JPS6288240A - Cathode for electron tube - Google Patents

Cathode for electron tube

Info

Publication number
JPS6288240A
JPS6288240A JP60229302A JP22930285A JPS6288240A JP S6288240 A JPS6288240 A JP S6288240A JP 60229302 A JP60229302 A JP 60229302A JP 22930285 A JP22930285 A JP 22930285A JP S6288240 A JPS6288240 A JP S6288240A
Authority
JP
Japan
Prior art keywords
earth metal
electron emitting
layer
substrate
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60229302A
Other languages
Japanese (ja)
Other versions
JPH0546652B2 (en
Inventor
Masato Saito
正人 斉藤
Keiji Fukuyama
福山 敬二
Keiji Watabe
渡部 勁二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60229302A priority Critical patent/JPS6288240A/en
Priority to KR1019860005652A priority patent/KR900003175B1/en
Priority to CA000513900A priority patent/CA1270890A/en
Priority to US06/886,777 priority patent/US4797593A/en
Priority to CN86104753.2A priority patent/CN1004452B/en
Priority to DE86305560T priority patent/DE3689134T2/en
Priority to EP86305560A priority patent/EP0210805B1/en
Publication of JPS6288240A publication Critical patent/JPS6288240A/en
Publication of JPH0546652B2 publication Critical patent/JPH0546652B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To stabilize an electron emitting property, by providing a rare earth metal film of a prescribed thickness between a base and an electron emitting substance layer to disperse a composite oxide layer of a reducing element into the electron emitting substance layer. CONSTITUTION:A rare earth metal film 12 made of Sc, Y or the like and having a thickness of 6mu or less is provided on a base 1 made of Ni as the main constituent and containing a reducing element such as Si. An electron emitting substance layer 2 made of a Ba-containing alkaline earth metal oxide as the main constituent is provided on the film 12. With this constitution, an intermediate layer of a composite oxide is prevented from being made in a concentrated manner on and near the boundary of the base 1 and the layer 2 at a high electrical current density. This results in stabilizing an electron emitting property for a long period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はTV用ダブラウン管どに用いられる電子管用
陰極に関し、特に電子放射性物質層の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electron tube cathode used in a TV double-loud tube, and more particularly to an improvement in an electron emissive material layer.

〔従来の技術〕[Conventional technology]

第2図は従来のTV用ダブラウン管撮像管に用いられて
いる陰極を示すものであり、図において(1)はシリコ
ン(Si) 、マグネシウム(Mg)などの還元性元素
を微量含む主成分がニッケルからなる有底筒状の基体、
(2)はこの基体の底部上面に被着され、少なくともバ
リウム(Ba )を含み、他にストロンチウム(Sr 
)あるいは/及びカルシウム(Oa )を含むアルカリ
土類金属酸化物からなる電子放射物質層、(3)は上記
基体(1)内に配設されたヒータで、加熱により上記電
子放射物質層(2)から熱電子を放出させるためのもの
である。
Figure 2 shows a cathode used in a conventional double picture tube for TVs. A bottomed cylindrical base made of nickel,
(2) is deposited on the top surface of the bottom of this substrate and contains at least barium (Ba), and also contains strontium (Sr).
) or/and an electron emitting material layer made of an alkaline earth metal oxide containing calcium (Oa); (3) is a heater disposed within the base (1) to heat the electron emitting material layer (2 ) to emit thermionic electrons.

この様に構成された電子管用陰極において、基体(1)
への電子放射物質層(2)の被着は次の様にして行なわ
れるものである。まずアルカリ土類金属(Ha * 8
’r r Ca )の炭酸塩からなる懸濁液を基体(1
)に塗布し、真空排気工程中にヒータ(3)によって加
熱する。この時、アルカリ土類金属の炭酸塩はアルカリ
土類金属の酸化物に変わる。その後、アルカリ土類金属
の酸化物の一部を還元して半導体的性質を有するように
活性化を行なうことにより、基体(1)上にアルカリ土
類金属の酸化物からなる電子放射物質層(2)を被着せ
しめているものである。
In the electron tube cathode configured in this way, the base (1)
The electron emitting material layer (2) is deposited on the substrate as follows. First, alkaline earth metals (Ha * 8
A suspension consisting of carbonate of 'rr Ca ) was added to the substrate (1
) and heated by a heater (3) during the vacuum evacuation process. At this time, the alkaline earth metal carbonate turns into an alkaline earth metal oxide. Thereafter, by reducing a part of the alkaline earth metal oxide and activating it to have semiconducting properties, an electron emitting material layer ( 2) is coated.

この活性化工程において、アルカリ土類金属の酸化物の
一部は次の様に反応しているものである。
In this activation step, some of the alkaline earth metal oxides react as follows.

つまり基体(1)中に含有されたシリコン、マグネシラ
ム等の還元性元素は拡散によりアルカリ土類金属の酸化
物と基体(1)の界面に移動し、アルカリ土類金属酸化
物と反応する。例えばアルカリ土類酸化物として酸化バ
リウム(Bad)であれば次式(1) (2)の様に反
応するものである。
That is, reducing elements such as silicon and magnesium contained in the substrate (1) move to the interface between the alkaline earth metal oxide and the substrate (1) by diffusion and react with the alkaline earth metal oxide. For example, if barium oxide (Bad) is used as the alkaline earth oxide, it reacts as shown in the following formulas (1) and (2).

BaO+ 1/28i =Ba + 1/2SiOt 
 ・++−+・(1)BaO+Mg  =Ba+MgO
−−(21この反応の結果、基体(1)上に被着形成さ
れたアルカリ土類金属酸化物の一部が還元され、酸素欠
乏型の半導体となり、陰樹温度700〜soo’aの動
作温度で0.5〜0.8A/dの電子放射が得られるこ
とになる。しかるに、この様にして形成された電子管用
陰極にあっては電子放射が0.6〜0.8 A/m以上
の電流密度は取り出せないものである。その理由として
は次の様なものである。つまり、アルカリ土類金属酸化
物の一部を還元反応させた場合、上記(1) (2)式
からも明らかな如く基体(1)とアルカリ土類金属酸化
物層との界面に8 io、 、 MgOあるいはBaO
,l9i0.なる複合酸化物層(中間層)が形成され、
この中間層が高抵抗層となって電流の流れを妨げること
・また上記中間層が基体(1)中の還元元素が″電子放
射物質層(2)の表面側へ拡散するのを妨げ十分なバリ
ウム(Ba)が生成されないことが考えられている。
BaO+ 1/28i=Ba+1/2SiOt
・++−+・(1) BaO+Mg =Ba+MgO
--(21) As a result of this reaction, a part of the alkaline earth metal oxide deposited on the substrate (1) is reduced and becomes an oxygen-deficient semiconductor, which operates at a shade temperature of 700 to soo'a. This means that an electron emission of 0.5 to 0.8 A/d can be obtained at a temperature of 0.5 to 0.8 A/d. However, in the case of an electron tube cathode formed in this way, the electron emission is 0.6 to 0.8 A/d. It is impossible to obtain a current density higher than that.The reason is as follows.In other words, when a part of the alkaline earth metal oxide is subjected to a reduction reaction, from the above equations (1) and (2), As is clear, 8 io, , MgO or BaO is present at the interface between the substrate (1) and the alkaline earth metal oxide layer.
, l9i0. A composite oxide layer (intermediate layer) is formed,
This intermediate layer becomes a high-resistance layer and obstructs the flow of current.The intermediate layer also prevents the reducing elements in the substrate (1) from diffusing toward the surface of the electron emitting material layer (2). It is believed that barium (Ba) is not produced.

また、従来の電子管用陰極としては特開昭59−209
41号公報に、上記した第2図のものと同様の構成をし
ており、陰極の速動性を得るために基体(1)の板厚を
薄くシ、寿命中の還元剤の個濁を防止しかつ基本(1)
の強度低下を防止する目的で、基体(1)にランタンが
LaNi 、及びLa、0.の形で分散含有させたもの
が示されている。
In addition, as a conventional cathode for electron tubes, JP-A-59-209
No. 41 discloses a structure similar to that shown in Fig. 2 described above, in which the thickness of the substrate (1) is made thinner in order to obtain the rapid action of the cathode, and the individual turbidity of the reducing agent during the life of the cathode is reduced. Prevention and basics (1)
In order to prevent the strength from decreasing, the substrate (1) is coated with lanthanum such as LaNi, La, 0. It is shown that it is dispersed in the form of .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様に構成された電子管用陰極においては、動作中に
基体(1)と電子放射物質層(2)の界面近傍、特に基
体(1)表面近傍のニッケル結晶粒界と上記界面より1
0μm程度電子放射物質NI(2)内側の位置に前述の
中間層が偏析するため、電流の流れ及び電子放射物質層
(2)表面側への還元性元素の拡散が妨げられ、高電流
密度下の十分な電子放出特性が得られないという問題が
あった。
In the electron tube cathode constructed in this way, during operation, the nickel crystal grain boundary near the interface between the substrate (1) and the electron emitting material layer (2), especially near the surface of the substrate (1), and the
Since the above-mentioned intermediate layer is segregated at a position inside the electron-emitting material NI (2) of about 0 μm, the flow of current and the diffusion of reducing elements toward the surface of the electron-emitting material layer (2) are impeded, and under high current density. There was a problem that sufficient electron emission characteristics could not be obtained.

また、後者に示したものにおいては、ニッケルを主成分
とする基体(1)の製作時にLaNi、及びLa、0゜
を含有させるため、基体(1)内のLaNi、及びLa
gOsの含有状態のばらつきなどが生じ易かった。
In addition, in the case of the latter, since LaNi and La, 0° are contained during the production of the substrate (1) whose main component is nickel, the LaNi and La in the substrate (1) are
Variations in the gOs content were likely to occur.

この発明は上記した点に鑑みてなされたものであり、高
電流密度下において基体と電子放射物質層との界面近傍
に複合酸化物からなる中間層が集中して形成されること
を防止し、長時間にわたって安定したエミッション特性
を有し、かつ生産性・信頼性の高い電子管用陰極を得る
ことを目的とする。
This invention has been made in view of the above-mentioned points, and prevents the formation of an intermediate layer made of a composite oxide in a concentrated manner near the interface between the substrate and the electron emitting material layer under high current density. The purpose of this invention is to obtain a cathode for an electron tube that has stable emission characteristics over a long period of time and has high productivity and reliability.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係る電子管用陰極は、少なくともバリウムを
含むアルカリ土類金属酸化物とを主成分とする電子放射
物質層を6μm以下の厚みで希土類金属膜を予め形成し
たニッケルを主成分とする基体上に被着形成させたもの
である。
The cathode for an electron tube according to the present invention has an electron emitting material layer mainly composed of an alkaline earth metal oxide containing at least barium formed on a nickel-based substrate on which a rare earth metal film is previously formed with a thickness of 6 μm or less. It is formed by adhering to the surface.

〔作用〕[Effect]

この発明においては、Niを主成分とする基体上に形成
された6μm以下の厚さを有する希土類金属が電子放射
物質層を基体に被着形成する際の活性化時に、アルカリ
土類金属の炭酸塩が分解する際、あるいは陰極としての
動作中に酸化バリウムが解離反応を起こす際に基体が酸
化する反応を防止するとともに、電子放射物質層中への
基体に含有された還元性元素の拡散を適度に制御し、還
元性元素による複合酸化物からなる中間層が基体と電子
放射物質°層との界面近傍に集中的に形成されることを
防止し、中間層を電子放射物質層内に分散させるもので
ある。
In this invention, when a rare earth metal having a thickness of 6 μm or less formed on a substrate mainly composed of Ni is activated when an electron emitting material layer is deposited on the substrate, carbonic acid of the alkaline earth metal is activated. This prevents oxidation of the substrate when the salt decomposes or when barium oxide undergoes a dissociation reaction during operation as a cathode, and also prevents the diffusion of reducing elements contained in the substrate into the electron emitting material layer. Appropriate control prevents the formation of an intermediate layer made of a composite oxide of a reducing element near the interface between the substrate and the electron emitting material layer, and disperses the intermediate layer within the electron emitting material layer. It is something that makes you

〔発明の実施例〕[Embodiments of the invention]

以下にこの発明の一実施例を第1図に基づいて説明する
。図において、@は基体(1)の底部上面に形成された
スカンジウムあるいはイツトリウムなどの希土類金属膜
で(2〕は該希土類金属膜(6)上に被着形成された少
なくともバリウムを含み、他にストロンチウムあるいは
/及びカルシウムを含むアルカリ土類金属酸化物OXl
を主成分とした、電子放射物質層である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, @ is a rare earth metal film such as scandium or yttrium formed on the top surface of the bottom of the substrate (1), and (2) contains at least barium deposited on the rare earth metal film (6). Alkaline earth metal oxide OXl containing strontium or/and calcium
This is an electron-emitting material layer whose main component is

次に、この様に構成された電子管用陰極において・基体
(1)への希土類金属膜(2)及び電子放射物質層(2
)の被着方法について説明すると、まず、バリウム、ス
トロンチウム、カルシウムの三元炭酸[と所定量のバイ
ンダー及び溶剤を混合し、懸濁液を作成する。この懸濁
液を予め電子ビーム蒸着装置などを用いてその底部上面
に6μm以下の希土類金属膜(2)を形成したニッケル
を主成分とする基体(1)上にスプレィにより約80ミ
クロンの厚みで塗布し、その後、従来のものと同様に、
炭酸塩から酸化物への分解過程及び酸化物の一部を還元
する活性化過程を経て、電子放射物質層(2)を基体(
1)に被着せしめるものである。
Next, in the cathode for an electron tube configured in this way, a rare earth metal film (2) and an electron emitting material layer (2) are applied to the base (1).
). First, a ternary carbonate of barium, strontium, and calcium is mixed with a predetermined amount of a binder and a solvent to create a suspension. This suspension is sprayed to a thickness of approximately 80 microns onto a substrate (1) whose main component is nickel, on which a rare earth metal film (2) of 6 μm or less has been formed on the top surface of the bottom using an electron beam evaporator or the like. Apply and then, like the conventional one,
After a decomposition process from carbonate to oxide and an activation process to reduce a part of the oxide, the electron emitting material layer (2) is converted into a substrate (
1).

この様な方法で形成される希土類金属膜の厚みを種々変
えた電子管用陰極を種々作成し、この電子管用陰極を用
いて2極管真空管を作成し、種々の電流密度で寿命試験
を行い、エミッション電流の変化を調べた結果、第3図
の結果を得た。第8図は従来のテレビ用陰極としての電
流密度0.664/cr! O3,1倍(z、o5A/
cl!t)で動作させた時の種々の膜厚の希土類金属膜
を基体(1)上に形成した後、その上部に電子放射物質
層(2)を形成した電子管用陰極の寿命特性と希土類金
属膜が全く形成されない基体(1)上に電子放射物質層
(2)を有した従来例の寿命特性との関係を示したもの
である。この第8図から明らかなように6μm以下の厚
みで基体(1)上に希土類金属層を形成した本実施例の
ものは従来例のものに対して高電流密度動作でのエミッ
ション劣化が少ないものであ拳る。
Various cathodes for electron tubes were created using various thicknesses of the rare earth metal films formed by this method, diode vacuum tubes were created using these cathodes for electron tubes, and life tests were conducted at various current densities. As a result of examining the change in emission current, the results shown in Figure 3 were obtained. Figure 8 shows the current density of a conventional television cathode of 0.664/cr! O3, 1x (z, o5A/
cl! Life characteristics and rare earth metal film of an electron tube cathode in which a rare earth metal film of various thicknesses is formed on a substrate (1) and then an electron emitting material layer (2) is formed on top of the rare earth metal film when operated at t) This figure shows the relationship with the life characteristics of a conventional example having an electron emitting material layer (2) on a substrate (1) on which no electron emitting material is formed. As is clear from FIG. 8, the device of this example, in which the rare earth metal layer is formed on the substrate (1) with a thickness of 6 μm or less, has less emission deterioration during high current density operation than the conventional example. I'll fist you.

このように基体(1)上に希土類金属層を形成した効果
を詳細に調査するために、第3図の実験結果において6
000時間でのエミッション電流測定後、従来品及び基
体(1)上に2μmの8C層(6)を形成した電子放射
物質層(2)を有した電子管用陰極の断面を電子ビーム
X線マイロアナライザー(EPMA)によって分析を行
った。その結果、高電流密度動作下の従来品においては
、基体(1)と電子放射物質層(2)との界面近傍で、
基体(1)内の結晶粒界ではSin、。
In order to investigate in detail the effect of forming a rare earth metal layer on the substrate (1) in this way, the experimental results shown in Fig.
After measuring the emission current for 000 hours, the cross-sections of the conventional product and the electron tube cathode having an electron emitting material layer (2) with a 2 μm 8C layer (6) formed on the substrate (1) were analyzed using an electron beam X-ray microanalyzer. Analysis was performed by (EPMA). As a result, in the conventional product under high current density operation, near the interface between the substrate (1) and the electron emitting material layer (2),
Sin at the grain boundaries in the substrate (1).

MgO及びこれらの複合酸化物層が形成され、さらに上
記界面から電子放射物質FIJ (219111約10
μの位置にはBaO−8io、の複合酸化物層が形成さ
れいることがわかった。上記した8i0t・MgO層及
びBaO・Sin、層は基体(1)内から電子放射物質
層(2)内への還元剤であるS i 、Mgの拡散速度
を抑制するとともに高絶縁であるために電流の流れを阻
害し、ついには電子放射物質内での絶縁破壊による損耗
をもたらすことになるものである。
A layer of MgO and a composite oxide thereof is formed, and an electron emitting material FIJ (approximately 10
It was found that a BaO-8io complex oxide layer was formed at the μ position. The above-described 8i0t MgO layer and BaO Sin layer suppress the diffusion rate of S i and Mg, which are reducing agents, from the substrate (1) into the electron emitting material layer (2), and are highly insulating. This obstructs the flow of current and eventually leads to damage due to dielectric breakdown within the electron emitting material.

これに対して1本実施例である希土類金属であるSC層
を基体(1)上に形成した電子放射物質(2)を有する
電子管用陰極においては、基体(1)内に含有された還
元剤であるS i 、Mgは平均的に分散されており、
上記従来例のもののように基体(1)と電子放射物質層
(2)との界面近傍に、これら還元剤のピークが殆んど
存在していないものである。このことは次の理由による
ものと判断される。つまり、活性化時にアルカリ土類金
属の炭酸塩が酸化物へと分解する場合、あるいは陰極の
動作時にBaOなどが解離反応を起こす場合において、
希土類金属が基体(1)の酸化を防ぐことに起因してい
るものと考えられる。例えば、希土類金属がスカンジウ
ム(Be)である場合の反応は次式(4) (6)の様
になるものである。
On the other hand, in the cathode for an electron tube having an electron emitting material (2) in which an SC layer made of a rare earth metal is formed on a substrate (1), which is the present embodiment, the reducing agent contained in the substrate (1) is S i , Mg is averagely distributed,
Unlike the conventional example described above, there are almost no peaks of these reducing agents near the interface between the substrate (1) and the electron emitting material layer (2). This is considered to be due to the following reasons. In other words, when carbonates of alkaline earth metals decompose into oxides during activation, or when BaO etc. cause a dissociation reaction during cathode operation,
This is thought to be due to the fact that the rare earth metal prevents oxidation of the substrate (1). For example, when the rare earth metal is scandium (Be), the reaction is expressed by the following equations (4) and (6).

(Sc層表面)・・・・・・・・・(4)B、10→B
a+0   (¥PL子放耐放射物質中従来例)   
Ni+0→Ni0 (Ni表面) ・・・・・・・・・(5)(本発明) 
  28C+80→SC,03(Be層表面)・・・・
・・・・・(6)従って、上式(3) (5)から明ら
かなように、希土類金属酸化物を含有していない電子放
射物質層(2)を有した電子管用陰極においては、寿命
初期において既に基体(1)と電子放射物質N(2)と
の界面に形成されたニッケルの酸化物と基体(1)中の
還元剤である8i、Mgとが反応し、SiO,、MgQ
、が界面の最表層及びその近傍の粒界中に形成されるこ
とになる。
(Sc layer surface) ・・・・・・・・・(4) B, 10→B
a+0 (Conventional example of ¥PL radiation-resistant material)
Ni+0→Ni0 (Ni surface) ・・・・・・・・・(5) (present invention)
28C+80→SC,03 (Be layer surface)...
...(6) Therefore, as is clear from the above equations (3) and (5), the lifetime of the electron tube cathode having the electron emitting material layer (2) that does not contain rare earth metal oxides is In the initial stage, the nickel oxide already formed at the interface between the substrate (1) and the electron emitting material N(2) reacts with the reducing agent 8i, Mg in the substrate (1), resulting in the formation of SiO, MgQ.
, are formed in the outermost layer of the interface and in the grain boundaries in its vicinity.

そのため、還元剤であるSi、Mgの電子放射物質層(
2)中への拡散は上記8i0. 、 MgOの酸化物層
に律速され、反応(1) (2)のサイト(場所)は該
酸化物層の近傍に形成される。
Therefore, the electron emitting material layer (Si, Mg, which is a reducing agent)
2) Diffusion into the above 8i0. , is rate-determined by the MgO oxide layer, and the sites for reactions (1) and (2) are formed near the oxide layer.

そのため、特に高電流密度で動作する場合、(1)(2
)の反応が活発に行われ、還元剤による酸化物8 io
、 、 MgOが上記酸化物層の近傍に集中して生成さ
れ、(1) (2)の反応が進むとともに還元元素であ
る8i、Mgの電子放射物質層中への拡散がますます抑
制され、エミッション低下が著しくなる。
Therefore, especially when operating at high current densities, (1) (2)
) reaction takes place actively, and the reducing agent produces oxide 8 io
, , MgO is generated in a concentrated manner near the oxide layer, and as the reactions (1) and (2) progress, the diffusion of reducing elements 8i and Mg into the electron emitting material layer is further suppressed. Emissions drop significantly.

一方、本発明の実施例である希土類金属層を基体(1)
上に形成した電子放射物質層(2)を有した電子管用陰
極においては、BaC0,あるいはBaOの解離反応で
生成されたCOl及びOと希土類金属が反応して希土類
金属酸化物が形成されて基体(1)のニッケルの酸化反
応を防止するので、還元元素であるSi、Mgは基体(
1)内の結晶粒界またはその近傍で酸化物層を形成せず
、電子放射物質中へと容易に拡散していき、(1)(2
)の反応サイトは電子放射物質層(2)内の粒界に形成
され、従来例よりも分散された場所に反応サイトがある
。さらに、希土類金属層の表面近傍に形成された希土類
金属酸化物が上記還元元素の電子放射物質中への拡散を
適度に律速するので、長時間高電流′8i8iの動作後
においても安定で良好なエミッション特性を維持できる
On the other hand, a rare earth metal layer according to an embodiment of the present invention is applied to a substrate (1).
In an electron tube cathode having an electron emitting material layer (2) formed thereon, a rare earth metal is reacted with COl and O generated by the dissociation reaction of BaC0 or BaO to form a rare earth metal oxide, and the substrate is The reducing elements Si and Mg prevent the oxidation reaction of nickel in (1).
1) does not form an oxide layer at or near the grain boundaries, and easily diffuses into the electron emitting material.
The reaction sites of ) are formed at grain boundaries in the electron emitting material layer (2), and the reaction sites are located in more dispersed locations than in the conventional example. Furthermore, since the rare earth metal oxide formed near the surface of the rare earth metal layer moderately controls the rate of diffusion of the reducing element into the electron emitting material, it is stable and good even after long-term high current operation. Emission characteristics can be maintained.

さらに希土類金属の一部はNi中へ固溶するので、上記
希土類金属層とNi基体(1)との被着を強める効果、
Ni基体のぜい化抑制の効果をも有する。希土類金属層
の厚みは6μm以下でその効果が顕著である。厚みが6
μmを越えると、Ni基体(1)からのSl+Mgの1
に子放射物質内への拡散が不十分になり、エミッション
特性の低下が現われる。
Furthermore, since a part of the rare earth metal is dissolved in Ni, the effect of strengthening the adhesion between the rare earth metal layer and the Ni substrate (1),
It also has the effect of suppressing embrittlement of the Ni substrate. The effect is remarkable when the thickness of the rare earth metal layer is 6 μm or less. Thickness is 6
If it exceeds μm, 1 of Sl+Mg from Ni substrate (1)
Diffusion into the radioactive material becomes insufficient, resulting in a decrease in emission characteristics.

また%6μm以下の希土類金属層の厚みであれば、60
00時間動作後(電流密度2.05 A/m )に電子
放射物質層(2)あるいは希土類金属層(イ)からのは
くり現象が皆無であった。因みに従来の希土類金属酸化
物が含有されていない電子放射物質層(2)を有した電
子管陰極でのはくり現象のひん度は80チであった。
In addition, if the thickness of the rare earth metal layer is 6 μm or less,
After 00 hours of operation (current density 2.05 A/m2), there was no peeling phenomenon from the electron emitting material layer (2) or the rare earth metal layer (a). Incidentally, the frequency of the peeling phenomenon in a conventional electron tube cathode having an electron emitting material layer (2) not containing a rare earth metal oxide was 80 degrees.

なお、上記実施例においては、希土類金属としてSc、
及びYを用いたものを説明したが他の希土類金属でも同
様の効果は得られたものの、特にSc。
In the above examples, the rare earth metals include Sc,
Although the explanation has been made using Sc and Y, similar effects can be obtained with other rare earth metals, especially Sc.

Y・Ceにおいてその効果が顕著であった。The effect was remarkable in Y/Ce.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように述べたように基体上に予め6μ
m以下の厚みで希土類金属層を形成し、その上に少なく
ともバリウムを含むアルカリ土類金属酸化物を主成分と
する電子放射物質を被着させたものとしたので、希土類
金属層が基体上に形成さにていない従来のものに対して
2〜4倍の高電流密度動作下での長寿命を実現し、信頼
性の高い電子管用陰極が潜られるという効果を有する。
As described above, in this invention, a 6μ
A rare earth metal layer is formed with a thickness of 0.0 m or less, and an electron emitting material whose main component is an alkaline earth metal oxide containing at least barium is deposited on top of the rare earth metal layer. It has the effect of realizing a long life under high current density operation that is 2 to 4 times that of conventional cathodes that are not formed, and that a highly reliable cathode for electron tubes can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の電子管用陰極を示す断面図、第3図ハ希土類金属厚
みとエミッション電流特性との関係を示す図である。 図において、(1)は基体、(2)は電子放射物質層で
ある。 なお各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional cathode for an electron tube, and FIG. 3 is a diagram showing the relationship between rare earth metal thickness and emission current characteristics. In the figure, (1) is a base body, and (2) is an electron emitting material layer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 主成分がニッケルからなる基体上に、6μm以下の厚み
の希土類金属膜を形成し、該希土類金属膜上に少なくと
もバリウムを含むアルカリ土類金属酸化物を主成分とす
る電子放射物質層を形成したことを特徴とする電子管用
陰極。
A rare earth metal film having a thickness of 6 μm or less is formed on a substrate whose main component is nickel, and an electron emitting material layer whose main component is an alkaline earth metal oxide containing at least barium is formed on the rare earth metal film. A cathode for an electron tube characterized by the following.
JP60229302A 1985-07-19 1985-10-14 Cathode for electron tube Granted JPS6288240A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60229302A JPS6288240A (en) 1985-10-14 1985-10-14 Cathode for electron tube
KR1019860005652A KR900003175B1 (en) 1985-07-19 1986-07-12 Cathode in cathode ray tube
CA000513900A CA1270890A (en) 1985-07-19 1986-07-16 Cathode for electron tube
US06/886,777 US4797593A (en) 1985-07-19 1986-07-17 Cathode for electron tube
CN86104753.2A CN1004452B (en) 1985-07-19 1986-07-18 Cathod for electric valve
DE86305560T DE3689134T2 (en) 1985-07-19 1986-07-18 Cathode for electron tube.
EP86305560A EP0210805B1 (en) 1985-07-19 1986-07-18 Cathode for electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229302A JPS6288240A (en) 1985-10-14 1985-10-14 Cathode for electron tube

Publications (2)

Publication Number Publication Date
JPS6288240A true JPS6288240A (en) 1987-04-22
JPH0546652B2 JPH0546652B2 (en) 1993-07-14

Family

ID=16890005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229302A Granted JPS6288240A (en) 1985-07-19 1985-10-14 Cathode for electron tube

Country Status (1)

Country Link
JP (1) JPS6288240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285839A (en) * 1987-05-18 1988-11-22 Mitsubishi Electric Corp Electron tube cathode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840731A (en) * 1981-09-03 1983-03-09 Toshiba Corp Oxide coated cathode structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840731A (en) * 1981-09-03 1983-03-09 Toshiba Corp Oxide coated cathode structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285839A (en) * 1987-05-18 1988-11-22 Mitsubishi Electric Corp Electron tube cathode

Also Published As

Publication number Publication date
JPH0546652B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
JPH03257735A (en) Cathode for electron tube
JPS645417B2 (en)
JPS6288240A (en) Cathode for electron tube
JPS6288239A (en) Cathode for electron tube
JPS6290819A (en) Cathode for electron tube
JPS6290821A (en) Cathode for electron tube
JPS62165832A (en) Cathode for electron tube
JPS6290820A (en) Cathode for electron tube
JPS62198029A (en) Electron tube cathode
JPS62165833A (en) Cathode for electron tube
JPS63231833A (en) Cathode for electron tube
JP2897938B2 (en) Cathode for electron tube
JPH02288043A (en) Cathode for electron tube
JPH0233822A (en) Cathode for electron tube
JPS63314742A (en) Cathode for electron tube
JPH01315926A (en) Cathode for electron tube
JPS6288241A (en) Cathode for electron tube
JPH01213935A (en) Cathode of electron tube
JP2620580B2 (en) Cathode for electron tube
JP2730260B2 (en) Cathode for electron tube
JPH01213931A (en) Cathode of electron tube
JPH02288042A (en) Cathode for electron tube
JPH03230445A (en) Cathode for electron tube
JPH02288040A (en) Cathode for electron tube
JPH0237645A (en) Cathode for electron tube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term