JPS62287543A - Impreganated cathode structure - Google Patents

Impreganated cathode structure

Info

Publication number
JPS62287543A
JPS62287543A JP61130223A JP13022386A JPS62287543A JP S62287543 A JPS62287543 A JP S62287543A JP 61130223 A JP61130223 A JP 61130223A JP 13022386 A JP13022386 A JP 13022386A JP S62287543 A JPS62287543 A JP S62287543A
Authority
JP
Japan
Prior art keywords
phase
tungsten
iridium
layer
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61130223A
Other languages
Japanese (ja)
Other versions
JPH0782807B2 (en
Inventor
Sakae Kimura
木村 栄
Masaru Nikaido
勝 二階堂
Katsuhisa Honma
克久 本間
Katsumi Yanagibashi
柳橋 勝美
Yoshiaki Ouchi
義昭 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13022386A priority Critical patent/JPH0782807B2/en
Priority to DE8787108036T priority patent/DE3782543T2/en
Priority to EP87108036A priority patent/EP0248417B1/en
Priority to KR1019870005748A priority patent/KR900003178B1/en
Publication of JPS62287543A publication Critical patent/JPS62287543A/en
Priority to US07/273,157 priority patent/US4928034A/en
Publication of JPH0782807B2 publication Critical patent/JPH0782807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To substantially stabilize electron emission characteristic for a long period of time from the initial stage by specifying a crystal structure of an irridium and tungsten alloy of a coated layer to be formed on a porous substrate surface. CONSTITUTION:An irridium and tungsten alloy surface layer 15 is spread on a porous substrate 11 consisting of tungsten or the like made by melting and impregnating mixed oxides of alkaline earth metals such as barium oxide, calcium oxide and almunum oxide to form an impregnated cathode structure. By selecting a crystal structure of said layer so that it consists of epsilon phase to show a range of 2.76-2.78A for the lattice constant(a) and a range of 4.44-4.46A for the lattice constant C, the concentration composition of irridium and tungsten is fixed by epsilon alloy layer which is substantially stable from the initial stage, work function is maintained relatively at low value and electron emission characteristic is substantially stabilized for a long period of time from the initial stage.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) この発明は、電子管等に使用する含浸形陰極構体に係わ
り、とくにその電子放出表面被覆層の結晶構造に関する
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) This invention relates to an impregnated cathode structure used in an electron tube, etc. Concerning crystal structure.

(従来の技術) 含浸形陰極構体は、タングステン(W>のような高融点
金属の粉末を焼結してつくった多孔71基体の空孔部に
、酸化バリウム(Bad) 、M化カルシウム(Cab
) 、および酸化アルミニウム(AI2203)のよう
なアルカリ土類金属酸化物からなる電子放射物質を溶融
含浸させたものでおる。この陰極は、酸化物陰極に比べ
動作温度が高いが、高電流密度が得られ、またガス被毒
に強いという特質を有する。このため、例えば爾星搭載
用進行波管や、核融合プラズマ加熱用の大電力クライス
トロンなどに実用されている。このような分野では、さ
らに艮庁命、安定動作などの高信頼性および高電流密度
が要求されている。
(Prior art) The impregnated cathode structure has barium oxide (Bad), calcium oxide (Cab), etc.
), and an electron-emitting material made of an alkaline earth metal oxide such as aluminum oxide (AI2203) is melt-impregnated. This cathode has a higher operating temperature than an oxide cathode, but has the characteristics of being able to obtain a high current density and being resistant to gas poisoning. For this reason, it is put into practical use, for example, in traveling wave tubes for use on planet Earth, and in high-power klystrons for heating fusion plasma. In such fields, high reliability such as stable operation and high current density are also required.

信頼性を高める1つの方策として、陰極表面にイリジウ
ム(Ir)、オスミウム(O5)、ルテニウム(Ru)
のような白金族金属、おるいはその合金からなる被覆層
を設けて陰極表面部の仕事関数を下げ、動作温度の低減
を図ることが知られている。このような被覆層を設(プ
ることにより、被覆層がない場合と同じ電流密度を得る
のに、数十℃乃至百数十℃も動作温度を下げることがで
きる。
One measure to increase reliability is to add iridium (Ir), osmium (O5), and ruthenium (Ru) to the cathode surface.
It is known that a coating layer made of a platinum group metal or an alloy thereof is provided to lower the work function of the cathode surface, thereby reducing the operating temperature. By providing such a coating layer, the operating temperature can be lowered by several tens of degrees Celsius to hundreds of degrees Celsius while obtaining the same current density as without the coating layer.

(発明が解決しようとする問題点) しかしながら、このような含浸形陰極構体は表面部に被
覆層がない場合に比べて動作温度を低下させることがで
きるとはいえ、その動作温度がおよそ900〜1000
℃であり、やはり動作に伴って多孔質基体を形成するW
が表面被覆層中に拡散して表面被覆層金属とWとの合金
層を徐々に生成することが避けられない。この表面被覆
層の合金化進行過程は、それに伴って電子放射特性を変
化させ、早期の安定動作、長寿命特性など信頼性向上へ
の1つの隘路となっている。
(Problems to be Solved by the Invention) However, although such an impregnated cathode assembly can lower the operating temperature compared to the case where there is no coating layer on the surface, the operating temperature is approximately 900 - 900℃. 1000
℃, and W also forms a porous substrate with operation.
It is inevitable that the metal diffuses into the surface coating layer and gradually forms an alloy layer of the surface coating layer metal and W. This process of alloying of the surface coating layer changes the electron emission characteristics accordingly, and is one of the bottlenecks in improving reliability such as early stable operation and long life characteristics.

この発明は、以上の事情に鑑みてなされたもので、初期
から安定な電子放射特性を有する含浸形陰極構体を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an impregnated cathode structure having stable electron emission characteristics from the beginning.

[発明の構成] (問題を解決するための手段) この発明は、多孔質基体の表面部に被覆形成されたイリ
ジウムおよびタングステンの合金層からなる合金層の結
晶構造が、その格子定数aの範囲が2.76人乃至2.
78Å、格子定数Cの範囲が4.44人乃至4.46人
のhcp構造を示すε相を主体としてなる含浸形隙極構
体である。
[Structure of the Invention] (Means for Solving the Problem) This invention provides that the crystal structure of an alloy layer consisting of an alloy layer of iridium and tungsten coated on the surface of a porous substrate has a lattice constant a within a range of 2.76 people to 2.
It is an impregnated porosity polar structure mainly composed of an ε phase exhibiting an hcp structure of 78 Å and a lattice constant C ranging from 4.44 to 4.46.

(作用) この発明によれば、多孔質基体の表面部に形成されてい
るイリジウム−タングステン合金層の結晶構造が上述の
構成となっていることにより、このε相からなる合金層
は初期からきわめて安定である。したがって、表面被覆
層のイリジウムおよびタングステンa度組成がほぼ一定
化しており、それにより仕事関数が比較的低い値で一定
に保たれる。こうしてこの発明によれば初期から長期間
にわたってきわめて安定な電子放射特性をもつ含浸形陰
極構体を得ることができる。
(Function) According to the present invention, since the crystal structure of the iridium-tungsten alloy layer formed on the surface of the porous substrate has the above-mentioned configuration, the alloy layer consisting of the ε phase is extremely It is stable. Therefore, the iridium and tungsten a degree compositions of the surface coating layer are approximately constant, thereby keeping the work function constant at a relatively low value. Thus, according to the present invention, it is possible to obtain an impregnated cathode structure having extremely stable electron emission characteristics from the initial stage for a long period of time.

(実施例) 以下図面を参照してその実施例を説明する。なお同一部
分は同一符号であられす。
(Example) An example will be described below with reference to the drawings. Identical parts are designated by the same reference numerals.

この発明の含浸形陰極構体の構造例を第1図に示す。直
径1.5M、厚さ0.4mの空孔率的20%の多孔質タ
ングステンに、酸化バリウム、酸化カルシウム及び酸化
アルミニウムの混合酸化物(モル比で約4:1:1)を
溶融含浸させ、その後表面を洗浄し、過剰な3aを除去
した後、多孔質基体11を作製した。次いで、この多孔
質基体11は厚さ25μmのタンタル製のカップ12に
、レニウム線13を介して抵抗溶接された。次いで、タ
ンタル製カップ12は、タンタル製の支持スリーブ14
の一端開口部の内側にレーザ溶接された。なお、支持ス
リーブ14は、図示しないレニウム−モリブデン合金か
らなる3本の支持用ストラップを介して外側支持円筒に
固定された。このようにして製作された陰極構体の多孔
質基体11の表面に、スパッタリングにより50人乃至
10,000への範囲の厚さ、例えば3.500への厚
さにイリジウムを被覆した。
An example of the structure of the impregnated cathode structure of the present invention is shown in FIG. Porous tungsten with a diameter of 1.5 m and a thickness of 0.4 m with a porosity of 20% is melted and impregnated with a mixed oxide of barium oxide, calcium oxide, and aluminum oxide (molar ratio of approximately 4:1:1). After that, the surface was washed to remove excess 3a, and then a porous substrate 11 was prepared. Next, this porous substrate 11 was resistance welded to a tantalum cup 12 having a thickness of 25 μm via a rhenium wire 13. The tantalum cup 12 is then attached to a tantalum support sleeve 14.
One end was laser welded inside the opening. The support sleeve 14 was fixed to the outer support cylinder via three support straps made of a rhenium-molybdenum alloy (not shown). The surface of the porous substrate 11 of the cathode assembly thus produced was coated with iridium by sputtering to a thickness ranging from 50 to 10,000, for example to 3,500.

次にこの陰極構体を、真空又は不活性雰囲気、例えば1
O−7rorr以下に排気された真空排気ペルジャー内
に入れ、図示しない陰極構体内部の加熱ヒータに通電し
て所定温度で所定時間加熱処理した。
This cathode structure is then placed in a vacuum or an inert atmosphere, e.g.
The sample was placed in an evacuated Pel jar that was evacuated to below O-7 rorr, and a heater (not shown) inside the cathode assembly was energized to heat it at a predetermined temperature for a predetermined time.

この加熱処理工程の例を第2図に示す。すなわち、脱ガ
スを主目的として徐々に陰極温度を上昇させるライティ
ング工程(■、■、■、ILV、l、および輝度温度が
約1180℃で所定時間等温加熱するエージング工程(
■、■、■)を経る。なお温度は、陰極表面を650止
でフィルタされた輝度温度で示されている。
An example of this heat treatment step is shown in FIG. That is, a lighting process (■, ■, ■, ILV, l) in which the cathode temperature is gradually increased with the main purpose of degassing, and an aging process (isothermal heating in which the brightness temperature is approximately 1180°C for a predetermined period of time).
■、■、■). Note that the temperature is shown as the brightness temperature of the cathode surface filtered at 650 degrees.

こうして、電子放出表面部に格子定数aの範囲が2.7
6乃至2.78Å、格子定数Cの範囲が4.44乃至4
.46人のhcp構造を示すε相を主体とする結晶構造
をもつイリジウム−タングステン合金被覆層15を形成
した。そしてこのような含浸形陰極構体を、例えば衛星
搭載用の進行波管内に組込み、動作させた。
In this way, the range of the lattice constant a is 2.7 at the electron-emitting surface part.
6 to 2.78 Å, and the lattice constant C ranges from 4.44 to 4.
.. An iridium-tungsten alloy coating layer 15 having a crystal structure mainly composed of an ε phase exhibiting a 46-hcp structure was formed. Then, such an impregnated cathode structure was installed, for example, in a traveling wave tube for use in a satellite, and was operated.

このような含浸形陰極構体は、動作初期から長時間の動
作において安定度のきわめてすぐれた電子t’tli 
調時性を示した。以下、その理由を説明する。
Such an impregnated cathode structure has an extremely stable electron t'tli from the initial stage of operation to long-term operation.
It showed timing. The reason for this will be explained below.

まず、表面部の合金化プロセスを解明するために真空高
温XtQ回折装置を用い、前記の約3,500人の厚さ
にイリジウムを被覆した陰極構体の、多孔質基体表面層
の結晶構造変化をその場観察的にX線回折により測定し
た。第2図に示した陰極加熱スケジュールに沿い、X線
回折パターンの変化をみると第3図に示すように変化す
ることが確認された。なお第3図の右の縦軸に加熱工程
を示した。
First, in order to elucidate the alloying process on the surface, we used a vacuum high-temperature XtQ diffractometer to investigate changes in the crystal structure of the surface layer of the porous substrate of the cathode structure coated with iridium to a thickness of approximately 3,500 mm. It was measured in situ by X-ray diffraction. According to the cathode heating schedule shown in FIG. 2, changes in the X-ray diffraction pattern were observed as shown in FIG. 3. Note that the heating process is shown on the right vertical axis of FIG.

同図から理解されるように、ライティング工程中の変化
として、イリジウム相の減少及びイリジウムとダンゲス
テンとの金属間化合物ε相の出現が、主としてライティ
ング工程(IV)以降に認められた。ε相はhcp構造
を示す。エージング工程では、このε相が示す一連のそ
れぞれの回折ピークの低角度側に対をなして同じ結晶系
を示す一連の回折ピークが出現した。その後、エージン
グ工程が進むにつれ、初めの一連のピークは消滅し後の
回折パターンに置き代わった。初期に形成されたε相を
ε■相、俊にX線回折の低角度側に現れた相をε■相と
称することにする。ε■相がらε■相への不連続な回折
パターンの変化は、格子定数の不連続な変化に対応する
。すなわちε■相の格子定数はそれぞれ、a= 2゜7
35乃至2.745Å、c= 4.385乃至4.39
5人である。またε■相では、a=2.760乃至2.
780Å、C= 4.440乃至4.460人の範囲を
示した。なお、これら格子定数の値と、イリジウム−タ
ングステン合金中のタングステン濃度との関係は既に報
告されており、第4図に実線で示すような関係である。
As can be understood from the figure, as changes during the writing process, a decrease in the iridium phase and the appearance of an intermetallic compound ε phase of iridium and dungesten were observed mainly after the writing process (IV). The ε phase shows an hcp structure. In the aging process, a series of diffraction peaks indicating the same crystal system appeared in pairs on the low angle side of each of the series of diffraction peaks exhibited by the ε phase. Then, as the aging process progressed, the initial series of peaks disappeared and were replaced by later diffraction patterns. The initially formed ε phase will be referred to as the ε■ phase, and the phase that appears on the low angle side of X-ray diffraction will be referred to as the ε■ phase. The discontinuous change in the diffraction pattern from the ε■ phase to the ε■ phase corresponds to a discontinuous change in the lattice constant. In other words, the lattice constants of the ε■ phase are a= 2゜7
35 to 2.745 Å, c = 4.385 to 4.39
There are 5 people. In addition, in the ε■ phase, a=2.760 to 2.
780 Å, C=ranged from 4.440 to 4.460. Incidentally, the relationship between the values of these lattice constants and the tungsten concentration in the iridium-tungsten alloy has already been reported, and is the relationship shown by the solid line in FIG. 4.

そして本発明者らの実験で得られたε1相およびε■相
の格子定数の値を、第4図中に点線の斜線で示した。こ
れらの対応するタングステン濃度は、ε1相で約20乃
至25原子%、ε■相で約40乃至50原子%となる。
The values of the lattice constants of the ε1 phase and the ε■ phase obtained in experiments by the present inventors are indicated by dotted diagonal lines in FIG. Their corresponding tungsten concentrations are approximately 20 to 25 atomic % for the ε1 phase and approximately 40 to 50 atomic % for the ε■ phase.

ε1相からε■相への移行により、表面層組成の変動も
きわめて不連続に生じていることがわかる。
It can be seen that due to the transition from the ε1 phase to the ε■ phase, the surface layer composition changes extremely discontinuously.

そしてε■相はきわめて安定な結晶構造を示し、その後
の熱処理ではほとんど格子定数の変化を生じることがな
かった。すなわち1180℃でのエージング工程での約
55分間の加熱で、ε1相からε■相に完全に移行した
The ε■ phase exhibited an extremely stable crystal structure, and the subsequent heat treatment caused almost no change in the lattice constant. That is, by heating for about 55 minutes in the aging step at 1180° C., the ε1 phase completely transitioned to the ε■ phase.

また、ライティング工程終了後、およびエージング工程
終了後の表面合金層について、オージェ電子分光装置に
より、アルゴンイオンを用いたスパッタリング方式を用
いて表面から深さ方向の組成分析を試み、第5図(a)
 、(b)の結果を得た。
In addition, we attempted to analyze the composition of the surface alloy layer after the writing process and after the aging process in the depth direction from the surface using an Auger electron spectrometer using a sputtering method using argon ions. )
, the result of (b) was obtained.

同図(a)はライティング終了後、同図(b)はエージ
ング工程120分後の相対′a度分布である。そして曲
線51および53は相対イリジウム濃度、同52、およ
び54は相対タングステン濃度を示している。
The figure (a) shows the relative 'a degree distribution after the writing is completed, and the figure (b) shows the relative 'a degree distribution after 120 minutes of the aging process. Curves 51 and 53 show relative iridium concentrations, and curves 52 and 54 show relative tungsten concentrations.

この結果から、ライティング工程終了時点のものでは、
表面中のタングステン濃度に勾配が少なく、タングステ
ンのイリジウムへの速い拡散が推察される。またエージ
ング工程(I[I)終了段階のものでは、表面および合
金層中のタングステン濃度が40乃至50原子%となっ
ていることが判明した。これらの事実は、第4図に示し
た格子定数の変化から推察される表面被覆層の組成変動
に一致した結果になっている。
From this result, at the end of the writing process,
There is little gradient in the tungsten concentration on the surface, suggesting rapid diffusion of tungsten into iridium. In addition, it was found that the tungsten concentration on the surface and in the alloy layer was 40 to 50 atomic % in the aging process (I[I) completed stage. These facts are consistent with the compositional variation of the surface coating layer inferred from the change in lattice constant shown in FIG.

以上のように、多孔質基体の表面にイリジウムを被覆し
、これを所定温度で所定時間加熱処理することにより、
表面部に安定なε■相からなるイリジウム−タングステ
ン合金被覆層を形成することができる。
As described above, by coating iridium on the surface of a porous substrate and heat-treating it at a predetermined temperature for a predetermined time,
An iridium-tungsten alloy coating layer consisting of a stable ε■ phase can be formed on the surface portion.

次に、多孔質基体表面に被覆するイリジウム層の厚さと
、加熱処理すなわちエージング条件との関係について検
討した。イリジウム被覆層が、杓1000Å、約200
0Å、約3500Å、約5000人の厚さのものを用意
し、いずれも1180°Cで所定時間加熱した。その結
果得られたXFJ!回折の結果を第6図に示す。同図に
おいて、a軸のX線回折強度比は、ε■相、ε■相およ
びイリジウムの主回折ピーク強度のそれぞれの和に対す
るε■相の回折ピーク強度の比率をあられしている。こ
の結果から、ε■相からε■相へと移行するのに要する
加熱処理時間は、イリジウム被覆層の厚さに依存し、イ
リジウム層が厚いはどε■相の形成に多くの加熱処理時
間を要することがわかった。なお同図に43いて曲線6
1はイリジウム被覆層厚が約1000人のものの場合、
同62は約2000Å、同63は約3500Å、同64
は約5000人のものの場合をそれぞれあらりしている
。また、エージング時間を一定とした場合は、イリジウ
ム被覆層の厚さが厚いほど、表面までのε■相の完全生
成のためにはより一層高温での加熱処理を要する結果が
得られた。
Next, the relationship between the thickness of the iridium layer coated on the surface of the porous substrate and the heat treatment, ie, aging conditions, was investigated. The iridium coating layer has a diameter of 1000 Å and approximately 200 Å.
Thicknesses of 0 Å, about 3500 Å, and about 5000 Å were prepared, and all were heated at 1180° C. for a predetermined time. The result was XFJ! The diffraction results are shown in FIG. In the figure, the a-axis X-ray diffraction intensity ratio is the ratio of the diffraction peak intensity of the ε■ phase to the sum of the main diffraction peak intensities of the ε■ phase, the ε■ phase, and iridium. From this result, the heat treatment time required to transition from the ε■ phase to the ε■ phase depends on the thickness of the iridium coating layer, and the thicker the iridium layer, the longer the heat treatment time required to form the ε■ phase. It turns out that it requires In addition, curve 6 is 43 in the same figure.
1 is when the iridium coating layer thickness is about 1000 people,
62 is about 2000 Å, 63 is about 3500 Å, 64
The cases of approximately 5,000 people are summarized in each case. Furthermore, when the aging time was kept constant, the thicker the iridium coating layer, the higher the need for heat treatment at a higher temperature to completely generate the ε■ phase up to the surface.

また第7図にイリジウム被覆層厚、エージング加熱処理
時間に対する空間電荷制限領域にお【プる最大エミッシ
ョン値すなわちfVLIscの変化を示した。この空間
電荷制限領域にf3りる最大エミッション値MISCは
、陽極電圧を2秒間印加したときの印加開始1秒後の値
で表現しており、この値は陽極電圧印加方式として通常
用いられるパルス的な場合と、直流的な場合とのほぼ中
間的な特性を示す。同図において曲線71はイリジウム
被覆層厚が約1000へのものの場合、同72は約20
00Å、同73は約3500Å、同74は約5000人
のものの場合をそれぞれあられしている。
Further, FIG. 7 shows the change in the maximum emission value, ie, fVLIsc, in the space charge limited region with respect to the iridium coating layer thickness and the aging heat treatment time. The maximum emission value MISC of f3 in this space charge limited region is expressed as the value 1 second after the start of application when anode voltage is applied for 2 seconds, and this value is based on the pulse type that is normally used as the anode voltage application method. The characteristics are approximately intermediate between the DC case and the DC case. In the same figure, the curve 71 indicates that the iridium coating layer thickness is approximately 1,000 mm, and the curve 72 is approximately 20 mm.
00 Å, 73 is about 3,500 Å, and 74 is about 5,000 people.

このような結果から、イリジウム被覆層厚が厚いほどM
ISC値の増加傾向が緩やかであり、エミッション的活
性化にも長時間を要することが確認された。このように
電子放射特性がε■相の形成率と強い相関があり、ε■
相が基体表面まで完全に生成されている場合が最も大き
な電子数OA電流を19られ、且つ安定であることが明
らかとなった。そして、十分に活性化された陰極基体の
表面合金層はX線回折的にはほぼε■相だけからなるこ
とが対応づけられた。
From these results, the thicker the iridium coating layer, the more M
It was confirmed that the increasing trend of the ISC value was gradual and that emission activation also required a long time. In this way, the electron emission characteristics have a strong correlation with the formation rate of the ε■ phase, and the
It has become clear that when the phase is completely generated up to the substrate surface, the largest electron number OA current is 19, and it is stable. It was determined from X-ray diffraction that the surface alloy layer of a sufficiently activated cathode substrate consists of almost only the ε■ phase.

ざらにまた、合金化終了後の陰極断面を走査形電子顕微
鏡により観察し、イリジウム被覆層厚に対する生成合金
層厚の関係をみた。その結果を第8図に示す。その結果
、形成される合金層の厚さは、はじめ被着するイリジウ
ム層の厚さのおよそ2倍になることが確認された。
In addition, the cross section of the cathode after alloying was observed using a scanning electron microscope to examine the relationship between the thickness of the formed alloy layer and the thickness of the iridium coating layer. The results are shown in FIG. As a result, it was confirmed that the thickness of the formed alloy layer was approximately twice the thickness of the initially deposited iridium layer.

以上に述べた諸結果を考慮し、次に電子放射特性との関
連を考察した。以下にその概要を述べる。
Considering the results described above, we next considered the relationship with electron emission characteristics. The outline is described below.

多孔質基体表面にスパッタリングにより約50八から約
io、oooのへ範囲の任意適当な厚さでイリジウムを
被覆した試料を用意し、所定の熱処理を施した。この熱
処理による表面合金化処理は、管内加熱すなわち電子管
内に組込んだ状態で陰極構体内の加熱ヒータに通電して
加熱することにより合金化する方式、および単体加熱す
なわち真空排気されるガラスペルジャー内に陰極構体を
配置し加熱する方式で実施した。それら各方式は、前者
すなわち管内加熱は比較的低電圧電子管などに適するこ
とを考慮し、また後者すなわち単体加熱方式は大形又は
高電圧動作用の電子管などに適することを考慮している
。そして電子放射特性は、平行平板形2極管のガラスダ
ミー管を作製して評価した。
A sample was prepared in which the surface of a porous substrate was coated with iridium by sputtering to an arbitrary thickness ranging from about 508 to about io, ooo, and was subjected to a predetermined heat treatment. This surface alloying treatment by heat treatment is carried out by in-tube heating, which is a method in which alloying is performed by energizing a heater inside the cathode assembly while it is incorporated in the electron tube, and by single-unit heating, which is a glass Pelger that is evacuated. The method was carried out by placing a cathode structure inside and heating it. Each of these methods takes into consideration that the former, ie, tube heating, is suitable for relatively low-voltage electron tubes, and the latter, ie, the unit heating method, is suitable for large-sized or high-voltage operation electron tubes. The electron emission characteristics were evaluated by fabricating a parallel plate diode glass dummy tube.

管内加熱方式の場合は、ライティング工程をガラスダミ
ー管の排気中に実施し、その俊排気管を封止切りしてか
ら所定の等温度でエージング加熱処理した。エージング
工程中の電子放射特性の変化を測定した。また単体加熱
方式では、ガラスペルジャー内で所定のライティング、
エージング工程を実施し、その後得られた陰極構体を平
行平板形2極管のガラスダミー管内に組込んで、管内加
熱方式の場合と同様な方法で電子放射特性を測定した。
In the case of the in-tube heating method, the lighting process was carried out while the glass dummy tube was being evacuated, and after the exhaust pipe was sealed and cut, aging heat treatment was performed at a predetermined constant temperature. Changes in electron emission properties during the aging process were measured. In addition, with the single heating method, the specified lighting and
The aging process was carried out, and then the obtained cathode structure was assembled into a glass dummy tube of a parallel plate type diode, and the electron emission characteristics were measured in the same manner as in the case of the in-tube heating method.

なお測定中のエージング効果を防ぐため、電子放射特性
はいずれもカソード温度を1ooo’cに下げて測定し
た。
In order to prevent aging effects during measurements, all electron emission characteristics were measured with the cathode temperature lowered to 100'C.

それらの比較結果を表1に示す。同表において、実施例
とはその後の分析により表面都合金層のほぼ全体にε■
相の形成が確認されたこの発明の実施例のもの、また比
較例とは表面合金層にε■相とε■相の両方が観察され
たものの場合である。
Table 1 shows the comparison results. In the same table, examples indicate that almost the entire surface gold layer was ε■■ as determined by subsequent analysis.
Examples of the present invention in which phase formation was confirmed, and comparative examples include cases in which both ε■ phase and ε■ phase were observed in the surface alloy layer.

(以下余白) 表1 (続き) *印は(℃2分) 表1の結果から、はじめに被覆されたイリジウム層の厚
さに応じて所定の熱処理を施してほぼε■相のみからな
る合金化層を形成させることにより、初期および長時間
にわたる動作でも安定で良好な電子放射特性を得ること
ができることが確認された。そして前述のようにイリジ
ウム層の厚さに応じ確実にε■相からなるイリジウム−
タングステン合金化層を得る所定加熱処理工程は、再現
性がよく、実用性がきわめて高い。
(Margins below) Table 1 (Continued) *marks indicate (℃ 2 minutes) From the results in Table 1, it is possible to create an alloy consisting almost only of the ε■ phase by applying a predetermined heat treatment depending on the thickness of the iridium layer initially coated. It was confirmed that by forming a layer, it was possible to obtain stable and good electron emission characteristics even at the initial stage and during long-term operation. As mentioned above, depending on the thickness of the iridium layer, the iridium
The predetermined heat treatment process for obtaining the tungsten alloyed layer has good reproducibility and is extremely practical.

このように、表面にイリジウムを含む合金層が被覆され
る含浸形陰極において、その合金層をε■相とすること
にり、動作初期から安定した、しかも良好な電子放射特
性を有する含浸形陰極を実現することができる。このε
■相は極めて安定で、長時間動作に対しても変化がきわ
めて小さいという特質を有する。またこのε■相は、格
子定数aの範囲が2.76乃至2.78Å、格子定数C
の範囲が4.44乃至4.46人のhcp構造を示し、
これは換言すればタングステンが飽和固溶したイリジウ
ム−タングステン合金のε相からなること:ri徴とし
ている。こうして表面部のイリジウム及びタングステン
濃度組成が一定化しており、それにより仕事関数が比較
的低い値で一定に保たれる。
In this way, in an impregnated cathode whose surface is coated with an alloy layer containing iridium, by making the alloy layer ε■ phase, the impregnated cathode is stable from the initial stage of operation and has good electron emission characteristics. can be realized. This ε
(2) The phase is extremely stable, and changes are extremely small even during long-term operation. In addition, this ε■ phase has a lattice constant a in the range of 2.76 to 2.78 Å, and a lattice constant C
ranges from 4.44 to 4.46 indicating the human hcp structure,
In other words, it is composed of the ε phase of an iridium-tungsten alloy in which tungsten is a saturated solid solution: the ri sign. In this way, the iridium and tungsten concentration composition of the surface portion is constant, thereby keeping the work function constant at a relatively low value.

したがって動作初期から寿命期間中、きわめて安定な電
子放射特性を得ることができる。
Therefore, extremely stable electron emission characteristics can be obtained from the initial stage of operation to the entire lifetime.

なお、熱処理時間の実用的な管理の容易さから、多孔質
基体表面へのイリジウム被覆層の厚さは、50人乃至i
o、ooo人の範囲が適当である。それによりε■相か
らなる合金被覆層の厚さは、およそ2倍の約100人乃
至20.000人の範囲が好ましい厚さである。そして
その場合の熱処理条件としては、およそ1100℃乃至
1260’Cの範囲で、加熱処理時間はおよそ1分乃至
360分捏度の範囲内で前述のようなイリジウム厚さに
応じて適宜の処理を実施すればよい。
In addition, for ease of practical management of heat treatment time, the thickness of the iridium coating layer on the surface of the porous substrate is set at 50 to
A range of o, ooo people is appropriate. Therefore, the thickness of the alloy coating layer consisting of the ε■ phase is preferably in the range of about 100 to 20,000, which is about twice the thickness. In that case, the heat treatment conditions are approximately 1100°C to 1260'C, the heat treatment time is approximately 1 minute to 360 minutes, and appropriate treatment is performed depending on the iridium thickness as described above. All you have to do is implement it.

なお、加熱処理温度が1260℃よりも高いと、基体中
のバリウムの蒸発量が多くなり過ぎ、むしろ所期の電子
放射特性を損うおそれがある。また1100℃以下では
、ε■相の合金化にきわめて長時間を要し、実用性に乏
しい。またε■相合金層の厚さが100人より薄いと寿
命力(短くなり、一方、20.000人を超すと高い動
作温度が要求されるなどの短所が顕著となってしまう。
Note that if the heat treatment temperature is higher than 1260° C., the amount of barium evaporated in the substrate becomes too large, which may actually impair the desired electron emission characteristics. Further, at temperatures below 1100°C, it takes a very long time to alloy the ε■ phase, which is impractical. Furthermore, if the thickness of the ε■ phase alloy layer is less than 100,000 people, the service life will be shortened, while if it exceeds 20,000 people, disadvantages such as a high operating temperature will become noticeable.

[発明の効果コ 以上説明したようにこの発明によれば、多孔質基体の表
面部に形成されているε■相からなるイリジウム−タン
グステン合金被覆層により、動作初期から長時間動作に
わたってきわめて安定な電子放射特性を得ることができ
る。
[Effects of the Invention] As explained above, according to the present invention, the iridium-tungsten alloy coating layer consisting of the ε phase formed on the surface of the porous substrate provides extremely stable performance from the initial stage of operation to long-term operation. Electron emission characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係わる○渦形陰極の一部断面を示す
斜視図、第2図はこの発明の実施例における陰極加熱処
理工程を示す図、第3図はその加熱処理工程における表
面部のX線回折パターン図、第4図、第5図(a) 、
(b) 、第6図、第7図、および第8図はそれぞれ各
工程における特性図である。 11・・・多孔質基体、15・・・表面合金層。
Fig. 1 is a perspective view showing a partial cross section of a spiral cathode according to the present invention, Fig. 2 is a view showing a cathode heat treatment step in an embodiment of the invention, and Fig. 3 is a surface portion in the heat treatment step. X-ray diffraction pattern diagrams, Figures 4 and 5 (a),
(b), FIG. 6, FIG. 7, and FIG. 8 are characteristic diagrams in each step, respectively. 11... Porous substrate, 15... Surface alloy layer.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質基体にアルカリ土類金属酸化物が含浸され
、この多孔質基体の表面部にイリジウムおよびタングス
テンの合金層が形成されてなる含浸形陰極構体において
、 前記合金層の結晶構造は、格子定数aの範 囲が2.76Å乃至2.78Å、格子定数Cの範囲が4
.44Å乃至4.46Åのhcp構造を示すε相からな
ることを特徴とする含浸形陰極構体。
(1) In an impregnated cathode structure in which a porous substrate is impregnated with an alkaline earth metal oxide and an alloy layer of iridium and tungsten is formed on the surface of the porous substrate, the crystal structure of the alloy layer is as follows: The range of lattice constant a is 2.76 Å to 2.78 Å, and the range of lattice constant C is 4
.. An impregnated cathode structure comprising an ε phase exhibiting an hcp structure of 44 Å to 4.46 Å.
(2)合金層の厚さは、100Å乃至20,000Åの
範囲にある特許請求の範囲第1項記載の含浸形陰極構体
(2) The impregnated cathode structure according to claim 1, wherein the thickness of the alloy layer is in the range of 100 Å to 20,000 Å.
JP13022386A 1986-06-06 1986-06-06 Impregnated cathode assembly Expired - Lifetime JPH0782807B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13022386A JPH0782807B2 (en) 1986-06-06 1986-06-06 Impregnated cathode assembly
DE8787108036T DE3782543T2 (en) 1986-06-06 1987-06-03 IMPREGNATED CATHODE.
EP87108036A EP0248417B1 (en) 1986-06-06 1987-06-03 Impregnated cathode
KR1019870005748A KR900003178B1 (en) 1986-06-06 1987-06-05 Sealed cathode ray-tube structure and manufacturing method
US07/273,157 US4928034A (en) 1986-06-06 1988-11-18 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13022386A JPH0782807B2 (en) 1986-06-06 1986-06-06 Impregnated cathode assembly

Publications (2)

Publication Number Publication Date
JPS62287543A true JPS62287543A (en) 1987-12-14
JPH0782807B2 JPH0782807B2 (en) 1995-09-06

Family

ID=15029031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13022386A Expired - Lifetime JPH0782807B2 (en) 1986-06-06 1986-06-06 Impregnated cathode assembly

Country Status (2)

Country Link
JP (1) JPH0782807B2 (en)
KR (1) KR900003178B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138822A (en) * 1983-12-27 1985-07-23 Hitachi Ltd Impregnated cathode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138822A (en) * 1983-12-27 1985-07-23 Hitachi Ltd Impregnated cathode

Also Published As

Publication number Publication date
KR900003178B1 (en) 1990-05-09
KR880001013A (en) 1988-03-30
JPH0782807B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6720717B2 (en) Field emission-type electron source
JPS61183838A (en) Impregnated type cathode
Alnot et al. Auger electron spectroscopy, X-ray photoelectron spectroscopy, work function measurements and photoemission of adsorbed xenon on thin films of Pt-Re (111) alloys
US4260665A (en) Electron tube cathode and method for producing the same
JPS62287543A (en) Impreganated cathode structure
US4928034A (en) Impregnated cathode
JPS6113526A (en) Impregnated cathode
JPH03173034A (en) Scan dart cathode and its manufacture
JPS62287544A (en) Manufacture of impregnated cathode
DE102012103662B3 (en) Infrared radiation source e.g. infrared-thin film radiator of infrared absorption measurement system used for analysis of exhaust gas of passenger car, has emissivity-increasing layer formed on heating conductor resistor layer
DE2513332A1 (en) FLUORESCENT TUBE WITH AMALGAM FORMING MATERIAL
US4897574A (en) Hot cathode in wire form
WO2010139542A1 (en) Coating installation and coating method
DE19828158C1 (en) Indirectly heated cathode, especially for X-ray tube
JPS6261236A (en) Impregnated cathode body structure
DE19718517C2 (en) Process for applying diamond to a microelectronic component
Kimura et al. Emission characteristics and surface composition of dispenser cathodes in realistic vacuum
JPS6134218B2 (en)
US4305188A (en) Method of manufacturing cathode assembly
JPH11213862A (en) Negative electrode base and manufacture thereof
JP2650638B2 (en) Cathode ray tube
DE1614541A1 (en) Thorium film cathode for electrical discharge vessels
Iwami et al. AES and ELS study of gold deposition on top of hydrogen saturated Si (1 1 1) surfaces
RU2314592C1 (en) Filamentary cathode and its manufacturing process
JP3322465B2 (en) Cathode assembly and method of manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term