JPS6290819A - Cathode for electron tube - Google Patents

Cathode for electron tube

Info

Publication number
JPS6290819A
JPS6290819A JP60231904A JP23190485A JPS6290819A JP S6290819 A JPS6290819 A JP S6290819A JP 60231904 A JP60231904 A JP 60231904A JP 23190485 A JP23190485 A JP 23190485A JP S6290819 A JPS6290819 A JP S6290819A
Authority
JP
Japan
Prior art keywords
electron
cathode
emitting material
material layer
electron emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60231904A
Other languages
Japanese (ja)
Other versions
JPH0782804B2 (en
Inventor
Keiji Watabe
渡部 勁二
Masato Saito
正人 斉藤
Keiji Fukuyama
福山 敬二
Shigeko Ishida
石田 誠子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23190485A priority Critical patent/JPH0782804B2/en
Priority to KR1019860005652A priority patent/KR900003175B1/en
Priority to CA000513900A priority patent/CA1270890A/en
Priority to US06/886,777 priority patent/US4797593A/en
Priority to DE86305560T priority patent/DE3689134T2/en
Priority to EP86305560A priority patent/EP0210805B1/en
Priority to CN86104753.2A priority patent/CN1004452B/en
Publication of JPS6290819A publication Critical patent/JPS6290819A/en
Publication of JPH0782804B2 publication Critical patent/JPH0782804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the life of a cathode for an electron tube under the operation at high current density by coating a base principally composed of nickel with an electron-emitting substance layer which is principally composed of the oxides of alkaline earth metals including barium and containing 0.05-15wt% of rare earth metals. CONSTITUTION:A suspension is prepared by adding 0.05-15wt% of scandium or yttrium powder as the powder of a rare earth metal to a ternary carbonic salt of barium, strontium and calcium. This suspension is applied to a base 1 principally composed of nickel by spraying in a thickness of about 80 microns. Next the base 1 is coated with an electron-emitting substance layer 2 through the decomposition process from carbonate to an oxide and an activation process whereby the oxide is reduced partially. Thus, it is possible to increase the life of the cathode under the operation at high current density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はTV用ブラウン管などに用いられろ電子管用
陰極に関し、特に電子放射性物質層の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to cathodes for electron tubes used in TV cathode ray tubes and the like, and particularly relates to improvements in electron emissive material layers.

〔従来の技術〕[Conventional technology]

第2図は従来のTV用ブラウン管や撮像管に用いられて
いる陰極を示すものであり、図において(1)はシリコ
ン(SI)、マグネシウム(Mg)などの還元性元素を
微凰含む主成分が二・ノケルからなる有底筒状の基体、
(2)はこの基体の底部上面に被着され、少なくともバ
リウム(B a)  を含み、他にストロンチウム(S
r)  あるいは/及びカルシウム(Ca)  を含む
アルカリ土類金属酸化物からなる電子放射物質層、(3
)は上記基体(1)内に配設されたヒータ(3)で、加
熱により上記電子放射物質層(2)から熱電子を放出さ
せろためのものである。
Figure 2 shows a cathode used in conventional TV cathode ray tubes and image pickup tubes. In the figure, (1) is the main component containing small amounts of reducing elements such as silicon (SI) and magnesium (Mg). A cylindrical base with a bottom made of Ni-Nokel,
(2) is deposited on the top surface of the bottom of this substrate and contains at least barium (Ba) and strontium (S).
r) or/and an electron emitting material layer consisting of an alkaline earth metal oxide containing calcium (Ca);
) is a heater (3) disposed within the base (1), which is used to emit thermoelectrons from the electron emitting material layer (2) by heating.

この様に構成された電子管用陰極において、基体mへの
電子数q・1物質層(2)の被着は次の様にして行なわ
れろものである。まずアルカリ土類金属(B a、 S
 r、 Ca)  の炭酸塩からなる懸/!AMを基体
filに塗布し、真空排気工程中にヒータ(3)によっ
て加熱する。この時、アルカリ土類金属の炭酸塩はアル
カリ土類金属の酸化物に変わる。その後、アルカリ土類
金属の酸化物の一部を還元して半導体的性質を有するよ
うに活性化を行なう乙とにより、基体fll上にアルカ
リ土類金属の酸化物からなる電子放射物質層(2)を被
着せしめているものである。この活性化工程において、
アルカリ土類金属の酸化物の一部は次の様に反応してい
るものである。つまり基体+11中に含有されたシリコ
ン、マグネシウム等の還元性元素は拡散によりアルカリ
土類金属の酸化物と基体(1)の界面に移動し、アルカ
リ土類金属酸化物と反応する。例えばアルカリ上類酸化
物として酸化バリウム(Bad)  であれば次式fl
l、(2+の様に反応するものである。
In the cathode for an electron tube constructed in this way, the material layer (2) containing q·1 electrons is deposited on the substrate m in the following manner. First, alkaline earth metals (B a, S
R, Ca) consisting of carbonate/! AM is applied to the base fil and heated by a heater (3) during the evacuation process. At this time, the alkaline earth metal carbonate turns into an alkaline earth metal oxide. Thereafter, a part of the alkaline earth metal oxide is reduced and activated to have semiconducting properties. ). In this activation step,
Some of the alkaline earth metal oxides react as follows. In other words, reducing elements such as silicon and magnesium contained in the substrate +11 move to the interface between the alkaline earth metal oxide and the substrate (1) by diffusion and react with the alkaline earth metal oxide. For example, if the upper alkali oxide is barium oxide (Bad), the following formula fl
l, (2+).

BaO+54SiO*=Ba+H3iO,(11B a
o 十M g   = B a+ MgO−121この
反応の結果、基体(1)上に被着形成されたフルカリ上
類金属酸化物の一部が還元され、酸素欠乏型の半導体と
なり、陰極温度700〜800℃の動作温度で0.5〜
0.8A/cdの電子放射が得られることになる。しか
るに、この様にして形成された電子管用陰極にあっては
電子放射が0.5〜0.8A / cd以上の電流密度
は取り出せないものである。その理由としては次の様な
も1のである。つまり、アルカリ土類金属酸化物の一部
を還元反応させた場合、上記fll121式からも明ら
かな如く基体(1)とアルカリ土類金属酸化物層との界
面にSiO□2Mに0 あるいはBaOSin、なる複
合酸化物層(中間層)が形成され、この中間層が高抵抗
層となって電流の流れを妨げろこと、また−F記中間層
が基体(1)中の還元元素が電子放射物質層(2)の表
面側へ拡散するのを妨げ十分なバリウム(Ba)  が
生成されないことが考えられている。
BaO+54SiO*=Ba+H3iO, (11B a
o 10 M g = B a + MgO-121 As a result of this reaction, a part of the fluorine metal oxide deposited on the substrate (1) is reduced to become an oxygen-deficient semiconductor, and the cathode temperature is 700~ 0.5~ at operating temperature of 800℃
Electron emission of 0.8 A/cd will be obtained. However, with the cathode for an electron tube formed in this manner, a current density of electron emission of 0.5 to 0.8 A/cd or more cannot be obtained. The reason for this is as follows. That is, when a part of the alkaline earth metal oxide is subjected to a reduction reaction, as is clear from the above formula 121, at the interface between the substrate (1) and the alkaline earth metal oxide layer, SiO2M or BaOSin, A composite oxide layer (intermediate layer) is formed, and this intermediate layer becomes a high-resistance layer and obstructs the flow of current. It is believed that this prevents barium (Ba) from diffusing to the surface side of layer (2) and not enough barium (Ba) is generated.

また、従来の電子管用陰極としては特開昭59−209
41号公報に、上記した第2図のものと同様の構成をし
ており、陰極の速動性を得ろために基体(1)の板厚を
薄くし、寿命中の還元剤の温潤を防止しかつ基体(1)
の強度低下を防止する目的で、基体(11にランタンが
LaNi、及びLa、O,の形で分散含有させたものが
示されている。
In addition, as a conventional cathode for electron tubes, JP-A-59-209
No. 41 discloses a structure similar to that shown in Fig. 2 above, in which the thickness of the substrate (1) is made thinner in order to obtain rapid action of the cathode, and the temperature of the reducing agent during its life is reduced. Prevention and base (1)
In order to prevent the strength from decreasing, a substrate (11) containing lanthanum dispersed in the form of LaNi, La, and O is shown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様に構成された電子管用陰極においては、動作中に
基体(1)と電子放射物質層(2)の界面近傍、特に基
体filと表面近傍のニッケル結晶粒界と上記界面よ1
)10μm程度電子放射物質R(2)内側の位置に前述
の中間層が偏析するため、電流の流れ及び電子放射物質
層(2)表面側への還元性元素の拡散が妨げられ、gT
i流密度下0十分な電子放出特性が得られないという問
題があった。
In the electron tube cathode constructed in this way, during operation, the nickel crystal grain boundaries near the substrate fil and the surface, and the nickel crystal grain boundaries near the interface between the substrate (1) and the electron emitting material layer (2), in particular,
) Since the above-mentioned intermediate layer is segregated at a position about 10 μm inside the electron emitting material R (2), the flow of current and the diffusion of reducing elements toward the surface of the electron emitting material layer (2) are impeded, and gT
There was a problem that sufficient electron emission characteristics could not be obtained under i current density.

また、役者に示したものにおいては、ニスケルを主成分
とする基体(1)の製作時に1aNis及びLa20.
を含有させろため、基体(11内のり、、aNiS及び
La2O5の含有状態のばらつきなどが生し易かった。
In addition, in what was shown to the actor, 1aNis and La20.
Therefore, variations in the content of aNiS and La2O5 were likely to occur in the substrate (11).

この発明は上記した点に鑑みてなされたものであり、高
電流密度下において基体と電子放射物質層との界面近傍
に複合酸化物からなる中間層が集中して形成されろこと
を防止し、長時間にわたって安定したエミッンヨン特性
を有し、かつ生産性信頼性の高い電子管用陰極を得るこ
とを目的とする。
This invention has been made in view of the above-mentioned points, and prevents the formation of an intermediate layer made of a composite oxide in a concentrated manner near the interface between the substrate and the electron emitting material layer under high current density. The object of the present invention is to obtain a cathode for an electron tube that has stable Eminence characteristics over a long period of time and has high productivity and reliability.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子管用陰極は、少なくともバリウムを
含むアルカリ土類金属酸化物とを主成分とし、0.05
〜15重盪%の希土類金属を含んだ電子放射物質層をニ
ッケルを主成分とする基体」二に被着形成させたもので
ある。
The cathode for an electron tube according to the present invention has an alkaline earth metal oxide containing at least barium as a main component, and has 0.05
An electron-emitting material layer containing ~15% by weight of a rare earth metal is deposited on a nickel-based substrate.

〔作 用〕[For production]

この発明においては、電子放射物質層中に含有された0
、05〜15重量%の希土類金属が、電子放射物質層を
基体に被着形成する際の活性化時に、アルカリ土類金属
の炭酸塩が分解する際、あるいは陰極としての動作中に
酸化バリウムが解離反応を起こす際に基体が酸化する反
応を防(卜するとともに、電子放射物質層中への基体に
含有された還元性元素の拡散を適度に制御し、還元性元
素による複合酸化物からなる中間層が基体と電子放射物
質層との界面近傍に集中的に形成されろことが防止し、
中間層を電子放射物質層内に分散させるものである。
In this invention, 0 contained in the electron emitting material layer
, 05 to 15% by weight of rare earth metals are added to barium oxide during activation when depositing an electron emissive material layer on a substrate, when carbonates of alkaline earth metals are decomposed, or during operation as a cathode. It prevents the oxidation of the substrate when a dissociation reaction occurs, and moderately controls the diffusion of the reducing element contained in the substrate into the electron emitting material layer. This prevents the intermediate layer from being formed intensively near the interface between the substrate and the electron emitting material layer,
The intermediate layer is dispersed within the electron emissive material layer.

〔発明の実施例〕[Embodiments of the invention]

以下にこの発明の一実施例を第1図に基づいて説明する
。図において、(2)は基体+11の底部上面に被着さ
れ、少なくともバリウムを含み、他にストロンチウムあ
るいは/及びカルシウムを含むアルカリ土類金属酸化物
(11)を主成分とし、0.05〜15重景%のスカン
ジウム、イツトリウム等の希土類金属(12)を含んだ
電子放射物質層である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, (2) is deposited on the upper surface of the bottom of the substrate +11, and contains at least barium, and also contains strontium or/and calcium as a main component, and has an alkaline earth metal oxide (11) of 0.05 to 15 This is an electron emitting material layer containing a significant amount of rare earth metals (12) such as scandium and yttrium.

次にこの様に構成された電子管用陰極において、基体(
1)への電子放射物質層(2)の被着方法について説明
すると、まず、バリウム、ストロンチウム−カルシウム
の三元炭酸塩にスカンジウム粉末あるいはイツ)、リウ
ム粉末を所望の重量%(上記三元炭酸塩が全て酸化物に
なるとしての重量%)添加混合し、懸濁液を作成する。
Next, in the electron tube cathode configured in this way, the base (
To explain the method of depositing the electron emitting material layer (2) on 1), first, scandium powder or lithium powder is added to a ternary carbonate of barium or strontium-calcium in a desired weight percent (the above ternary carbonate). % by weight assuming that all the salts become oxides) are added and mixed to create a suspension.

この懸濁液をニッケルを主成分とする基体(1)上にス
プレィにより約80ミクロンの厚みで塗布し、その後、
従来のものと同様に、炭酸塩から酸化物への分解過程及
び酸化物の一部を還元する活性化過程を経て、電子放射
物質H(2)を基体(1)に被着せしめるものである。
This suspension was applied to a thickness of about 80 microns by spraying onto the substrate (1) whose main component was nickel, and then
Similar to the conventional method, the electron-emitting substance H (2) is deposited on the substrate (1) through a decomposition process from carbonate to oxide and an activation process to reduce a portion of the oxide. .

この様な方法で被着される電子放射物質層(2)に含有
される希土類金属の含有量を種々変えた電子管用陰極を
種々作成し、この電子管用陰極を用いて2極管真空管を
作成し、種々の電流密度で寿命試験を行ない、エミッシ
ョン電流の変化を調へた結果、第3図及び第4図の結果
を11Jな。第3図は従来のテレビ用陰極としての電流
密度0.66A / cjの3.1倍(2,05A /
 cII+)で動作させた時の3重量%のScが含有さ
れた電子放射物質層(2)を有した電子管用陰極、7重
置%のYが含有された電子放射物質層(2)を有した電
子管用陰極の寿命特性と希土類金属が全く含有されてい
ない電子放射物質層(2)を有しt:従来例の寿命特性
との関係を示したものである。この第3図から明らかな
ように希土類金属が含有された本実施例のものは従来例
のものに対して高電流密度動作でのエミッンヨン劣化が
少ないものである。
Various cathodes for electron tubes were created with various amounts of rare earth metals contained in the electron emitting material layer (2) deposited by this method, and diode vacuum tubes were created using these cathodes for electron tubes. However, as a result of conducting life tests at various current densities and observing changes in the emission current, the results shown in Figures 3 and 4 were 11J. Figure 3 shows a current density of 3.1 times (2,05A/cj) the current density of the conventional TV cathode, which is 0.66A/cj.
A cathode for an electron tube having an electron emitting material layer (2) containing 3% by weight of Sc when operated at cII+), having an electron emitting material layer (2) containing 7% by weight of Y. The graph shows the relationship between the lifetime characteristics of the cathode for an electron tube and the lifetime characteristics of a conventional example having an electron emitting material layer (2) containing no rare earth metal. As is clear from FIG. 3, the device of this embodiment containing rare earth metals exhibits less emission deterioration during high current density operation than the conventional device.

また、第4図は希土類金属であるScの添加比率を種々
変えた電子放射物質層(2)を有した電子管用陰極にお
いて電流密度0.66A / ci(1とする)に対し
、電流密度が2倍#3.1倍、4倍である条件で寿命テ
ストを行い、電流密度と初期工Eyジョン電流に対する
6000時間でのエミッション電流の比との関係を示し
たものである。この第4図から判るように、希土類金属
であるSeが0.05重量%以上の添加率になると、高
電流密度動作下でのエミッション低下を防止する効果が
あり、図示していないがScは15wt%の添加率まで
この効果が確認できた。しかしながら、これら希土類金
属であるScの添加率が15重量%を越えろと、製造工
程を経た浸析たに長時間のエージングを行わないとエミ
ッション電流の安定な取り出しが困難となり、実用的で
なかった。従って、電子放射物質層(2)における希土
類金属酸化物の含有量は0.1〜15重量%の範囲にす
る必要があるものである。特に0.2〜7重量%の範囲
で上気した効果が顕著であった。
Furthermore, Fig. 4 shows the current density at a current density of 0.66 A/ci (assumed to be 1) in an electron tube cathode having an electron emitting material layer (2) with various addition ratios of Sc, a rare earth metal. A life test was conducted under the conditions of 2 times #3.1 times and 4 times, and the relationship between the current density and the ratio of the emission current at 6000 hours to the initial working current is shown. As can be seen from FIG. 4, when the rare earth metal Se is added at a rate of 0.05% by weight or more, it has the effect of preventing a decrease in emissions under high current density operation, and although it is not shown in the figure, Sc This effect was confirmed up to an addition rate of 15 wt%. However, if the addition rate of Sc, which is a rare earth metal, exceeds 15% by weight, it becomes difficult to stably extract the emission current unless immersion through the manufacturing process or aging for a long time is performed, making it impractical. . Therefore, the content of rare earth metal oxide in the electron emitting material layer (2) needs to be in the range of 0.1 to 15% by weight. Particularly in the range of 0.2 to 7% by weight, the effect of improving air content was remarkable.

このように電子放射物質M(2)に希土類金属酸化物を
含有した効果を詳細に調査するために、第3図の実験結
果において6000時間でのエミッション電流測定後、
従来品及び3重量%のSeを含有した電子放射物質層(
2)を有した電子管用陰極の断面を電子ビームX線マイ
クロアナライザー(EPMA)によって分析を行った結
果、従来の希土類金属が全く含有されていない電子放射
物質層(2)を有した電子管用陰極では基体(1)であ
るニッケルと電子放射物質層(2)との界面近傍に、基
体(1)内に含有された還元剤であろSi、Mgが偏析
しており、この偏析状態は基体fi+と電子放射物質層
(2)の界面より基体(11側の約5μの深さの位置及
び上記界面よす電子放射物質層(2)側への約3〜5μ
の位置に還元剤であるSl及びMgのピークが同時に確
認され、Slはさらに上記界面より電子放射物質層(2
)側への約lθμの位置に最大のピークが観察された。
In order to investigate in detail the effect of containing a rare earth metal oxide in the electron emitting material M(2), in the experimental results shown in Figure 3, after measuring the emission current for 6000 hours,
Conventional product and electron emitting material layer containing 3% by weight of Se (
As a result of analyzing the cross section of the cathode for electron tubes with 2) using an electron beam X-ray microanalyzer (EPMA), it was found that the cathode for electron tubes had a conventional electron emitting material layer (2) that did not contain any rare earth metals. In this case, Si and Mg, which are the reducing agents contained in the substrate (1), are segregated near the interface between the nickel that is the substrate (1) and the electron emitting material layer (2), and this segregation state is caused by the fact that the substrate fi+ A position at a depth of approximately 5 μ from the interface between the electron emitting material layer (2) and the substrate (11 side) and approximately 3 to 5 μ from the interface to the electron emitting material layer (2) side.
The peaks of Sl and Mg, which are reducing agents, were confirmed at the same time at the position of the electron emitting material layer (2).
) The maximum peak was observed at a position of about lθμ toward the side.

これら、Si、Mgのピークは酸素のピークとほぼ一致
するので、これらの金属は酸化物あるいは複合酸化物と
して存在していると4丈られる。このように、高電流密
度動作下の従来品においては、基体(1)と電子放射物
質層(2)との界面近傍で、で基体(1)内の結晶粒界
では5i02.MにO及びこれらの複合酸化物層が形成
され、さらに上記界面から電子放射物質層(2)の位置
にはBaO,MgO,Sio□の複合酸化物層が形成さ
れていることがわかるものである。−上記したS iO
zMgo 511及びB ao  Si OJf!Jば
基体(1)内から電子放射物質層(2)内への還元剤で
あるSi、Mgの拡散速度を抑制するとともに高絶縁で
あるために電流の流れを阻害し、ついには電子放射物質
内での絶縁破壊による損耗をもたらすことになるもので
ある。
Since the peaks of these Si and Mg almost coincide with the peak of oxygen, it is assumed that these metals exist as oxides or composite oxides. In this way, in the conventional product under high current density operation, 5i02. It can be seen that O and a composite oxide layer of these are formed on M, and further a composite oxide layer of BaO, MgO, and Sio□ is formed at the position of the electron emitting material layer (2) from the above interface. be. -S iO as described above
zMgo 511 and B ao Si OJf! J suppresses the diffusion rate of Si and Mg, which are reducing agents, from the substrate (1) into the electron emitting material layer (2), and is highly insulating, thus inhibiting the flow of current, and eventually the electron emitting material This will lead to wear and tear due to dielectric breakdown inside.

これに対して、本実施例である希土類金属であるSeを
含有した電子放射物質層(2)を有する電子管用陰極に
おいては、基体fil内に含有された還元剤であるSi
、Mには平均的に分散されており、従来例のもののよう
に基体(11と電子放射物質層(2)との界面近傍に、
これら還元剤のピークが全く存在していないものである
。このことは次の理由によるものと判断される。還元元
素であるSi、Mgが基体(11界面で電子放射物質1
i(21と反応し、界面近傍にSiO□、MgOあるい
はこれらとBaOとの複合酸化物を形成しても、電子放
射物質層(2)に含有したScとこれら酸化物とが反応
し、再度SiあるいはMgを生成し、還元元素の電子放
射物質層(2)内の移動を容易にするものである。
On the other hand, in the electron tube cathode of this embodiment, which has an electron emitting material layer (2) containing Se, which is a rare earth metal, Si, which is a reducing agent contained in the base film,
, M are evenly dispersed, and as in the conventional example, near the interface between the substrate (11 and the electron emitting material layer (2)),
These reducing agent peaks are completely absent. This is considered to be due to the following reasons. Si and Mg, which are reducing elements, form an electron emitting material 1 at the interface 11.
Even if SiO□, MgO, or a composite oxide of these and BaO is formed near the interface by reacting with i (21), Sc contained in the electron emitting material layer (2) reacts with these oxides, and This generates Si or Mg and facilitates the movement of reducing elements within the electron emitting material layer (2).

つまゆ、電子放射物質層(2)中の希土類金属が一ヒ記
還元元素の電子放射物質中への拡散を適度に律速するの
で、長時間高電流密度下の動作後においても安定で良好
なエミッション電流を維持できる。
Finally, the rare earth metal in the electron emitting material layer (2) moderately controls the rate of diffusion of the reducing element into the electron emitting material, so it is stable and good even after long-term operation under high current density. Emission current can be maintained.

従って、0.05重量%未満の希土類金属の添加では基
体(1)の界面近傍でsio、、Mgoの酸化物層を形
成するの1を抑制する効果が不十分で、エミッション電
流の低下が現われ始める。また、15重景%より多い添
加で(よ、電子放射物質内の酸化バリウムなどと希土類
金属との反応が発生し、エミッション電流の低下が現わ
れる。
Therefore, when less than 0.05% by weight of rare earth metal is added, the effect of suppressing the formation of sio, Mgo oxide layers near the interface of the substrate (1) is insufficient, resulting in a decrease in the emission current. start. Furthermore, if the addition exceeds 15%, a reaction between barium oxide and other rare earth metals in the electron emitting material will occur, resulting in a decrease in the emission current.

なお、上記実施例においては、希土類金属物としてSe
及びYを用いたものを説明したが他の希土類金属でも同
様の効果は得られたものの、特にSe、Y、Ceにおい
てその効果が顕著であった。
In addition, in the above embodiment, Se is used as the rare earth metal material.
Although a similar effect was obtained using other rare earth metals, the effect was particularly remarkable for Se, Y, and Ce.

このように本発明は従来とほぼ同等の製造条件で陰極を
製造することができ、希土類金属の分散状態なども比較
的容易に制御できろ。
As described above, according to the present invention, a cathode can be manufactured under almost the same manufacturing conditions as conventional methods, and the state of dispersion of the rare earth metal can be controlled relatively easily.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように述べたように基体に被着されろ
少なくともバリウムを含むアルカリ土類金属酸化物を主
成分とする電子放射物質層に0.05〜15重量%の希
土類金属を含有させたものとしたので、希土類金属が電
子放射物質層に含まれていない従来のものに対して2〜
4倍の高電流密度動作下での長寿命を実現し、安価で製
造の制約の少ない(”ffl性の高い電子管用陰極が得
られろという効果を有するものである。
As described above, the present invention includes an electron emitting material layer which is deposited on a substrate and whose main component is an alkaline earth metal oxide containing at least barium, which contains 0.05 to 15% by weight of a rare earth metal. Since the electron emitting material layer does not contain rare earth metals, it is
This has the effect of providing a cathode for electron tubes that has a long life under operation at a current density four times as high, is inexpensive, and has fewer manufacturing constraints (high ffl properties).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の電子管用陰極を示す断面図、第3図は寿命試験時間
をエミッション電流との関係を示す図、第4図は電流密
度とエミッション電流比との関係を示す図。 図において、(1)は基体、(2)ζよ電子放射物質層
である。 なお、各図中、同一符号は同−又は相当部分を示す。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view showing a conventional electron tube cathode, Fig. 3 is a graph showing the relationship between life test time and emission current, and Fig. 4 is a sectional view showing an example of the present invention. FIG. 3 is a diagram showing the relationship between current density and emission current ratio. In the figure, (1) is a base body, and (2) ζ is an electron emitting material layer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 主成分がニッケルからなる基体に、少なくともバリウム
を含むアルカリ土類金属酸化物を主成分とし、0.05
〜15重量%の希土類金属を含んだ電子放射物質層を被
着形成したことを特徴とする電子管用陰極。
The main component is nickel, the main component is an alkaline earth metal oxide containing at least barium, and the main component is 0.05
A cathode for an electron tube, characterized in that an electron emitting material layer containing ~15% by weight of a rare earth metal is deposited.
JP23190485A 1985-07-19 1985-10-15 Electron tube cathode Expired - Lifetime JPH0782804B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23190485A JPH0782804B2 (en) 1985-10-15 1985-10-15 Electron tube cathode
KR1019860005652A KR900003175B1 (en) 1985-07-19 1986-07-12 Cathode in cathode ray tube
CA000513900A CA1270890A (en) 1985-07-19 1986-07-16 Cathode for electron tube
US06/886,777 US4797593A (en) 1985-07-19 1986-07-17 Cathode for electron tube
DE86305560T DE3689134T2 (en) 1985-07-19 1986-07-18 Cathode for electron tube.
EP86305560A EP0210805B1 (en) 1985-07-19 1986-07-18 Cathode for electron tube
CN86104753.2A CN1004452B (en) 1985-07-19 1986-07-18 Cathod for electric valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23190485A JPH0782804B2 (en) 1985-10-15 1985-10-15 Electron tube cathode

Publications (2)

Publication Number Publication Date
JPS6290819A true JPS6290819A (en) 1987-04-25
JPH0782804B2 JPH0782804B2 (en) 1995-09-06

Family

ID=16930867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23190485A Expired - Lifetime JPH0782804B2 (en) 1985-07-19 1985-10-15 Electron tube cathode

Country Status (1)

Country Link
JP (1) JPH0782804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9001956A (en) * 1989-09-07 1991-04-02 Samsung Electronic Devices CATHODE FOR AN ELECTRON GUN, AND METHOD FOR MANUFACTURING THAT.
US5216320A (en) * 1990-10-05 1993-06-01 Hitachi, Ltd. Cathode for electron tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833677A (en) * 1971-09-03 1973-05-11
JPS4912758A (en) * 1972-05-12 1974-02-04
JPS535011A (en) * 1976-07-06 1978-01-18 Sony Corp Press cathode
JPS645417A (en) * 1987-06-30 1989-01-10 Mitsubishi Agricult Mach Control device for horizontal attitude in working vehicle for paddy field

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833677A (en) * 1971-09-03 1973-05-11
JPS4912758A (en) * 1972-05-12 1974-02-04
JPS535011A (en) * 1976-07-06 1978-01-18 Sony Corp Press cathode
JPS645417A (en) * 1987-06-30 1989-01-10 Mitsubishi Agricult Mach Control device for horizontal attitude in working vehicle for paddy field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9001956A (en) * 1989-09-07 1991-04-02 Samsung Electronic Devices CATHODE FOR AN ELECTRON GUN, AND METHOD FOR MANUFACTURING THAT.
US5216320A (en) * 1990-10-05 1993-06-01 Hitachi, Ltd. Cathode for electron tube

Also Published As

Publication number Publication date
JPH0782804B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JPH03257735A (en) Cathode for electron tube
JPS6222347A (en) Cathode for electron tube
JPS6290819A (en) Cathode for electron tube
JPH0546653B2 (en)
JPS62165832A (en) Cathode for electron tube
JPS6290821A (en) Cathode for electron tube
JP2718389B2 (en) Cathode for electron tube
JPS62165833A (en) Cathode for electron tube
JPH0782800B2 (en) Electron tube cathode
JPH0546652B2 (en)
JP2937145B2 (en) Cathode for electron tube
JPS6290820A (en) Cathode for electron tube
JP2891209B2 (en) Cathode for electron tube
JPH0775140B2 (en) Electron tube cathode
JPH01213935A (en) Cathode of electron tube
JPS6288241A (en) Cathode for electron tube
JPS63257153A (en) Cathode for electron tube
JPH01213931A (en) Cathode of electron tube
JPH0237645A (en) Cathode for electron tube
JPH03219524A (en) Cathode for electron tube
JPH02288042A (en) Cathode for electron tube
JPH02297831A (en) Cathode for electronic tube
JPH01225032A (en) Cathode for electron tube
JPH07107825B2 (en) Electron tube cathode
JPH01235121A (en) Cathode for electron tube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term