JPH0318287B2 - - Google Patents

Info

Publication number
JPH0318287B2
JPH0318287B2 JP6651783A JP6651783A JPH0318287B2 JP H0318287 B2 JPH0318287 B2 JP H0318287B2 JP 6651783 A JP6651783 A JP 6651783A JP 6651783 A JP6651783 A JP 6651783A JP H0318287 B2 JPH0318287 B2 JP H0318287B2
Authority
JP
Japan
Prior art keywords
powder
ultrafine metal
metal powder
nickel
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6651783A
Other languages
Japanese (ja)
Other versions
JPS59191226A (en
Inventor
Kinjiro Sano
Toyoichi Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58066517A priority Critical patent/JPS59191226A/en
Publication of JPS59191226A publication Critical patent/JPS59191226A/en
Publication of JPH0318287B2 publication Critical patent/JPH0318287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 この発明は、陰極線管などに使用される電子管
などの陰極体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cathode body of an electron tube used in a cathode ray tube or the like.

最近、コンピユータ端末機のデイスプレー管と
して使用される高解像度陰極線管や投射形陰極線
管などは、電子ビームの直径を小さくして解像度
の向上を図つているため、高電流密度陰極体が盛
んに採用されている。
Recently, high-resolution cathode ray tubes and projection cathode ray tubes used as display tubes in computer terminals have been designed to improve resolution by reducing the diameter of the electron beam, so high current density cathode bodies have become popular. It has been adopted.

第1図は高電流密度陰極体の一例を示すもので
あり、Si、Mgなどの還元性元素を含みかつニツ
ケルを主成分とする基体金属1上に、(Ba、Sr、
Ca)CO3からなるアルカリ土類炭酸塩2と粒径
が0.3ミクロン以下のニツケル粉末、コバルト粉
末、または、ニツケル粉末とコバルト粉末との混
合粉末から成る金属超微粉3との混合体が被着さ
れている。従来では、このようなアルカリ土類炭
酸塩2と金属超微粉3との混合体として、たとえ
ば、アルカリ土類炭酸塩2に対して重量比で1〜
50%の金属超微粉3を添加混合し、この混合体に
ニトロセルロースおよび酢酸ブチルを加えて混合
することにより懸濁液またはペーストを作成し、
ついでスプレ法あるいは印刷法により基体金属1
上に被着形成する製造方法が採用される。
Figure 1 shows an example of a high current density cathode body, in which (Ba, Sr,
Ca) A mixture of alkaline earth carbonate 2 consisting of CO 3 and ultrafine metal powder 3 consisting of nickel powder, cobalt powder, or a mixed powder of nickel powder and cobalt powder with a particle size of 0.3 microns or less is deposited. has been done. Conventionally, a mixture of such alkaline earth carbonate 2 and ultrafine metal powder 3 has been prepared, for example, in a weight ratio of 1 to 1 to alkaline earth carbonate 2.
Add and mix 50% ultrafine metal powder 3, add and mix nitrocellulose and butyl acetate to this mixture to create a suspension or paste,
Then, the base metal 1 is formed by spraying or printing.
A manufacturing method is adopted in which the material is deposited on top.

なお、5は陰極スリーブ4に収納されたヒータ
で、基体金属1を加熱するために設けられてい
る。
Note that 5 is a heater housed in the cathode sleeve 4, and is provided to heat the base metal 1.

上記アルカリ土類炭酸塩2は、真空排気工程に
おいて加熱されて、(1)式により、Ba、Ca、Srの
複合酸化物に変換される。このとき発生するCO2
は排気ポンプにより排出される。
The alkaline earth carbonate 2 is heated in the vacuum evacuation step and converted into a complex oxide of Ba, Ca, and Sr according to equation (1). CO 2 generated at this time
is exhausted by the exhaust pump.

(Ba、Sr、Ca)CO3→(Ba、Sr、Ca)O +CO2 ……(1) 排気工程完了後のエージング工程では、基体金
属1は900〜1100℃の高温に加熱され、(Ba、Sr、
Ca)Oから成る三元複合酸化物は、基体金属1
に含有されているSiやMgと反応してBaなどを遊
離生成する。この反応は(2)式のとうりである。
(Ba, Sr, Ca) CO 3 → (Ba, Sr, Ca) O + CO 2 ...(1) In the aging process after the completion of the exhaust process, the base metal 1 is heated to a high temperature of 900 to 1100°C, and (Ba ,Sr.
A ternary composite oxide consisting of Ca)O has a base metal of 1
Reacts with Si and Mg contained in the metal to liberate Ba and other substances. This reaction is as shown in equation (2).

BaO+Mg→Ba+MgO ……(2) この反応により、たとえば、基体金属1上の
BaOの一部が還元されて遊離Baが生成し、酸素
欠乏型の半導体となり、700〜800℃の動作温度に
おいて電子放射が活発に行なわれるようになる。
BaO+Mg→Ba+MgO...(2) Through this reaction, for example,
Part of BaO is reduced to generate free Ba, which becomes an oxygen-deficient semiconductor that actively emits electrons at operating temperatures of 700-800°C.

一方、アルカリ土類炭酸塩2に添加した金属超
微粉3は、基体金属1と上記した三元複合酸化物
の表面までの電気的な導電性を向上させ、大電流
取出時に発生するジユール熱を抑制し、三元複合
酸化物の熱的破壊を防ぐ役目をもつている。
On the other hand, the ultrafine metal powder 3 added to the alkaline earth carbonate 2 improves the electrical conductivity between the base metal 1 and the surface of the above-mentioned ternary composite oxide, and reduces the Joule heat generated when drawing a large current. It has the role of suppressing the thermal breakdown of the ternary composite oxide.

また、前記金属超微粉3として0.3ミクロン以
下の粒径が選ばれている理由としては、平均粒径
が300〓(0.03ミクロン)の場合、その比表面積
が70〜10m2/gと極めて大きい値であるため、前
述のように基体金属1と複合三元酸化物のと導電
性の向上に寄与するとともに、複合三元酸化物中
へ分散性が極めて良いことが挙げられる。
In addition, the reason why a particle size of 0.3 microns or less is selected as the ultrafine metal powder 3 is that when the average particle size is 300〓 (0.03 microns), the specific surface area is extremely large at 70 to 10 m 2 /g. Therefore, as described above, it contributes to improving the electrical conductivity between the base metal 1 and the composite ternary oxide, and also has extremely good dispersibility in the composite ternary oxide.

ところで、上記した従来の製造方法においては
ガス中蒸発法と呼ばれる湿式雰囲気中で製造され
るため、その表面が緻密で安定な酸化膜で被われ
ている。したがつて、エージング工程や動作中
に、(3)式に示すように、酸化物が分解して酸素ガ
スを放出することになる。
By the way, in the above-described conventional manufacturing method, since manufacturing is performed in a wet atmosphere called evaporation in gas, the surface is covered with a dense and stable oxide film. Therefore, during the aging process or operation, the oxide decomposes and releases oxygen gas, as shown in equation (3).

2NiO→2Ni+O2 ……(3) この酸素ガスは(2)式で生成した遊離バリウムと
素早く反応し、(4)式に示すように、BaOとなつ
て電子放出能力を損つてしまう。
2NiO→2Ni+O 2 ...(3) This oxygen gas quickly reacts with the free barium generated in equation (2), and as shown in equation (4), becomes BaO, impairing the electron emission ability.

2Ba+O2→2BaO ……(4) 以上のように、湿式雰囲気中で製造される超微
粉の金属粉を使用する従来の製造方法による場合
は、その表面の酸化層の影響で十分な電子放出能
力が得られないという欠点があつた。
2Ba+O 2 →2BaO ...(4) As mentioned above, when using the conventional manufacturing method using ultrafine metal powder produced in a wet atmosphere, sufficient electron emission ability is achieved due to the influence of the oxide layer on the surface. The disadvantage was that it was not possible to obtain

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、金属超微粉の表
面の酸化物の影響をなくして、高い電子放出能力
を発揮する電子管などの陰極体を製造することが
できる電子管などの陰極体の製造方法を提供する
ことを目的としている。以下、この発明の一実施
例について説明する。平均粒径で300〓のニツケ
ル粉末を水素雰囲気中で、450〜850℃の温度で5
分間熱処理する第1工程と、その熱処理後のニツ
ケル粉末をアルカリ土類炭酸塩に10%の重量比で
混合する第2工程と、この混合体にニトロセルロ
ース溶液や酢酸ブチルを混入して懸濁液またはペ
ーストを作成する第3工程と、この懸濁液または
ペーストをスプレ法あるいは印刷法により基体金
属1上に塗布して被着形成する第4工程とを経
て、所定の電子管用陰極体を製造する。なお、塗
布厚みは基体金属1の直径が2mmの場合、60〜
100μが好適である。
This invention was made in order to eliminate the drawbacks of the conventional products as described above, and eliminates the influence of oxides on the surface of ultrafine metal powder to produce cathode bodies such as electron tubes that exhibit high electron emission ability. The purpose of the present invention is to provide a method for manufacturing cathode bodies such as electron tubes, which can be used to produce cathode bodies such as electron tubes. An embodiment of the present invention will be described below. Nickel powder with an average particle size of 300 mm was heated in a hydrogen atmosphere at a temperature of 450 to 850 degrees Celsius.
The first step is heat treatment for minutes, the second step is to mix the heat-treated nickel powder with alkaline earth carbonate at a weight ratio of 10%, and the mixture is mixed with nitrocellulose solution or butyl acetate and suspended. A predetermined cathode body for an electron tube is produced through a third step of creating a liquid or paste, and a fourth step of applying this suspension or paste onto the base metal 1 by a spraying method or printing method to form an adhesion. Manufacture. In addition, the coating thickness is 60 to 60 mm when the diameter of the base metal 1 is 2 mm.
100μ is suitable.

以上の方法によつて製造された電子管用陰極体
は、第1図のものと同様な構成を有する。
The cathode body for an electron tube manufactured by the above method has a structure similar to that shown in FIG.

第2図は、上記第1工程における金属超微粉の
水素雰囲気中での処理温度(H2処理温度)と電
子放出能力(エミツシヨン)との関係を示したも
のである。この図より、450℃以下の温度では、
電子放出能力が極端に劣化することがわかる。こ
れは、金属超微粉の表面の酸化物層が十分に還元
されていないため、エージング中または動作中に
熱分解を起こして酸素ガスを発生し、この酸素ガ
スと遊離バリウムとが結合して酸化バリウムに変
化するためである。
FIG. 2 shows the relationship between the treatment temperature (H 2 treatment temperature) of the ultrafine metal powder in a hydrogen atmosphere and the electron emission ability (emission) in the first step. From this figure, at temperatures below 450℃,
It can be seen that the electron emission ability deteriorates extremely. This is because the oxide layer on the surface of the ultrafine metal powder is not sufficiently reduced, causing thermal decomposition during aging or operation to generate oxygen gas, and this oxygen gas and free barium combine to cause oxidation. This is because it changes into barium.

一方、850℃以上の温度では、電子放出能力の
ばらつきが大きくなつている。これは、金属超微
粉同志の焼結が開始し始めるため、アルカリ土類
炭酸塩中への均一な分散が行なわれにくくなり、
超微粉としての特徴が消失してしまうからであ
る。
On the other hand, at temperatures above 850°C, the variation in electron emission ability becomes large. This is because the ultrafine metal powder begins to sinter together, making it difficult to uniformly disperse it into the alkaline earth carbonate.
This is because the characteristics of ultrafine powder will disappear.

以上のことから、金属超微粉の熱処理温度は
400〜850℃が最も適切であることが明らかであ
る。
From the above, the heat treatment temperature for ultrafine metal powder is
It is clear that 400-850°C is most suitable.

なお、上記実施例では、電子管用陰極体につい
て説明したが、撮像管や送信管などの陰極体の製
造に適用しても、上記と同様な効果を奏する。
In the above embodiments, a cathode body for an electron tube has been described, but the same effects as described above can be obtained even if the present invention is applied to the manufacture of cathode bodies for image pickup tubes, transmission tubes, and the like.

以上のように、この発明によれば、金属超微粉
をアルカリ土類炭酸塩と混合する工程の前に、水
素雰囲気中で熱処理することにより、金属超微粉
の表面の酸化物の分解にともなう酸素ガスの発生
を抑制して、高い電子放出能力を発揮する陰極体
を製造することができる。
As described above, according to the present invention, by heat-treating the ultrafine metal powder in a hydrogen atmosphere before the step of mixing the ultrafine metal powder with the alkaline earth carbonate, the oxygen It is possible to manufacture a cathode body that suppresses gas generation and exhibits high electron emission ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子管用陰極体の拡大断面図、第2図
は金属超微粉の水素雰囲気中での処理温度と電子
放出能力との関係を示した説明図である。 1……基体金属、2……アルカリ土類炭酸塩、
3……金属超微粉。
FIG. 1 is an enlarged sectional view of a cathode body for an electron tube, and FIG. 2 is an explanatory diagram showing the relationship between processing temperature of ultrafine metal powder in a hydrogen atmosphere and electron emission ability. 1... Base metal, 2... Alkaline earth carbonate,
3... Ultrafine metal powder.

Claims (1)

【特許請求の範囲】 1 粒径が0.3ミクロン以下の金属超微粉を水素
雰囲気中において450〜850℃の温度で熱処理する
工程と、その熱処理された金属超微粉をバリウム
を含むアルカリ土類炭酸塩粉に混合する工程と、
その混合体をニツケルを主成分とする基体金属上
に被着形成する工程とを備えたことを特徴とする
電子管などの陰極体の製造方法。 2 上記金属超微粉がニツケル粉末、コバルト粉
末、またはニツケル粉末とコバルト粉末の混合粉
末である特許請求の範囲第1項記載の電子管など
の陰極体の製造方法。
[Scope of Claims] 1. A step of heat-treating ultrafine metal powder with a particle size of 0.3 microns or less at a temperature of 450 to 850°C in a hydrogen atmosphere, and converting the heat-treated ultrafine metal powder to an alkaline earth carbonate containing barium. The process of mixing into powder,
A method for producing a cathode body for an electron tube, etc., comprising the step of depositing the mixture on a base metal mainly composed of nickel. 2. The method for manufacturing a cathode body such as an electron tube according to claim 1, wherein the ultrafine metal powder is nickel powder, cobalt powder, or a mixed powder of nickel powder and cobalt powder.
JP58066517A 1983-04-13 1983-04-13 Cathode body of electron tube or the like Granted JPS59191226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066517A JPS59191226A (en) 1983-04-13 1983-04-13 Cathode body of electron tube or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066517A JPS59191226A (en) 1983-04-13 1983-04-13 Cathode body of electron tube or the like

Publications (2)

Publication Number Publication Date
JPS59191226A JPS59191226A (en) 1984-10-30
JPH0318287B2 true JPH0318287B2 (en) 1991-03-12

Family

ID=13318123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066517A Granted JPS59191226A (en) 1983-04-13 1983-04-13 Cathode body of electron tube or the like

Country Status (1)

Country Link
JP (1) JPS59191226A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900007751B1 (en) * 1985-05-25 1990-10-19 미쯔비시덴끼 가부시기가이샤 Electron tube cathode and method of the same
KR920008303B1 (en) * 1990-11-02 1992-09-26 삼성전관 주식회사 A method of coating of filament
KR20020063327A (en) * 2001-01-27 2002-08-03 삼성에스디아이 주식회사 Metal cathode and indirectly heated cathode assembly having the same
KR100768183B1 (en) * 2001-10-30 2007-10-17 삼성에스디아이 주식회사 Method for manufacturing pellet of cathod of electron gun
JP2007307670A (en) * 2006-05-19 2007-11-29 Imao Corporation:Kk Clamping device

Also Published As

Publication number Publication date
JPS59191226A (en) 1984-10-30

Similar Documents

Publication Publication Date Title
JPH0690907B2 (en) Electron tube cathode
JPS645417B2 (en)
JPH0318287B2 (en)
JPH0765694A (en) Cathode for electron tube
JPS61269828A (en) Manufacture of electron tube cathode
JPH0782800B2 (en) Electron tube cathode
JPH04220924A (en) Cathode for electron tube
JPS61271732A (en) Electron tube cathode
JP3283116B2 (en) Manufacturing method of oxide cathode
JPS62193031A (en) Cathode for electron tube
JP2730260B2 (en) Cathode for electron tube
JPH073434A (en) Oxide cathode and its preparation
JPS5949131A (en) Electron tube cathode
JPH0690906B2 (en) Electron tube cathode
JPH04220925A (en) Cathode for electron tube
JPH01311531A (en) Electronic tube cathode
JPS62193032A (en) Cathode for electron tube
JPS58186128A (en) Electron tube cathode
JPS63257153A (en) Cathode for electron tube
JPS6340229A (en) Cathode of electron tube
JPH04220926A (en) Cathode for electron tube
JPH01169827A (en) Cathode of electron tube and its manufacture
JPH06295657A (en) Oxide coated cathode body structure
JPH04220927A (en) Cathode for electron tube
JPH01143116A (en) Electronic tube cathode