JP3283116B2 - Manufacturing method of oxide cathode - Google Patents
Manufacturing method of oxide cathodeInfo
- Publication number
- JP3283116B2 JP3283116B2 JP21582293A JP21582293A JP3283116B2 JP 3283116 B2 JP3283116 B2 JP 3283116B2 JP 21582293 A JP21582293 A JP 21582293A JP 21582293 A JP21582293 A JP 21582293A JP 3283116 B2 JP3283116 B2 JP 3283116B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- oxide
- base metal
- oxidizing atmosphere
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】この発明は、熱電子管に用いられ
る酸化物陰極の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide cathode used in a thermionic electron tube.
【0002】[0002]
【従来の技術】一般に酸化物陰極構体は、図2に示すよ
うに、陰極基体金属11としてニッケルを主体としてこ
れに微量のマグネシウムやケイ素等の還元剤を含む合金
が使用される。この合金により構成された陰極基体金属
は、所要の形状、厚さにプレス成形されたうえで陰極ス
リーブの先端に接合固定される。そしてこの基体金属面
上に、電子放射物質層12となるバリウム、ストロンチ
ウム、カルシウム等からなるアルカリ土類金属炭酸塩粉
末を吹き付け法などで塗布する。この陰極構体を電子管
内に組み込み、排気工程で炭酸塩を加熱分解し、アルカ
リ土類金属酸化物を形成する。このアルカリ土類金属炭
酸塩は、バリウムを主成分とするアルカリ土類金属の複
塩または混合塩であるが、一般的にはバリウムが57重
量%、ストロンチウムが39重量%、カルシウムが4重
量%の複塩である三元炭酸塩が広く用いられている。こ
のアルカリ土類金属酸化物のうち酸化バリウムが電子放
射に寄与する。この酸化バリウムは、酸化物陰極の動作
中に基体金属中を拡散してくる還元剤のマグネシウム、
ケイ素等により、基体金属と酸化物の境界で還元され、
例えばマグネシウムを還元剤として用いた場合、次式の
反応により電子放射に寄与する遊離バリウムが形成され
る。 BaO+Mg → Ba+MgO 従って、酸化物陰極においては、還元剤と電子放射物質
である酸化物との反応が基体金属と酸化物との界面近傍
で進行するため、両者の中間には中間層と呼ばれる反応
物が形成される。2. Description of the Related Art Generally, as shown in FIG. 2, an oxide cathode structure is made of an alloy containing nickel as a main component and a trace amount of a reducing agent such as magnesium or silicon as a cathode base metal 11. The cathode base metal made of this alloy is press-molded to a required shape and thickness, and then joined and fixed to the tip of the cathode sleeve. Then, an alkaline earth metal carbonate powder made of barium, strontium, calcium, or the like to be the electron emitting material layer 12 is applied on the metal surface of the base by a spraying method or the like. The cathode structure is incorporated in an electron tube, and the carbonate is thermally decomposed in an exhaust step to form an alkaline earth metal oxide. The alkaline earth metal carbonate is a double salt or a mixed salt of an alkaline earth metal containing barium as a main component. Generally, barium is 57% by weight, strontium is 39% by weight, and calcium is 4% by weight. Ternary carbonate, which is a double salt of, is widely used. Of the alkaline earth metal oxides, barium oxide contributes to electron emission. This barium oxide is a reducing agent magnesium that diffuses into the base metal during operation of the oxide cathode,
By silicon or the like, reduced at the boundary between the base metal and the oxide,
For example, when magnesium is used as a reducing agent, free barium that contributes to electron emission is formed by the following reaction. BaO + Mg → Ba + MgO Accordingly, in the oxide cathode, the reaction between the reducing agent and the oxide, which is an electron emitting substance, proceeds near the interface between the base metal and the oxide. Is formed.
【0003】ところで、このような従来の酸化物陰極に
おいては、陰極基体金属11の両表面部近傍にそれぞれ
微細結晶粒層13,14が生成することが知られてい
る。この微細結晶粒層の生成は、陰極基体金属の表面部
に存在するプレス加工等による加工歪、陰極スリーブの
表面に黒色層を形成するための湿潤水素処理、あるいは
電子放射物質の炭酸塩から酸化物への分解反応のための
加熱工程等に関係していることが判明している。電子放
射物質層12に接しない方の微細結晶粒層14は、電子
放射性能に格別の影響がないので問題にならないが、電
子放射物質層12に接する方の微細結晶粒層13は、陰
極基体金属中の還元剤の電子放射物質層に接する表面へ
の拡散を阻害し、電子放射能力を著しく低下させる。In such a conventional oxide cathode, it is known that fine crystal grain layers 13 and 14 are formed near both surface portions of the cathode base metal 11, respectively. The formation of the fine crystal grain layer is caused by processing strain caused by press working or the like existing on the surface of the cathode base metal, wet hydrogen treatment for forming a black layer on the surface of the cathode sleeve, or oxidation from the carbonate of the electron emitting substance. It has been found to be related to a heating step for a decomposition reaction into a substance. The fine crystal grain layer 14 which is not in contact with the electron emitting material layer 12 does not cause any problem because it has no particular effect on the electron emission performance, but the fine crystal grain layer 13 which is in contact with the electron emitting material layer 12 is formed of a cathode substrate. The diffusion of the reducing agent in the metal to the surface in contact with the electron emitting material layer is inhibited, and the electron emitting ability is significantly reduced.
【0004】この微細結晶粒層を除去する方法として、
電子放射物質の塗布前に切削加工によりこの微細結晶粒
層除去する方法、あるいは化学的に研磨する方法等が提
案されているが、完全に除去することは困難である。ま
た、従来の酸化物陰極は、動作時間と共に、前記した微
細結晶粒層の生成が増加し、長時間の安定した電子放射
が得られない場合が多い。その理由は、陰極動作中に電
子放射物質中の酸化バリウムから解離した酸素が陰極基
体金属中へ固溶し微細結晶粒層に達して、まだ安定でな
い微細結晶粒層の成長を促進するものと考えられる。As a method of removing the fine crystal grain layer,
A method of removing the fine crystal grain layer by cutting before applying the electron-emitting substance, a method of chemically polishing, and the like have been proposed, but it is difficult to completely remove the layer. In addition, in the conventional oxide cathode, the generation of the fine crystal grain layer increases with the operation time, and in many cases, stable electron emission for a long time cannot be obtained. The reason is that oxygen dissociated from barium oxide in the electron emitting material during the operation of the cathode dissolves into the metal of the cathode base and reaches the fine grain layer, thereby promoting the growth of the fine grain layer that is not yet stable. Conceivable.
【0005】[0005]
【発明が解決しようとする課題】以上述べたような従来
の酸化物陰極の電子放射特性、特に寿命特性は、陰極基
体金属の表面近くに形成される微細結晶粒層の形成量に
大きく依存している。つまり、基体金属中の還元剤の表
面への拡散が、前記微細結晶粒層の形成量の増加により
阻害されて基体金属表面へ達しないため、界面での還元
剤と酸化バリウムとの反応が減少し、遊離バリウムの生
成が著しく低下する。この微細結晶粒層の形成量の増加
は、動作時間および放出電流密度に依存するため、長時
間、高電流密度の電子放射能力を維持することができな
くなる。The electron emission characteristics, especially the life characteristics, of the conventional oxide cathode as described above greatly depend on the amount of the fine crystal grain layer formed near the surface of the cathode base metal. ing. That is, the diffusion of the reducing agent in the base metal to the surface is hindered by the increase in the formation amount of the fine crystal grain layer and does not reach the base metal surface, so that the reaction between the reducing agent and barium oxide at the interface decreases. However, the production of free barium is significantly reduced. The increase in the formation amount of the fine crystal grain layer depends on the operation time and the emission current density, so that it is impossible to maintain the electron emission ability at a high current density for a long time.
【0006】この発明は、以上のような従来の酸化物陰
極の製造方法が持つ不都合を解決し、長時間、高電流密
度で動作させても電子放射特性の劣化が少ない酸化物陰
極の製造方法を提供することを目的とする。The present invention solves the above-mentioned disadvantages of the conventional method for manufacturing an oxide cathode, and provides a method for manufacturing an oxide cathode with less deterioration in electron emission characteristics even when operated at a high current density for a long time. The purpose is to provide.
【0007】[0007]
【課題を解決するための手段】この発明は、ニッケルを
主体してこれに還元剤を微量添加した陰極基体金属をプ
レス成形したうえで陰極スリーブに接合固定し、前記陰
極スリーブを加湿水素中で熱処理して黒化し、上記陰極
基体金属面上にアルカリ土類金属炭酸塩の電子放射物質
層を付着させる酸化物陰極構体の製造方法において、上
記黒化された前記陰極スリーブに固定されている前記陰
極基体金属を非酸化性雰囲気中で加熱処理する第1の工
程と、その後前記陰極基体金属を酸化性雰囲気中で加熱
処理する第2の工程と、その後前記陰極基体金属を非酸
化性雰囲気中で加熱処理する第3の工程と、その後前記
陰極基体金属面上に上記電子放射物質を付着させる第4
の工程とを具備することを特徴とする酸化物陰極の製造
方法である。SUMMARY OF THE INVENTION This invention fixedly joined to the cathode sleeve of the cathode base metal with a reducing agent thereto to mainly nickel slightly added after having press-molded, the negative
The method for producing an oxide cathode structure in which an electrode sleeve is blackened by heat treatment in humidified hydrogen and an electron emission material layer of an alkaline earth metal carbonate is adhered onto the metal surface of the cathode substrate , wherein the blackened cathode is A first step of heat-treating the cathode base metal fixed to the sleeve in a non-oxidizing atmosphere, and a second step of subsequently heat-treating the cathode base metal in an oxidizing atmosphere. A third step of heat-treating the cathode base metal in a non-oxidizing atmosphere, and a fourth step of adhering the electron-emitting substance on the cathode base metal surface.
And a process for producing an oxide cathode.
【0008】[0008]
【作用】この発明によれば、陰極基体金属の表面近くの
微細結晶粒層を安定で強固なものにでき、その結果、従
来の酸化物陰極にみられるような動作時間と共に微細結
晶粒層の形成量が増加することがなく、安定して高電流
密度を長時間取り出すことが可能となる。また、酸化性
雰囲気中で陰極基体金属を加熱処理する工程で陰極基体
金属の表面に超微細な凹凸ができて電子放射物質層との
付着強度が高まり、長時間の動作でも電子放射物質層が
剥がれるおそれはほとんどない。According to the present invention, the fine crystal grain layer near the surface of the cathode base metal can be made stable and strong, and as a result, the operation time as seen in the conventional oxide cathode and the fine crystal grain layer can be reduced. It is possible to stably obtain a high current density for a long time without increasing the formation amount. Also, in the step of heating the cathode base metal in an oxidizing atmosphere, ultrafine irregularities are formed on the surface of the cathode base metal, the adhesion strength to the electron emitting material layer is increased, and the electron emitting material layer can be operated for a long time. There is almost no risk of peeling.
【0009】[0009]
【実施例】以下、図面を参照してこの発明の一実施例を
詳細に説明する。この発明による酸化物陰極構体は図1
に示すように構成される。すなわち、圧延により得られ
る微量の還元剤を含有したニッケル合金からなる陰極基
体金属11を、上下面から挟んでプレス加工により圧縮
してニクロム合金からなる陰極スリーブ15の内径に密
に嵌合できる外径寸法にしてこの陰極スリーブに圧入
し、レーザ溶接により接合固定する。そして、陰極スリ
ーブ15を加湿水素中で熱処理を行って選択酸化し、表
面を黒化する。次に陰極スリーブに3本の短冊状支持体
16を溶接し、これを円筒状のカソードホルダ17の開
口部に溶接して陰極構体を組立てる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. The oxide cathode structure according to the present invention is shown in FIG.
It is configured as shown in FIG. That is, the cathode base metal 11 made of a nickel alloy containing a small amount of a reducing agent obtained by rolling is compressed from the upper and lower surfaces by press working so that it can be closely fitted to the inner diameter of the cathode sleeve 15 made of a nichrome alloy. It is press fit into this cathode sleeve with a diameter dimension and fixed by laser welding. Then, heat treatment is performed on the cathode sleeve 15 in humidified hydrogen to selectively oxidize the cathode sleeve 15 and blacken the surface. Next, three strip-shaped supports 16 are welded to the cathode sleeve, and these are welded to the openings of the cylindrical cathode holder 17 to assemble the cathode assembly.
【0010】そして、陰極基体金属12の加工歪を緩和
するために、水素炉のような非酸化性雰囲気中で、70
0〜900℃の範囲の温度、例えば800℃で約10分
間の熱処理を施す。次に、空気のような酸化性雰囲気中
で、700〜850℃の範囲の温度、例えば780℃で
約10分間の加熱処理をする。この工程では、陰極基体
金属表面に酸化層ができるが、表面近くの微細結晶粒層
(図2の13,14に相当)も幾分内部酸化する。更
に、水素炉のような非酸化性雰囲気中で、700〜90
0℃の範囲の温度、例えば800℃で約10分間の加熱
処理をし、陰極基体金属の表面酸化層を還元する。そし
て最後に、陰極基体金属面上に電子放射物層12を塗布
して酸化物陰極構体を完成する。Then, in order to alleviate the processing distortion of the cathode base metal 12, in a non-oxidizing atmosphere such as a hydrogen furnace,
Heat treatment is performed at a temperature in the range of 0 to 900 ° C., for example, 800 ° C. for about 10 minutes. Next, a heat treatment is performed in an oxidizing atmosphere such as air at a temperature in the range of 700 to 850 ° C., for example, 780 ° C. for about 10 minutes. In this step, an oxide layer is formed on the surface of the cathode base metal, but a fine crystal grain layer (corresponding to 13 and 14 in FIG. 2) near the surface is somewhat internally oxidized. Further, in a non-oxidizing atmosphere such as a hydrogen furnace, 700 to 90
A heat treatment is performed at a temperature in the range of 0 ° C., for example, 800 ° C. for about 10 minutes to reduce the surface oxide layer of the cathode base metal. Finally, the electron emitter layer 12 is applied on the metal surface of the cathode substrate to complete the oxide cathode structure.
【0011】このように組立てた酸化物陰極構体と、比
較のために水素雰囲気中で700℃で10分間の加熱処
理をして清浄化した後に電子放射物質を塗布した従来の
製法による陰極構体とを各々カラーブラウン管に組込
み、排気工程中で陰極を加熱して電子放射物質を炭酸塩
から酸化物に分解させ、排気管をチップオフした後にエ
ージング工程で陰極の活性化処理を行ない、完成させ
た。そして、各々のブラウン管の長時間動作に伴う電子
放射特性の測定を行った。[0011] For comparison, the oxide cathode assembly assembled in this manner and, for comparison, a cathode assembly according to a conventional manufacturing method in which a heat treatment is performed at 700 ° C. for 10 minutes in a hydrogen atmosphere and the electron emission material is applied after cleaning. Was assembled in a color cathode ray tube, and the cathode was heated in the exhaust process to decompose the electron-emitting substance from carbonate to oxide.After the exhaust tube was chipped off, the cathode was activated in the aging process to complete the process. . Then, the electron emission characteristics associated with the long-term operation of each cathode ray tube were measured.
【0012】図3は、電流密度2.0A/cm2 で長時
間動作をさせた場合の寿命試験結果である。同図に示す
曲線Xはこの発明の酸化物陰極の場合、曲線Yは従来の
酸化物陰極の場合である。この特性比較で明確なよう
に、この発明の酸化物陰極は、従来の酸化物陰極に比べ
て長時間動作による電子放射特性の劣化が非常に少な
く、その効果は動作時間が長くなるほど顕著なことが明
らかである。FIG. 3 shows the results of a life test when operating at a current density of 2.0 A / cm 2 for a long time. The curve X shown in the figure is for the oxide cathode of the present invention, and the curve Y is for the conventional oxide cathode. As is clear from this characteristic comparison, the oxide cathode of the present invention has much less deterioration in electron emission characteristics due to long-term operation than the conventional oxide cathode, and the effect is more remarkable as the operation time becomes longer. Is evident.
【0013】また,10000時間の動作試験終了後に
本発明の陰極をブラウン管から取出し、陰極基体金属の
表面近傍の微細結晶粒層を観察した結果、従来の陰極基
体金属に見られた微細結晶粒層の増加はほとんど認めら
れなかった。After the operation test for 10,000 hours, the cathode of the present invention was taken out from the cathode ray tube, and the fine crystal grain layer near the surface of the cathode base metal was observed. Was hardly observed.
【0014】なお、上述の実施例では、陰極基体金属の
加工歪を緩和するために水素雰囲気中で800℃、10
分間の熱処理を施した場合について説明したが、この処
理温度が700℃よりも低い場合は陰極基体金属の加工
歪の緩和が充分でなく、微細結晶粒層の生成が多く、初
期特性が問題であった。更にこの処理温度が900℃よ
りも高い場合は、微細結晶粒層の生成は少なくなるが、
陰極スリーブの選択酸化層の脱色、その他陰極構成材料
の機械的強度が低下し、問題であった。これらから最適
温度範囲は、上述のように700℃〜900℃の範囲で
あった。In the above-described embodiment, in order to ease the processing strain of the metal of the cathode base, 800 ° C., 10 ° C.
Although the case where the heat treatment is performed for a minute is described, when the treatment temperature is lower than 700 ° C., the processing strain of the cathode base metal is not sufficiently relaxed, a fine crystal grain layer is generated frequently, and the initial characteristics are problematic. there were. Further, when the treatment temperature is higher than 900 ° C., the generation of the fine crystal grain layer is reduced,
Decolorization of the selective oxidation layer of the cathode sleeve and other problems such as a decrease in the mechanical strength of the cathode constituent material have been problems. From these, the optimum temperature range was 700 ° C. to 900 ° C. as described above.
【0015】また、安定で強固な微細結晶粒層を形成す
る為の酸化性雰囲気中での加熱処理温度は、この処理温
度が700℃よりも低いと、微細結晶粒層の安定化が不
充分であった。また、この処理温度が850℃よりも高
いと、微細結晶粒層の形成位置が深くなり、また縦粒界
の生成が顕著となった。更に,陰極基体金属以外の陰極
構成材料例えば、短冊状の支持体の酸化が顕著になり且
つ機械的強度が低下し、問題であった。これらから、酸
化性雰囲気中での加熱処理温度は、上述のように700
℃〜850℃の範囲が最適であった。If the heat treatment temperature in an oxidizing atmosphere for forming a stable and strong fine crystal grain layer is lower than 700 ° C., the stabilization of the fine crystal grain layer is insufficient. Met. On the other hand, when the treatment temperature was higher than 850 ° C., the formation position of the fine crystal grain layer became deep, and the generation of vertical grain boundaries became remarkable. Further, there is a problem in that oxidation of a cathode constituting material other than the cathode base metal, for example, a strip-shaped support becomes remarkable and mechanical strength is reduced. From these, the heat treatment temperature in an oxidizing atmosphere is 700
The range from ℃ to 850 ° C was optimal.
【0016】さらに、陰極基体金属及び他の陰極構成材
料の表面酸化層を還元するための水素雰囲気中での加熱
処理温度は、700℃よりも低いと還元が不充分となり
酸化物が残る。また、この熱処理温度が900℃よりも
高いと、陰極スリーブの選択酸化層の脱色、その他陰極
構成材料の機械的強度が低下し、問題であった。したが
って、この加熱処理温度は、上述のように700℃〜9
00℃の範囲が最適であった。Further, if the heat treatment temperature in a hydrogen atmosphere for reducing the surface oxide layer of the cathode base metal and other cathode constituent materials is lower than 700 ° C., the reduction is insufficient and the oxide remains. On the other hand, if the heat treatment temperature is higher than 900 ° C., there is a problem that the selective oxidation layer of the cathode sleeve is decolorized and the mechanical strength of the cathode constituting material is reduced. Therefore, this heat treatment temperature ranges from 700 ° C. to 9 ° C. as described above.
The range of 00 ° C. was optimal.
【0017】なおまた、この発明の酸化物陰極は、ブラ
ウン管に限らず、他の熱電子管に広く使用し得る。ま
た、電子放射物層としては、少量のスカンジウム酸化
物、その他の酸化物等を含めてもよい。The oxide cathode of the present invention can be widely used not only for cathode ray tubes but also for other thermionic tubes. Further, the electron emitter layer may contain a small amount of scandium oxide, other oxides, or the like.
【0018】[0018]
【発明の効果】以上説明したようにこの発明によれば、
高電流密度での長時間動作にすぐれ、安定した信頼度の
高い酸化物陰極を得ることができる。As described above, according to the present invention,
It is possible to obtain a stable and highly reliable oxide cathode which is excellent in long-time operation at a high current density.
【図1】この発明の実施例に係わる陰極構体を示す断面
図である。FIG. 1 is a cross-sectional view showing a cathode assembly according to an embodiment of the present invention.
【図2】一般的な陰極基体金属部の部分拡大図である。FIG. 2 is a partially enlarged view of a general cathode base metal part.
【図3】この発明及び従来のものの寿命比較特性図であ
る。FIG. 3 is a life comparison characteristic diagram of the present invention and a conventional one.
11…陰極基体金属 12…電子放射物層 15…陰極スリーブ 11: cathode base metal 12: electron emitting layer 15: cathode sleeve
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 9/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01J 9/04
Claims (3)
加した陰極基体金属をプレス成形したうえで陰極スリー
ブに接合固定し、前記陰極スリーブを加湿水素中で熱処
理して黒化し、上記陰極基体金属面上にアルカリ土類金
属炭酸塩の電子放射物質層を付着させる酸化物陰極構体
の製造方法において、上記黒化された前記陰極スリーブ
に固定されている前記陰極基体金属を非酸化性雰囲気中
で加熱処理する第1の工程と、その後前記陰極基体金属
を酸化性雰囲気中で加熱処理する第2の工程と、その後
前記陰極基体金属を非酸化性雰囲気中で加熱処理する第
3の工程と、その後前記陰極基体金属面上に上記電子放
射物質を付着させる第4の工程とを具備することを特徴
とする酸化物陰極の製造方法。1. A cathode base metal mainly composed of nickel and to which a small amount of a reducing agent is added is press-molded and fixed to a cathode sleeve, and the cathode sleeve is heat-treated in humidified hydrogen.
A method for producing an oxide cathode assembly, wherein the cathode sleeve is blackened by applying an electron emission material layer of an alkaline earth metal carbonate on the metal surface of the cathode substrate.
A first step of heat-treating the cathode base metal fixed in a non-oxidizing atmosphere, a second step of subsequently heating the cathode base metal in an oxidizing atmosphere, and thereafter the cathode base metal A heat treatment in a non-oxidizing atmosphere, and a fourth step of thereafter depositing the electron-emitting substance on the metal surface of the cathode substrate. .
第3の工程での処理温度は、700〜900℃の範囲で
ある請求項1記載の酸化物陰極の製造方法。2. The method for producing an oxide cathode according to claim 1, wherein the processing temperature in the first and third steps of performing the heat treatment in a non-oxidizing atmosphere is in a range of 700 to 900 ° C.
での処理温度は、700〜850℃の範囲である請求項
1記載の酸化物陰極の製造方法。3. The process temperature in the second step of heat treatment in an oxidizing atmosphere is in the range of 700 to 850 ° C.
2. The method for producing an oxide cathode according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21582293A JP3283116B2 (en) | 1993-08-31 | 1993-08-31 | Manufacturing method of oxide cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21582293A JP3283116B2 (en) | 1993-08-31 | 1993-08-31 | Manufacturing method of oxide cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0765712A JPH0765712A (en) | 1995-03-10 |
JP3283116B2 true JP3283116B2 (en) | 2002-05-20 |
Family
ID=16678839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21582293A Expired - Fee Related JP3283116B2 (en) | 1993-08-31 | 1993-08-31 | Manufacturing method of oxide cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3283116B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010043463A1 (en) * | 2010-11-05 | 2012-05-10 | Osram Ag | Method for producing an electrode for a high-pressure discharge lamp and high-pressure discharge lamp with at least one electrode produced in this way |
-
1993
- 1993-08-31 JP JP21582293A patent/JP3283116B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0765712A (en) | 1995-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007751B1 (en) | Electron tube cathode and method of the same | |
JP3283116B2 (en) | Manufacturing method of oxide cathode | |
KR100244175B1 (en) | Cathode for cathode ray tube | |
JPH0318287B2 (en) | ||
JPH11283485A (en) | Negative electrode for electron tube and manufacture of the same | |
JPH0418660B2 (en) | ||
JP2835023B2 (en) | Manufacturing method of cathode for electron tube | |
JP3535277B2 (en) | Manufacturing method of oxide cathode | |
JPH04220924A (en) | Cathode for electron tube | |
KR920010360B1 (en) | Imprgnated cathode and method of manufacturing the same | |
JPH0113187B2 (en) | ||
JPH07169384A (en) | Impregnated type cathode for cathoe-ray tube | |
JP2003007194A (en) | Impregnated type cathode | |
US1921065A (en) | Electron emitter and process of making same | |
JPH04220926A (en) | Cathode for electron tube | |
JPH0544767B2 (en) | ||
JPS6340229A (en) | Cathode of electron tube | |
JPH01169827A (en) | Cathode of electron tube and its manufacture | |
KR100228170B1 (en) | Method for manufacturing cathode of cathode ray tube | |
JPH0620588A (en) | Impregnated cathode body structure and manufacture thereof | |
JPH01109631A (en) | Oxide cathode | |
US20020101146A1 (en) | Metal cathode for electron tube | |
JPH04220925A (en) | Cathode for electron tube | |
JPH0114660B2 (en) | ||
JPS6017831A (en) | Impregnated cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |