteristic diagram of an impregnated cathode made by a conventional method and a 5C203-added impregnated cathode, Fig. 3 is a relationship between emission current and extraction voltage for a conventional 5C203-added impregnated cathode and the cathode of the present invention, and Fig. 4 The figure is a longitudinal cross-sectional view of the υ-shaped cathode of the present invention. 1... Tungsten grains, 2... Scandium oxide particles, 3... Electron-emitting material, 4... Saturation current characteristics of conventional impregnated cathode, 5... Saturation current characteristics of osmium-coated impregnated cathode , 6...5 Saturation current gravity of C203-added impregnated cathode, 7...5 Relationship between emission current and voltage of C203-added impregnated cathode, 8... Relationship between emission current and voltage of impregnated cathode of the present invention , 9...5 Expansion and disconnection of C203-added impregnated cathode (Fig. 2, Fig. 3, 1-7o core j2 [

Claims (1)

【特許請求の範囲】 1、多孔質のW基体と仝孔部に充填されたスカンジウム
酸化物及びバリウム酸化物の電子放出物質とから成る含
浸形陰極において、陰極表面上に微細なW粉、スカンジ
ウム酸化物、電子放出物質からなる均一層を設けること
を特徴とする含浸形陰極。 2、−ヒ記微細なW粉として、0.1μmから2μmの
範囲の粒径のものを用いる特許請求の範囲第1項記載の
含浸形陰極。
[Claims] 1. In an impregnated cathode consisting of a porous W substrate and scandium oxide and barium oxide electron-emitting substances filled in the pores, fine W powder and scandium powder are formed on the surface of the cathode. An impregnated cathode characterized by providing a uniform layer of an oxide and an electron-emitting substance. 2.-The impregnated cathode according to claim 1, wherein the fine W powder has a particle size in the range of 0.1 μm to 2 μm.
JP58077432A 1983-05-04 1983-05-04 Impregnated cathode Pending JPS59203343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58077432A JPS59203343A (en) 1983-05-04 1983-05-04 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58077432A JPS59203343A (en) 1983-05-04 1983-05-04 Impregnated cathode

Publications (1)

Publication Number Publication Date
JPS59203343A true JPS59203343A (en) 1984-11-17

Family

ID=13633839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58077432A Pending JPS59203343A (en) 1983-05-04 1983-05-04 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPS59203343A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248417A2 (en) * 1986-06-06 1987-12-09 Kabushiki Kaisha Toshiba Impregnated cathode
US4873052A (en) * 1984-10-05 1989-10-10 U.S. Philips Corporaton Method of manufacturing a scandate dispenser cathode and scandate dispenser cathode manufactured according to the method
EP0651419A1 (en) * 1993-10-28 1995-05-03 Koninklijke Philips Electronics N.V. Dispenser cathode and method of manufacturing a dispenser cathode
BE1007677A3 (en) * 1993-10-28 1995-09-12 Philips Electronics Nv Method for manufacturing a dispenser cathode
EP0831512A1 (en) * 1995-06-09 1998-03-25 Kabushiki Kaisha Toshiba Impregnated cathode structure, cathode substrate used for the structure, electron gun structure using the cathode structure, and electron tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873052A (en) * 1984-10-05 1989-10-10 U.S. Philips Corporaton Method of manufacturing a scandate dispenser cathode and scandate dispenser cathode manufactured according to the method
EP0248417A2 (en) * 1986-06-06 1987-12-09 Kabushiki Kaisha Toshiba Impregnated cathode
EP0651419A1 (en) * 1993-10-28 1995-05-03 Koninklijke Philips Electronics N.V. Dispenser cathode and method of manufacturing a dispenser cathode
BE1007677A3 (en) * 1993-10-28 1995-09-12 Philips Electronics Nv Method for manufacturing a dispenser cathode
EP0831512A1 (en) * 1995-06-09 1998-03-25 Kabushiki Kaisha Toshiba Impregnated cathode structure, cathode substrate used for the structure, electron gun structure using the cathode structure, and electron tube
EP0831512A4 (en) * 1995-06-09 1999-02-10 Toshiba Kk Impregnated cathode structure, cathode substrate used for the structure, electron gun structure using the cathode structure, and electron tube
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
US6304024B1 (en) 1995-06-09 2001-10-16 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region
US6447355B1 (en) 1995-06-09 2002-09-10 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region

Similar Documents

Publication Publication Date Title
Hasker et al. Properties and manufacture of top-layer scandate cathodes
US4518890A (en) Impregnated cathode
US2912611A (en) Thermionic cathodes
JPS5821771B2 (en) Microwave tube with iridium cathode
EP0091161A1 (en) Methods of manufacturing a dispenser cathode and dispenser cathode manufactured according to the method
JPH0558207B2 (en)
JPH0139614B2 (en)
JPH0628968A (en) Cathode containing solid body
RU2380784C1 (en) Magnetron with non-filament cathode
JPS59203343A (en) Impregnated cathode
US4982133A (en) Dispenser cathode and manufacturing method therefor
Aida et al. Emission life and surface analysis of barium‐impregnated thermionic cathodes
JPS5979934A (en) Impregnated cathode
JPS612226A (en) Impregnated cathode
JPS6032232A (en) Impregnated cathode
JPH06103885A (en) Porous sintered base, manufacture thereof and method for evaluating porosity of porous material
JPS60138822A (en) Impregnated cathode
US2428289A (en) Electron tube coating
JPH0630214B2 (en) Impregnated cathode and manufacturing method thereof
JPH04286827A (en) Impregnated cathode
JP2910426B2 (en) Manufacturing method of tungsten powder sintered body for impregnated cathode
JP2730260B2 (en) Cathode for electron tube
JPS63116330A (en) Impregnated cathode
JPS60170137A (en) Hot cathode
JP2002025436A (en) Manufacturing method of impregnated type cathode structure