JPS59191226A - Cathode body of electron tube or the like - Google Patents

Cathode body of electron tube or the like

Info

Publication number
JPS59191226A
JPS59191226A JP58066517A JP6651783A JPS59191226A JP S59191226 A JPS59191226 A JP S59191226A JP 58066517 A JP58066517 A JP 58066517A JP 6651783 A JP6651783 A JP 6651783A JP S59191226 A JPS59191226 A JP S59191226A
Authority
JP
Japan
Prior art keywords
powder
alkaline earth
mixed
earth carbonate
cathode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58066517A
Other languages
Japanese (ja)
Other versions
JPH0318287B2 (en
Inventor
Kinjiro Sano
佐野 金治郎
Toyoichi Kamata
鎌田 豊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58066517A priority Critical patent/JPS59191226A/en
Publication of JPS59191226A publication Critical patent/JPS59191226A/en
Publication of JPH0318287B2 publication Critical patent/JPH0318287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To obtain a cathode body with suitable electron emission characteristics by applying heat treatment under hydrogen atmospheres before metal ultra- fine powder is mixed in alkaline earth carbonate powder. CONSTITUTION:Before the metal ultra-fine powder whose particle diameter is less than 0.3mu is mixed in alkaline earth carbonate powder, it is heat-treated under hydrogen atmospheres. For example, the nickel powder 3 whose average particle diameter is 300Angstrom is heat-treated for five minutes at 450-850 deg.C under the hydrogen atmospheres and this powder is mixed in the alkaline earth carbonate 2 at a weight ratio of 10%. Then a nitrocellulose solution and butyl acetate are mixed in this mixing substance and a suspension or paste is obtained and then substrate metal 1 is coated with the suspension or paste. It is suitable that the coating thickness is 60-100mu when the diameter of the substrate metal 1 is 2mm.. As a result, a cathode body with high electron emission characteristics can be obtained.

Description

【発明の詳細な説明】 この発明は、陰極線管などに使用される電子管用陰極体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode body for an electron tube used in a cathode ray tube or the like.

最近、コンピュータ端末機のディスプレー管として使用
される高解像度陰極線管や投射形陰極線管などは、電子
ビームの直径を小さくして解像度の向上を図っているた
め、高電流密度陰極体が盛んに採用されている。
Recently, high-resolution cathode ray tubes and projection cathode ray tubes used as display tubes in computer terminals are increasingly adopting high-current density cathode bodies to improve resolution by reducing the diameter of the electron beam. has been done.

第1図は高電流密度陰極体の一例を示すものであり、S
i、MPなどの還元性元素を含みかつニッケルを主成分
とする基体金属(1)上に、(Ba、Sr。
Figure 1 shows an example of a high current density cathode body.
(Ba, Sr.

Ca ) COsからなるアルカリ土類炭酸塩(2)と
粒径が0.3ミクロン以下のニッケル粉末、コバルト粉
末、または、ニッケル粉末とコバルト粉末との混合粉末
から成る金属超微粉(3)との混合体とが被着されてい
る。このようなアルカリ土類炭酸塩(2)と金属超微粉
(3)との混合体として、たとえば、アルカリ土類炭酸
塩(2)に対して重量比で1〜50%の金属超微粉(3
)を添加混合し、この混合体にニトロセルロースおよび
酢酸ブチルを加えて混゛合することKよシ懸濁液または
ペーストを作成し、ついでスプレ法あるいは印刷法によ
シ基体金属(1)上に被着したものが採用される。
Ca) Alkaline earth carbonate (2) consisting of COs and ultrafine metal powder (3) consisting of nickel powder, cobalt powder, or mixed powder of nickel powder and cobalt powder with a particle size of 0.3 microns or less. A mixture is coated. As a mixture of such an alkaline earth carbonate (2) and an ultrafine metal powder (3), for example, an ultrafine metal powder (3) having a weight ratio of 1 to 50% with respect to the alkaline earth carbonate (2) is used.
) is added and mixed, nitrocellulose and butyl acetate are added and mixed to this mixture to form a suspension or paste, and then applied onto the base metal (1) by a spraying method or a printing method. The one that is coated on the surface will be adopted.

なお、(5)は陰極スリーブ(4)K収納されたヒータ
で、基体金属(1)を加熱するために設けられている。
Note that (5) is a heater housed in the cathode sleeve (4) K, which is provided to heat the base metal (1).

上記アルカリ土類炭酸塩(2)は、真空排気工程におい
て加熱されて、(1)式にょシ、Ba、Ca、Srの複
合酸化物に変換される。このとき発生するCO2は排気
ポンプによシ排出される。
The alkaline earth carbonate (2) is heated in the vacuum evacuation process and converted into a complex oxide of formula (1), Ba, Ca, and Sr. The CO2 generated at this time is exhausted by an exhaust pump.

(Ba、Sr、Ca)CO3−→(Ba、Sr、Ca)
0+CO,・曲用(1) 排気工程完了後のエージング工程では、基体金属(1)
は900〜工1oo℃の高温忙加熱され、(Ba。
(Ba, Sr, Ca)CO3-→(Ba, Sr, Ca)
0+CO,・flexion (1) In the aging process after the completion of the exhaust process, the base metal (1)
is heated to a high temperature of 900 to 100°C (Ba.

Sr、Ca)0 から成る三元複合酸化物は、基体金属
(1)に含有されているSiやMfと反応してBaなど
を遊離生成する。この反応は(2)式のとぅシである。
The ternary composite oxide consisting of Sr and Ca)0 reacts with Si and Mf contained in the base metal (1) to liberate Ba and the like. This reaction is expressed in equation (2).

B a O+ M ?  −一→B a + M f 
O,、、、川−+−+(2)この反応によシ、たとえば
、基体金属(1)上のBaOの一部が還元されて遊離B
aが生成し、酸素欠乏型の半導体となシ、700〜8o
o℃の動作温度において電子放射が活発に行なわれるよ
うになる。
B a O+ M? -1→B a + M f
O, , , Kawa - + - + (2) Through this reaction, for example, a part of BaO on the base metal (1) is reduced to free B
A is generated and becomes an oxygen-deficient semiconductor, 700-8o
At an operating temperature of 0.degree. C., electron emission becomes active.

一方、アルカリ土類炭酸塩(2)に添加した金属超微粉
(3)は、基体金属(1)と上記した三元複合酸化物の
表面までの電気的な導電性を向上させ、大電流取出時に
発生するジュール熱を抑制し、三元複合酸化物の熱的破
壊を防ぐ役目をもっている。
On the other hand, the ultrafine metal powder (3) added to the alkaline earth carbonate (2) improves the electrical conductivity between the base metal (1) and the surface of the above-mentioned ternary composite oxide, allowing for large current extraction. It has the role of suppressing the Joule heat that sometimes occurs and preventing thermal destruction of the ternary composite oxide.

また、前記金属′超微粉(3)として0.3ミクロン以
下の粒径が選ばれている理由としては、平均粒径が30
0人(0,03ミクロン)の場合、その比表面積が70
〜10I/りと極めて大きい値であるため、前述のよう
に基体金属(1)と複合三元酸化物との導電性の向上に
寄与するとともに、複合三元酸化物中への分散性が極め
て良いことが挙げられる。
In addition, the reason why a particle size of 0.3 microns or less is selected as the ultrafine metal powder (3) is that the average particle size is 30 microns or less.
In the case of 0 people (0.03 microns), the specific surface area is 70
Since it is an extremely large value of ~10 I/re, it contributes to improving the electrical conductivity between the base metal (1) and the composite ternary oxide as described above, and also has extremely high dispersibility in the composite ternary oxide. Good things can be mentioned.

ところで、上記金属超微粉(3)はガス中蒸発法と呼ば
れる乾燥雰囲気中で製造されるだめ、その表面が緻密で
安定な酸化膜で被われている。したがって、エージング
工程や動作中に、(31式に示すように、酸化物が分解
して酸素ガスを放出することになる。
By the way, since the ultrafine metal powder (3) is produced in a dry atmosphere called the in-gas evaporation method, its surface is covered with a dense and stable oxide film. Therefore, during the aging process or operation, the oxide decomposes and releases oxygen gas, as shown in equation 31.

2 N i 0    2 N i + Ox −−−
−・−−−−−−−(3)この酸素ガスは(2)式で生
成した遊離バリウムと素早く反応し、(4)式に示すよ
うに、BaOとなって電子放出能力を損ってし壕う。
2 N i 0 2 N i + Ox ---
−・−−−−−−(3) This oxygen gas quickly reacts with the free barium generated in equation (2), and as shown in equation (4), becomes BaO, impairing the electron emission ability. Take shelter.

2Ba十υ3 −一→2BaO・・・・・・・・・(4
)以上のように、超微粉の金属粉を使用する場合は、そ
の表面の酸化層の影響で十分な電子放出能力が得られな
いという欠点があった。
2Ba 1 υ 3 -1 → 2BaO・・・・・・・・・(4
) As described above, when ultrafine metal powder is used, there is a drawback that sufficient electron emitting ability cannot be obtained due to the influence of the oxidized layer on its surface.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、金属超微粉をアルカリ土類炭酸
塩粉末に混合する前に、水素雰囲気中で所定の温度によ
る熱処理を実施しておくことによって、好適な電子放出
特性をもった電子管用陰極体を提供することを目的とし
ている。
This invention was made in order to eliminate the drawbacks of the conventional methods as described above.Before mixing ultrafine metal powder with alkaline earth carbonate powder, heat treatment is performed at a predetermined temperature in a hydrogen atmosphere. The purpose of this is to provide a cathode body for an electron tube with suitable electron emission characteristics.

以下、この発明の一実施例について説明する。An embodiment of the present invention will be described below.

平均粒径で300人のニッケル粉末を水素雰囲気中、4
50〜850℃の温度で5分間の熱処理を行ない、つぎ
に、この粉末をアルカリ土類炭酸塩に10%の重量比で
混合し、さらに、この混合体に、ニトロセルロース溶液
や酢酸ブチルを混入して懸濁液又はペースト状とし、基
体金属(1)上に塗布する。塗布厚みは基体金属(1)
の直径が2mの場合、60〜100μが好適である。
Nickel powder of 300 particles with an average particle size of 4
Heat treatment was performed at a temperature of 50 to 850°C for 5 minutes, and then this powder was mixed with alkaline earth carbonate at a weight ratio of 10%, and further, nitrocellulose solution and butyl acetate were mixed into this mixture. It is made into a suspension or paste and applied onto the base metal (1). Coating thickness is base metal (1)
When the diameter is 2 m, 60 to 100 μ is suitable.

以上の方法によって製作された電子管用陰極体は、第1
図のものと同様の構成を有する。
The cathode body for an electron tube manufactured by the above method is the first
It has the same configuration as the one in the figure.

第2図は金属超微粉の水素雰囲気中での処理温度(H!
処理温度)と電子放出能力(エミッション)との関係を
示した′ものである。この図よシ、450℃以下の温度
では、電子放出能力が極端に劣化することがわかる。こ
れは、金属超微粉の表面の酸遊離バリウムとが結合して
酸化バリウムに変化するためである。
Figure 2 shows the processing temperature (H!) of ultrafine metal powder in a hydrogen atmosphere.
This figure shows the relationship between processing temperature) and electron emission ability (emission). This figure shows that the electron emission ability deteriorates extremely at temperatures below 450°C. This is because the acid free barium on the surface of the ultrafine metal powder combines with the acid and changes into barium oxide.

一方、850℃以上の温度では、電子放出能力のばらつ
きが大きくなっている。これは、金属超微粉同志の焼結
が開始し始めるため、アルカリ土類炭酸塩中への均一な
分散が行なわれI/C<<なシ、超微粉としての特徴が
消失してしまうからである。
On the other hand, at temperatures of 850° C. or higher, variations in electron emission ability become large. This is because the ultrafine metal powders begin to sinter together, resulting in uniform dispersion into the alkaline earth carbonate and the characteristics of the ultrafine powder disappearing. be.

以上よシ、金属粉末の熱処理温度は450〜850℃が
適切であるといえる。
Based on the above, it can be said that the appropriate heat treatment temperature for metal powder is 450 to 850°C.

なお、上記実施例では電子管の陰極体について説明した
が、撮像管、送信管などの陰極体くおいても、同様の効
果が発揮される。
In the above embodiment, the cathode body of an electron tube has been described, but similar effects can be obtained in cathode bodies of image pickup tubes, transmission tubes, and the like.

以上のように、この発明によれば、金属超微粉をアルカ
リ土類炭酸塩と混合する前に、水素雰囲気中で熱処理し
ているため、筒い電子放出能力を有する陰極体を提供で
きる。
As described above, according to the present invention, since the ultrafine metal powder is heat-treated in a hydrogen atmosphere before being mixed with the alkaline earth carbonate, a cathode body having a cylindrical electron emission ability can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子管用陰極体の拡大断面図、第2図は金属超
微粉の水素雰囲気中での処理温度と電子放出能力との関
係を示した説明図である。 (1)・・・基体金属、(2)・・・アルカリ土類炭酸
塩、(3)・・・金属超微粉。 代理人 大岩増雄
FIG. 1 is an enlarged sectional view of a cathode body for an electron tube, and FIG. 2 is an explanatory diagram showing the relationship between processing temperature of ultrafine metal powder in a hydrogen atmosphere and electron emission ability. (1)... Base metal, (2)... Alkaline earth carbonate, (3)... Ultrafine metal powder. Agent Masuo Oiwa

Claims (2)

【特許請求の範囲】[Claims] (1)ニッケルを主成分とする基体金属上にバリウムを
含むアルカリ土類炭酸塩粉末と粒径が0.3ミクロン以
下の金属超微粉との混合体を被着形成してなる電子管な
どの陰極体において、金属超微粉をアルカリ土類炭酸塩
粉末に混合する前に、水素雰囲気中で熱処理してなるこ
とを特徴とする電子管などの陰極体。
(1) A cathode for an electron tube, etc., formed by depositing a mixture of alkaline earth carbonate powder containing barium and ultrafine metal powder with a particle size of 0.3 microns or less on a base metal mainly composed of nickel. 1. A cathode body for an electron tube, etc., which is heat-treated in a hydrogen atmosphere before mixing ultrafine metal powder with alkaline earth carbonate powder.
(2)金属超微粉がニッケル粉末、コバルト粉末、また
は、ニッケル粉末とコバルト粉末の混合粉末であシ、そ
の熱処理温度が450〜850℃である特許請求の範囲
第1項記載の電子管などの陰極体。
(2) A cathode for an electron tube or the like according to claim 1, wherein the ultrafine metal powder is nickel powder, cobalt powder, or a mixed powder of nickel powder and cobalt powder, and the heat treatment temperature thereof is 450 to 850°C. body.
JP58066517A 1983-04-13 1983-04-13 Cathode body of electron tube or the like Granted JPS59191226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066517A JPS59191226A (en) 1983-04-13 1983-04-13 Cathode body of electron tube or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066517A JPS59191226A (en) 1983-04-13 1983-04-13 Cathode body of electron tube or the like

Publications (2)

Publication Number Publication Date
JPS59191226A true JPS59191226A (en) 1984-10-30
JPH0318287B2 JPH0318287B2 (en) 1991-03-12

Family

ID=13318123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066517A Granted JPS59191226A (en) 1983-04-13 1983-04-13 Cathode body of electron tube or the like

Country Status (1)

Country Link
JP (1) JPS59191226A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864187A (en) * 1985-05-25 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube and manufacturing method thereof
JPH04274128A (en) * 1990-11-02 1992-09-30 Samsung Electron Devices Co Ltd Method for coating thermoelectron discharging material of thermoelectron discharging filament
KR20020063327A (en) * 2001-01-27 2002-08-03 삼성에스디아이 주식회사 Metal cathode and indirectly heated cathode assembly having the same
KR100768183B1 (en) * 2001-10-30 2007-10-17 삼성에스디아이 주식회사 Method for manufacturing pellet of cathod of electron gun
JP2007307670A (en) * 2006-05-19 2007-11-29 Imao Corporation:Kk Clamping device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864187A (en) * 1985-05-25 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Cathode for electron tube and manufacturing method thereof
JPH04274128A (en) * 1990-11-02 1992-09-30 Samsung Electron Devices Co Ltd Method for coating thermoelectron discharging material of thermoelectron discharging filament
KR20020063327A (en) * 2001-01-27 2002-08-03 삼성에스디아이 주식회사 Metal cathode and indirectly heated cathode assembly having the same
KR100768183B1 (en) * 2001-10-30 2007-10-17 삼성에스디아이 주식회사 Method for manufacturing pellet of cathod of electron gun
JP2007307670A (en) * 2006-05-19 2007-11-29 Imao Corporation:Kk Clamping device

Also Published As

Publication number Publication date
JPH0318287B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
KR900007751B1 (en) Electron tube cathode and method of the same
KR910009987B1 (en) The cathode of the electron tube
JPS59191226A (en) Cathode body of electron tube or the like
JPS61269828A (en) Manufacture of electron tube cathode
JPS62198029A (en) Electron tube cathode
JPS61271732A (en) Electron tube cathode
JPS62193031A (en) Cathode for electron tube
JPS62193032A (en) Cathode for electron tube
JPH04220924A (en) Cathode for electron tube
JPS6340229A (en) Cathode of electron tube
JPS58186128A (en) Electron tube cathode
JPH01213930A (en) Cathode of electron tube
JPS5949131A (en) Electron tube cathode
JPH01311531A (en) Electronic tube cathode
US1869379A (en) Emulsions and materials, methods and processes for the preparation thereof
JPS61198529A (en) Cathode for electron tube
JPH01143116A (en) Electronic tube cathode
JPH03295129A (en) Cathode for electronic tube
JPH04220925A (en) Cathode for electron tube
JPH05290762A (en) Cathode-ray tube
JPS6288240A (en) Cathode for electron tube
JPS63310535A (en) Electron tube cathode
JPS61232526A (en) Cathode of electrode tube
JPH0384825A (en) Hot cathode
JPH04286827A (en) Impregnated cathode