JPS60138822A - Impregnated cathode - Google Patents
Impregnated cathodeInfo
- Publication number
- JPS60138822A JPS60138822A JP58244498A JP24449883A JPS60138822A JP S60138822 A JPS60138822 A JP S60138822A JP 58244498 A JP58244498 A JP 58244498A JP 24449883 A JP24449883 A JP 24449883A JP S60138822 A JPS60138822 A JP S60138822A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- impregnated
- electron
- coated
- impregnated cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/14—Solid thermionic cathodes characterised by the material
Landscapes
- Solid Thermionic Cathode (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はブラウン管、撮像管端の陰極に用いる含浸形陰
極に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an impregnated cathode used as a cathode at the end of a cathode ray tube or an image pickup tube.
従来、ブラウン管や撮像管等に通′1;七用いられてい
た陰極は、第1図(a)に示すように多孔ηW基体1に
電子放出物質2のバリウムアルミネ−1・系酸化物全含
浸さぜた含浸形陰極で、該含浸形陰極の飽和電流密度は
陰極湿度が1000℃のとき6〜6A / cm2であ
る。これに対して、ト記含浸形陰極の表面にO3膜ある
いはIr膜の被覆’x M+・すと、陰極温度1000
℃で約10 A、7cm2の高い飽和′電流密度が得ら
れる( P、 Zalm and A、 J、 A v
an Stratum :Ph1lips Tech、
Iもev、 27 (1966)、特公昭47−21
346)。しかし上記のOs膜あるいは■「膜の被覆を
施した含浸形陰極は、高い放出電流の負荷のもとで使用
すると、真空容器内に生じる正イオンガスによるボンバ
ードメントまたはアーク放電なとによる被覆層の破損事
故を引き起し、エミッションの劣化を生じることが多い
。最近、十記被抑j1ぞ陰極に苅し第1図(1))に示
すように、多孔質基体にWれソ1と05粒5やIr粒の
合金を用いて被覆層4−必要としない7トリノクス形陰
極が提唱されている( M、 C,Green、 cl
aloAppl、 5urf、 Sci、 8(19
81)13、特開昭53−13348)。この陰極はイ
オンボンバードメントやアーク放電を受けても本質的に
エミソ/ヨン劣化を生じないため、高電流密度陰極とし
て期待されている。しかしこの陰Jii14 fi高い
電子放出状態に到達させるために、1oo。Conventionally, the cathode commonly used in cathode ray tubes, image pickup tubes, etc. consists of a porous ηW substrate 1 completely impregnated with an electron-emitting substance 2, barium alumina-1-based oxide, as shown in Figure 1(a). With a wet impregnated cathode, the saturation current density of the impregnated cathode is 6-6 A/cm2 when the cathode humidity is 1000 °C. On the other hand, if the surface of the impregnated cathode is coated with an O3 film or an Ir film, the cathode temperature is 1000.
A high saturation current density of about 10 A, 7 cm2 is obtained at °C (P, Zalm and A, J, Av
An Stratum: Ph1lips Tech,
Imoev, 27 (1966), Special Publication 1977-21
346). However, when an impregnated cathode coated with the above-mentioned Os film or ``film'' is used under a high emission current load, the coating layer may be damaged due to bombardment or arc discharge due to positive ion gas generated in the vacuum chamber. This often causes breakage accidents and deterioration of emissions.Recently, as shown in Figure 1 (1)), Wresor 1 is applied to a porous substrate. A trinox-type cathode that does not require a coating layer 4 using an alloy of 05 grains 5 or Ir grains has been proposed (M, C, Green, cl
aloAppl, 5urf, Sci, 8(19
81) 13, JP-A-53-13348). This cathode is expected to be used as a high current density cathode because it essentially does not undergo emitter/ion deterioration even when subjected to ion bombardment or arc discharge. However, in order to reach a high electron emission state, this Yin Jii14 fi1oo.
℃で口00時間に近いエージングを必要とするので一般
の民生用機器には使いにくいという欠点があった0
〔発明の目的〕
本発明は被覆形電極と7トリノクス形陰極との欠点を除
き、高性能で長寿命な含浸形電極を得ることを[i的と
する。The disadvantage of this invention is that it is difficult to use in general consumer equipment because it requires aging for close to 00 hours at ℃. The objective is to obtain an impregnated electrode with high performance and long life.
上記の目的を達成するために本発明にょる含浸形電極は
、耐熱性金属とO5、Ir、、ILuのうちのいずれか
とよりなる2元素あるいは多元素の多孔質基体中に、バ
リウムアルミネ−1・系酸化物の電f・放出物質を含浸
した含浸形電極において、該陰極の表向−1−5にO5
、]、r、1も11のいずれかよりなる111−相j摸
あるいは上記各元素の任意の組合せよりなる合金相膜を
被覆したことによって、スJ命初期の1、v性を上記被
覆層で高め、寿命後期の特性を多孔質基体の成分元素で
維持するようにしたものである。In order to achieve the above object, the impregnated electrode according to the present invention has barium alumina・In an impregnated electrode impregnated with a charge-emitting substance of an oxide, O5 is added to the surface -1-5 of the cathode.
, ], r, 1 is also coated with a 111-phase j imitation made of any one of 11 or an alloy phase film made of any combination of the above elements, so that the initial 1, v properties of SJ are reduced to the above coating layer. The characteristics in the later stages of life are maintained using the constituent elements of the porous substrate.
つぎに本発明の実施例を同曲とともに説明する。 Next, an embodiment of the present invention will be explained along with the same song.
第2図は本発明による含浸形電極の一実施例の161面
図、第5図は神々の含浸形電極をそれぞれカラーブラウ
ン管に実装した場合における飽和電流密度の経時変化を
示した図である。第2図に示す実施例は耐熱性金机例え
ばW粒1と、05粒6とからなる多孔質基体に電子放出
物質2を含浸し、その表面」二にO5の単−用膜へ全被
覆したものである。第1図(a)にtJeす従来通常に
用いられていた含浸、形電極を、れ“l径5〜10μm
のW粒1で形成された空孔率20%の多孔質基体中に、
4 BaO+AA20.+CaO混合物のバリウムアル
ミネート系酸化物を電子放出物質2として含浸させて作
製した。含浸條件は1700℃の■1□ガス雰囲気下で
6分間である。つぎに第1図(1〕)に示ずマトリック
ス形陰極は、W粒1に苅してUs粒3の割合を20原子
%とじた両者の混合体を多孔質基体とし、該基体に上記
同様にして電子放出物質2を含浸して作製した。W粒1
およびUs J’、:13の粒径はそれぞれ5〜10μ
mである。FIG. 2 is a 161-plane view of one embodiment of the impregnated electrode according to the present invention, and FIG. 5 is a diagram showing the change over time in the saturation current density when the impregnated electrode of the gods is mounted on a color cathode ray tube. In the embodiment shown in FIG. 2, a porous substrate made of a heat-resistant metal, for example, W grains 1 and 05 grains 6, is impregnated with an electron-emitting substance 2, and the surface thereof is completely coated with a single film of O5. This is what I did. Figure 1(a) shows a conventional impregnated electrode with a diameter of 5 to 10 μm.
In a porous substrate with a porosity of 20% formed of W grains 1 of
4 BaO+AA20. It was produced by impregnating a barium aluminate-based oxide of +CaO mixture as the electron-emitting material 2. The impregnation conditions are 1700° C. for 6 minutes in a gas atmosphere. Next, a matrix type cathode (not shown in FIG. 1 (1)) is made of a porous substrate made of a mixture of W grains 1 and U grains 3 with a ratio of 20 atomic %, and the same as above. It was prepared by impregnating the electron emitting material 2. W grain 1
and Us J', :13 particle size is 5-10μ, respectively.
It is m.
さらに−ド記通常のa髪形陰極にOs膜を5000 A
の厚さに’:a rビーム蒸着法で波器した被覆形含浸
形陰1illiを・作製した。−に記者含浸形陰極をそ
れぞれカラーブラウン管に実装し1100℃で1時間の
ニージンク゛を行ったのち、陰極の加熱温度を1000
℃とした場合における飽和電流密度の経時変化を測定し
た結果が、第6図に示す各曲線である。通常の@l)、
形電極は曲M5に円くすように3−4A/cm’の飽和
電流密度で、エミツシヨンの劣化は殆んどみられない。Furthermore, an Os film is applied to the normal A hairstyle cathode at 5000 A.
A corrugated coated impregnated shade was fabricated using the AR beam evaporation method to a thickness of . - The reporter-impregnated cathode was mounted on each color cathode ray tube and knee-jerked at 1100℃ for 1 hour, and then the heating temperature of the cathode was increased to 1000℃.
The curves shown in FIG. 6 are the results of measuring changes over time in the saturation current density at .degree. Normal @l),
The shaped electrode has a saturation current density of 3-4 A/cm' in a circular shape with a curve M5, and almost no deterioration of the emission is observed.
W粒に05粒を混合した基体のW −Osマトリックス
形電極は曲線6に示すように、加熱初期の飽和電流密度
は」−紀通常の含浸形電極より劣っているが、加熱を続
けると1000時間経過したのちに、つき′に記すOs
膜を波山した破覆形、′f浸形陰極よりも飽和電流密度
が尚くなる。このエミノンヨン向」二の原因はよく解明
されていないが、W−Os多孔質基体の特殊な人自状態
が関係しているものと、思われる。また通′帛の含浸形
電極の表面上をO5膜で覆った被覆形含浸形陰極は同図
の曲線7に示すように、IOA/cm2の高い飽和電流
密度を7J<ずが、加熱継続中に時々エミノ/ヨ/劣化
を牛しることがある。この現象は上記測定が高電流+l
li、:度下における加熱寿命試験である/ζめに、+
Eガスイオンによるボンバードメントやアーク放゛市に
」2って」=記O3膜が破損されるからである。]記の
ようにこれらの含浸形電極は、スf命初期においてに被
覆形含浸形陰極がすぐれ、1000時間以Iを経過した
後ではマトリックス形電極がすぐれた特性を示す。本発
明による含浸形電極は一1記−7トリノジス形陰極と被
覆形含浸形陰極とを組合わせて形成したものである。As shown in curve 6, the saturation current density of the W-Os matrix electrode with a substrate made of a mixture of W grains and 05 grains is inferior to that of a normal impregnated electrode at the initial stage of heating, but as heating continues, the saturation current density increases to 1000 After the time has elapsed, write the Os
The saturation current density is even higher than that of the immersion type cathode, which has a undulating membrane. The cause of this phenomenon is not well understood, but it is thought to be related to the special state of the W-Os porous substrate. In addition, as shown in curve 7 in the same figure, the coated impregnated cathode, in which the surface of the conventional impregnated electrode is covered with an O5 film, has a high saturation current density of IOA/cm2 of less than 7 J, but during continued heating. I sometimes feel like emino/yo/deterioration. This phenomenon occurs when the above measurement is performed at a high current +l.
li,: heating life test at below degrees /ζ, +
This is because the O3 film is damaged by bombardment by E gas ions and arc radiation. As shown in the above, the coated impregnated cathode exhibits superior characteristics at the early stage of its life, while the matrix electrode exhibits superior characteristics after more than 1000 hours have elapsed. The impregnated electrode according to the present invention is formed by combining a 11-7 trinodic cathode and a covered impregnated cathode.
実施例の1
耐熱性金属として粒径5〜10μmのW粒を用い、該W
粒に粒径5〜10μmのOs粒子:20原子%混合して
かL成した多孔質基体中に、4BaO+At20. 十
CaO混合物を電子放出物質として1700℃のH2ガ
ス雰囲気下でろ分間含浸し形成したマトリックス形陰極
の表向−I−に、O5膜を5000 Aの厚さに電子ビ
ーム蒸着法で被覆して含浸形陰極を作製した。Example 1 Using W grains with a grain size of 5 to 10 μm as the heat-resistant metal,
4BaO + At20. The surface -I- of a matrix cathode formed by impregnating a CaO mixture as an electron-emitting substance in a H2 gas atmosphere at 1700°C during a filtration period was coated with an O5 film to a thickness of 5000 A by electron beam evaporation. A shaped cathode was fabricated.
上記陰極をカラーブラウン戦・に実装し、真空下110
0℃で1時間のニージンクを行ったのち、陰極の加熱温
度を1000℃とした場合の飽和電流密度の経時変化を
測定した結果を第′り1ズの曲線8に示す。本実施例の
O5膜被11W−Osマトリックス形陰極は上記測定開
始時から高い飽和?lLl密流をifし、時間が経過し
てもエミソンヨノ劣化がほとんど見られない。」二記寿
命初期の高い飽和電流密度1l−1iO5膜の性質に依
存し、長時間加熱後の特性はW −Osマl−IJノク
ス形陰極の性質に依存するものと思われる。したがって
」−記の加熱スf命試験中に、イオンボンバードメント
エミッション劣化に余らないのは、ド地にW−〇 sで
l− 1.1ソクス形陰極を用いているためである。1
記の結果からW−OSマI・リノクス形陰極1にOS1
模の被覆処理をした本実施例C[、エミノ/ヨンの初期
特性にすぐれ、かつ長/f命であるすぐれた特徴を有し
ている。The above cathode was mounted on a color brown plate, and the temperature was 110 mm under vacuum.
Curve 8 of the first curve shows the results of measuring the change in saturation current density over time when the heating temperature of the cathode was set to 1000° C. after performing knee-jinking at 0° C. for 1 hour. Is the O5 film coated 11W-Os matrix type cathode of this example highly saturated from the start of the above measurement? If the lLl dense flow is applied, there is almost no deterioration of the Emison Yono over time. It seems that the high saturation current density at the beginning of the life depends on the properties of the 1l-1iO5 film, and the properties after long-term heating depend on the properties of the W-Osmal-IJ Nox cathode. Therefore, the reason why there is no significant ion bombardment emission deterioration during the heating stress test described in ``-'' is because a 1.1 SOx type cathode is used in the W-S. 1
From the above results, W-OS maI/linox type cathode 1 and OS1
This Example C, which was subjected to a pattern coating treatment, has excellent initial characteristics of Emino/Yon and has excellent characteristics of long life.
なお、W粒に混入するOs粉の:割合を1原f・%から
50原子%の領域1で変化させて〜N−Us多孔質基体
を焼成し、電子放出物質を含浸させたのち、Os膜を0
.57膜m被覆して含浸形陰極を作製した。Note that the ratio of Os powder mixed in the W grains was varied in region 1 from 1 original f% to 50 at%, and after firing the N-Us porous substrate and impregnating it with the electron emitting substance, the Os powder was mixed into the W grains. 0 membrane
.. An impregnated cathode was prepared by coating 57 m of film.
」二記陰極をカラーブラウン管に実装しで、真空ド11
00℃で1時間のニージンクを行ったのち陰極温度10
00℃における飽和電流密度の経時変化を測定した。そ
の結果、Os粒がW粒に苅して5原子・%から30原子
%の組成範囲外では、第6図の曲線8に示す上記実施例
の1の特性が得られなかった。上記割合が5原子%未満
でHw−Os7トリノクス形陰極の効果が見られず、同
1図の曲NM7と同様の現象を生した。」−記割合が3
0原子%をこえる場合にはバリウムアルミイ・−1・系
酸化物を還元するW成分が少なく、エミノ/ヨンセンタ
となる遊離Baの生成が不十分であるためと考えられる
。” By mounting the second cathode on a color cathode ray tube, vacuum de-11
After performing knee zinc at 00℃ for 1 hour, the cathode temperature was increased to 10℃.
The change in saturation current density over time at 00°C was measured. As a result, the characteristics of Example 1 shown in curve 8 in FIG. 6 could not be obtained outside the composition range of 5 at.% to 30 at.% when Os grains were mixed with W grains. When the above ratio was less than 5 at %, the effect of the Hw-Os7 trinox cathode was not observed, and a phenomenon similar to that of song NM7 in Figure 1 occurred. ”-The proportion is 3
When it exceeds 0 atomic %, it is considered that the W component that reduces the barium aluminum -1-based oxide is small, and the generation of free Ba that becomes emino/yon center is insufficient.
したがって05粒をW粒に混入する割合は5〜601泉
千%の範囲内にあることが好ましい。Therefore, it is preferable that the ratio of the 05 grains mixed into the W grains is within the range of 5 to 601%.
さらにW粒に対し05粒を20原子%混合した多孔質基
体からなる含浸形陰極」二に、OS被覆層を001μ【
ηから5μm月まで変えて被覆し含浸形陰極を作製した
。」―記陰極をカラーブラウン管に実装し真空下110
0℃で1時間のニージンクを行ったのち、陰極温度i
ooo℃における飽和電流密度の経時変化を測定した。Furthermore, an impregnated cathode made of a porous substrate containing 20 atomic percent of 05 grains mixed with W grains, and an OS coating layer of 001 μ
An impregnated cathode was fabricated by coating by varying the thickness from η to 5 μm. ” - The cathode was mounted on a color cathode ray tube and exposed under vacuum for 110 minutes.
After performing knee zinc at 0℃ for 1 hour, the cathode temperature i
Changes in saturation current density over time at ooo°C were measured.
その結果、被覆の厚さが01〜2μIT(の範囲外では
上記第6図の曲線8に示す特性が?(Iられなかった。As a result, when the coating thickness was outside the range of 01 to 2 .mu.IT, the characteristics shown in curve 8 in FIG. 6 above could not be obtained.
被覆の厚さが01μm未満では陰極人血の被覆が不十分
なため特性の劣化を生じ、被覆の厚さが2μITIをこ
える場合は、エミッタ相の表面拡散の通路となる粒径間
隔を塞いでしまうためと考えられる。したがって陰極表
面の被覆のj!ハ日:J−0. 1〜2μITIの範囲
内であることが好ましい工実施例の2
」二記実施例の1に記載したW−Os多孔価基体や05
膜におけるOs0代りに11゛を用いた。粒径5〜10
μmのW粒に粒径5〜10μInの1.r粒を20原子
fo混合して焼成した多孔質基体に、4 B ao +
Aー/,,03+CaO混合物の電子放出物質を上記実
施例の1と同様の條件で含浸させ、その表向十に1r膜
を5000 Aの厚さに電子ビーム蒸着法で被覆して、
Ir被覆W−1rマトリツクス形陰極を作製した。If the thickness of the coating is less than 0.1 μm, the characteristics will deteriorate due to insufficient coverage of human blood on the cathode, and if the thickness of the coating exceeds 2 μITI, the particle diameter interval, which is a path for surface diffusion of the emitter phase, will be blocked. It is thought that this is to put it away. Therefore, the coating of the cathode surface j! Day: J-0. The W-Os porous substrate described in Example 1 of ``Working Example 2'', which is preferably within the range of 1 to 2 μITI, and 05
11゛ was used instead of Os0 in the film. Particle size 5-10
1.5 μm W grain with particle size 5-10 μIn. 4 B ao +
It was impregnated with an electron-emitting material of A-/,03+CaO mixture under the same conditions as in Example 1 above, and its surface was coated with a 1R film to a thickness of 5000 A by electron beam evaporation.
An Ir coated W-1r matrix cathode was prepared.
この陰極をカラーブラウン管に実装して真空下1100
℃で1時間のニージンクを行ったのち1000℃に加熱
し、飽和電流密度の経時変化を測定した結果は、第3図
の曲線8と同様の特性f:不し、エミッションの初期特
性が良く、高電流の負荷状態で長時間加熱して゛も寿命
により劣化することがなかった。This cathode was mounted on a color cathode ray tube and
After knee-jinking at ℃ for 1 hour, it was heated to 1000℃ and the change in saturation current density over time was measured.The results showed the same characteristics as curve 8 in Fig. 3: f: No, good initial characteristics of emission, Even after being heated for a long time under a high current load, there was no deterioration over the lifespan.
実施例の6
」二記実施例の1に記載したW − O s多孔質基体
やOs膜におけるOsの代りに、1tuを用いて実施例
の1と同様の方法で蒼浸形陰極を作製しdl)[定した
。Example 6 A blue immersion cathode was produced in the same manner as in Example 1 using 1tu instead of Os in the W-Os porous substrate and Os film described in Example 1. dl) [defined.
W粒とI(u粒との混合物からなる多孔質基体に、4B
aO+At203−1−CaQ混合物ot子放fJl質
e[fjlし、その」二にI(u膜を被覆して含浸形電
極を形成したが、−1−記者元素の粒径、混合割合およ
び被覆の厚さはいずれも実施例の1と同様である。この
含浸形電極をカラーブラウン管に実装し1100℃で1
時間のエージ/りを行ったのち、陰極温度1000℃に
おける飽和電流密度の経時変化を測定した結果、エミノ
/ヨンの初i9+特性がよく、高電流の負イ1!f状態
で長時間加熱しても寿命により劣化することなく、第う
は1の曲線8と同様の特性を示した。4B on a porous substrate consisting of a mixture of W grains and I (U grains)
An impregnated electrode was formed by coating the aO+At203-1-CaQ mixture with the electron emission material e[fjl, and then the I(u film. The thickness is the same as in Example 1. This impregnated electrode was mounted on a color cathode ray tube and heated at 1100°C.
After time aging, we measured the change in saturation current density over time at a cathode temperature of 1000°C. As a result, Emino/Yon's initial i9+ characteristics were good, and the high current negative i1! Even when heated in the f state for a long time, there was no deterioration due to the lifetime, and the No.
実施例の4
」−記実施例の1に記載したW −Os多孔質基体やO
8膜におけるQsの代りに、05、jr、、I(、uの
うちのいずれかの2元素あるいは多元素の合金を用いて
、手記実施例の1と同様にして含浸形電極を作製したが
、その効果はいずれも上記の各実施例と全く同様であっ
た。Example 4 - The W-Os porous substrate described in Example 1 and the O
In place of Qs in the 8 film, an impregnated electrode was prepared in the same manner as in Example 1 of the manual, using any two-element or multi-element alloy of 05, jr, I(, u). The effects were exactly the same as in each of the above examples.
上記の各実施例は多孔質基体を構成する耐熱性金机とし
てWを用いた例を記載したが、W以外にIVo4たけW
−M o合金を用いても本発明の作用効果を得ること
ができる。しかしこれらの耐熱性金属の中でWは融点が
最も高く、wを用いた多孔質基体が熱的にも機械的にも
最も安定であり、かっハIJウムアルミネ−1・酸化物
を適度に還元する能力を有するため、電子放出のエミノ
/ヨ/センタとなる遊離Ba′f:長時間にわたって生
成することができるため、」―記耐熱性金属中ではWが
もっともすぐれている。In each of the above embodiments, examples were described in which W was used as the heat-resistant metal material constituting the porous substrate.
The effects of the present invention can also be obtained using the -Mo alloy. However, among these heat-resistant metals, tungsten has the highest melting point, and a porous substrate using tungsten is the most stable both thermally and mechanically, and can moderately reduce alumina-1 oxide. Among the heat-resistant metals, W is the best because free Ba'f, which becomes the emino/yo/center of electron emission, can be generated over a long period of time.
上記のように本発明にょる含浸形電極は、耐熱性金属と
O5、Ir、Ruのうちのいずれがとよりなる2元素あ
るいは多元素の多孔質基体中に、バリウムアルミネート
系酸化物の電子放出物質を含浸した含浸形電極において
、該陰極の表山[−1に05、Ir、]七Uのいずれが
よりなる単−相#あるいは」二、;己各元素の任麗の組
合せよりなる合金相1俣を被部することにより、」−記
被覆膜で初期特性を高め、高電流負荷状態の長時間加熱
においても上記多孔質基体の成分元素でエミソ/ヨン劣
化孕生じないようにし/ζため、高性能で長〃命な含浸
形電極を得ることができる。したがって本発明は含浸形
電極の性能向」−と再現性向上に寄与するだけでなく、
ブラウン管や撮像管等の高輝度化とともに走査線の幅を
小さくち蜜にする精細化にも寄与するので、その工業的
価値は極めて高い。As described above, the impregnated electrode according to the present invention has electrons of barium aluminate-based oxide in a bi- or multi-element porous substrate consisting of a heat-resistant metal and any one of O5, Ir, and Ru. In an impregnated electrode impregnated with a releasing substance, the surface of the cathode consists of a single phase consisting of either 05, Ir, or 7U, or any combination of elements. By covering one layer of the alloy phase, the coating film improves the initial properties and prevents the constituent elements of the porous substrate from causing deterioration due to the emisions/yons even during long-term heating under high current loads. /ζ, it is possible to obtain a high-performance and long-life impregnated electrode. Therefore, the present invention not only contributes to improving the performance and reproducibility of impregnated electrodes, but also
Its industrial value is extremely high, as it contributes to higher brightness in cathode ray tubes and image pickup tubes, as well as to finer definition by reducing the width of scanning lines.
第1図は従来の含浸形電極の断面図で、(a)は通常の
含浸形電極、(b)はマトリックス形陰極を示し、第2
図は本発明による含浸形電極の一実施例の断面図、第3
図は神々の含浸形電極をそれぞれカラーブラウン管に実
装した場合における飽和電流密度の経時変化を釆した図
である。
1・耐熱性金J@ (’ W粒) 2・電子放出物質5
.05粒 4・・屯−相膜
代理人弁理士 中 杓 純之助Figure 1 is a cross-sectional view of a conventional impregnated electrode, in which (a) shows a normal impregnated electrode, (b) shows a matrix cathode, and
The figure is a sectional view of one embodiment of the impregnated electrode according to the present invention.
The figure shows the change in saturation current density over time when each of the impregnated electrodes of the gods is mounted on a color cathode ray tube. 1. Heat-resistant gold J@ (' W grain) 2. Electron-emitting material 5
.. 05 grains 4...Tun-Aimei patent attorney Junnosuke Naka
Claims (4)
ちのいずれかとよりなる2元素あるいは多元素の多孔質
基体中に、バリウムアルミネート糸酸化物の電子放出物
質をa浸した含浸形陰極において、該陰極の表面上にO
S % I−r XRuのいずれかよりなる単−相膜あ
るいは上記各元素の任意の糺合せよりなる合金相膜を被
覆したことを特徴とする含浸形陰極。(1) Heat-resistant metal desk and Os, 1. In an impregnated cathode in which an electron-emitting substance of barium aluminate thread oxide is immersed in a two-element or multi-element porous substrate consisting of one of r, H, and u, O is added on the surface of the cathode.
An impregnated cathode characterized in that it is coated with a single-phase film made of any one of S % I-r XRu or an alloy phase film made of any combination of the above elements.
許請求の範囲第1項に記載した含浸形陰極。(2) The impregnated cathode according to claim 1, wherein the heat-resistant metal is W.
うちのいずれか、またはこれらの多元素の添加(Itは
、5〜60原ト%であることを特徴とする特J′1請求
の範囲第2項に記載した含浸形陰極。(3) Addition of any one of 0sXIr, 1(・U, or multiple elements thereof (It is 5 to 60% by weight) '1 An impregnated cathode as set forth in claim 2.
ル、jij、−相膜あるいは」−全容元素の任意の紹介
ぜよりなる合金相膜の厚みは01〜2μmであることf
:髄徴とする特許請求の範囲第1項〜第3項のいずれか
に記載した含浸形陰極。(4) The thickness of the alloy phase film consisting of any one of Os, Ir, Ru, jij, or any introduction of all elements shall be 01 to 2 μm f
: An impregnated cathode according to any one of claims 1 to 3, wherein the medullary sign is a medullary feature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58244498A JPS60138822A (en) | 1983-12-27 | 1983-12-27 | Impregnated cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58244498A JPS60138822A (en) | 1983-12-27 | 1983-12-27 | Impregnated cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60138822A true JPS60138822A (en) | 1985-07-23 |
Family
ID=17119559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58244498A Pending JPS60138822A (en) | 1983-12-27 | 1983-12-27 | Impregnated cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60138822A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62287543A (en) * | 1986-06-06 | 1987-12-14 | Toshiba Corp | Impreganated cathode structure |
US4737679A (en) * | 1985-02-08 | 1988-04-12 | Hitachi, Ltd. | Impregnated cathode |
US4928034A (en) * | 1986-06-06 | 1990-05-22 | Kabushiki Kaisha Toshiba | Impregnated cathode |
US5829675A (en) * | 1996-04-08 | 1998-11-03 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Method and apparatus for controlling operation of auxiliary heating system of vehicle |
-
1983
- 1983-12-27 JP JP58244498A patent/JPS60138822A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737679A (en) * | 1985-02-08 | 1988-04-12 | Hitachi, Ltd. | Impregnated cathode |
JPS62287543A (en) * | 1986-06-06 | 1987-12-14 | Toshiba Corp | Impreganated cathode structure |
US4928034A (en) * | 1986-06-06 | 1990-05-22 | Kabushiki Kaisha Toshiba | Impregnated cathode |
US5829675A (en) * | 1996-04-08 | 1998-11-03 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Method and apparatus for controlling operation of auxiliary heating system of vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58154131A (en) | Impregnation type cathode | |
US4675570A (en) | Tungsten-iridium impregnated cathode | |
JPS60138822A (en) | Impregnated cathode | |
JPH04232252A (en) | Sputtered scandium oxide coating for dispenser cathode and its manufacture | |
KR0170221B1 (en) | Dispenser cathode | |
JPH03173034A (en) | Scan dart cathode and its manufacture | |
JPS6113526A (en) | Impregnated cathode | |
US2585534A (en) | Secondary electron emissive electrode and its method of making | |
JPS59203343A (en) | Impregnated cathode | |
US2600112A (en) | Electron emitter | |
JPS60170137A (en) | Hot cathode | |
JP2792543B2 (en) | Cathode for discharge tube | |
US2428289A (en) | Electron tube coating | |
US2792273A (en) | Oxide coated nickel cathode and method of activation | |
JP3715790B2 (en) | Method for producing impregnated cathode for discharge tube | |
US1921065A (en) | Electron emitter and process of making same | |
JP3322465B2 (en) | Cathode assembly and method of manufacturing the same | |
JPS60105135A (en) | Dispenser cathode | |
KR920008786B1 (en) | Cathode | |
JPS6055940B2 (en) | hot cathode | |
JPH073434A (en) | Oxide cathode and its preparation | |
JPS61121233A (en) | Manufacture of impregnated cathode | |
JPS6364234A (en) | Impregnated cathode | |
KR100198572B1 (en) | Activation processing method of impregnation type cathode | |
JPS6032232A (en) | Impregnated cathode |