JPS63211535A - Manufacture of osmium-coated impregnated type cathode - Google Patents

Manufacture of osmium-coated impregnated type cathode

Info

Publication number
JPS63211535A
JPS63211535A JP2750388A JP2750388A JPS63211535A JP S63211535 A JPS63211535 A JP S63211535A JP 2750388 A JP2750388 A JP 2750388A JP 2750388 A JP2750388 A JP 2750388A JP S63211535 A JPS63211535 A JP S63211535A
Authority
JP
Japan
Prior art keywords
osmium
impregnated
cathode
coated
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2750388A
Other languages
Japanese (ja)
Other versions
JPH0345856B2 (en
Inventor
Yukio Honda
幸雄 本多
Tadanori Taguchi
田口 貞憲
Toshiyuki Aida
会田 敏之
Ushio Kawabe
川辺 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2750388A priority Critical patent/JPS63211535A/en
Publication of JPS63211535A publication Critical patent/JPS63211535A/en
Publication of JPH0345856B2 publication Critical patent/JPH0345856B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in the thermoelectron emission characteristic even if the oxidation treatment is applied in the atmosphere by coating Os on the electron emitting face of an impregnated type cathode impregnated with an electron emitting material into a porous W substrate then heat-treating it in the nonoxidizing atmosphere. CONSTITUTION:An electron emitting material made of BaO, CaO, Al2O3 is impregnated into cavity sections of a porous W substrate to manufacture an impregnated type cathode. Os is deposited on this electron emitting face to form an Os-coated impregnated type cathode. Next, it is heat-treated in vacuum and the Os coating is oxidation resistance-treated to form an oxidation-resistant Os-coated impregnated type cathode. The heat treatment is thus applied in the nonoxidizing atmosphere, thereby Os is prevented from being oxidized and evaporated and consumed by the oxidizing gas in the atmosphere during the heat treatment. Accordingly, an oxidation-resistant Os-coated impregnated type cathode with no deterioration of the thermoelectron emission characteristic even if the oxidation treatment is applied in the atmosphere can be easily obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、含浸形陰極の電子放射効率向上のために下記
含浸形陰極の電子放射面にオスミウム(O5)の被覆層
を設けた耐酸化性のオスミウム被覆含浸形陰極に関する
ものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an oxidation-resistant cathode in which an osmium (O5) coating layer is provided on the electron emitting surface of the impregnated cathode in order to improve the electron emission efficiency of the impregnated cathode. The present invention relates to an osmium-coated impregnated cathode.

[従来の技術] 含浸形陰極は多孔質金属基体の空孔部にアルカリ土類金
属からなる電子放射物質を含浸させたものである。多孔
質金属基体としてはタングステン(W)、モリブデン(
Mo)、タンタル(ra)。
[Prior Art] An impregnated cathode is one in which the pores of a porous metal base are impregnated with an electron-emitting substance made of an alkaline earth metal. Tungsten (W), molybdenum (
Mo), tantalum (ra).

レニウム(Re)、ニッケル(Ni)などの耐熱金属及
びこれらの合金が用いられる。一般には多孔質金属基体
としては、融点が高く、蒸気圧が低く、耐イオン衝撃性
が高いタングステンを用い、また電子放射物質としては
Bad、CaO。
Heat-resistant metals such as rhenium (Re) and nickel (Ni) and alloys thereof are used. Generally, tungsten, which has a high melting point, low vapor pressure, and high ion impact resistance, is used as the porous metal substrate, and Bad and CaO are used as the electron emitting substances.

AQ203の化合物が用いられる。この含浸形陰極の動
作状態では、多孔質タングステン内に含浸された電子放
射物質がタングステンと反応して遊離バリウムを生成し
、基体内の空孔部を通って陰陽基体表面、すなわち電子
放射面に到着し、さらに表面拡散して電子放射面にバリ
ウt1の単原子吸着層を形成する。その結果、含浸形陰
極の仕事関数は、基体のタングステン(4,5e■)及
びバリウム(2,3eV)の仕事関数より小さい1.9
〜2、OeVと低いものとなる。
A compound of AQ203 is used. In the operating state of this impregnated cathode, the electron-emitting material impregnated into the porous tungsten reacts with the tungsten to generate free barium, which passes through the pores in the substrate and reaches the surface of the negative and negative substrate, that is, the electron-emitting surface. The electrons arrive at the surface and further diffuse to the surface to form a monoatomic adsorption layer of barium t1 on the electron emitting surface. As a result, the work function of the impregnated cathode is 1.9, which is smaller than the work functions of the substrates tungsten (4,5 eV) and barium (2,3 eV).
~2, OeV, which is low.

金属の熱電子放射電流密度Jはリチャードソン・ダッシ
ュマンの式(J = A T2exp(−eφ/kT)
)、(ここでAは熱電子定数、Tは陰極の絶対温度、e
は電子の電荷、φは仕事関数、kはボルツマン定数であ
る)で与えられる。すなわち、熱電子放射電流密度Jは
、物質からある温度でとり得る最大の飽和電流密度であ
り、温度が高い程、仕事関数が小さい程、熱電子放射電
流密度Jは向上する。
The thermionic emission current density J of metal is calculated using the Richardson-Dushman equation (J = A T2exp (-eφ/kT)
), (where A is the thermionic constant, T is the absolute temperature of the cathode, and e
is the electron charge, φ is the work function, and k is Boltzmann's constant). That is, the thermionic emission current density J is the maximum saturation current density that can be obtained from a substance at a certain temperature, and the higher the temperature and the smaller the work function, the higher the thermionic emission current density J.

含浸形陰極はタングステン基体表面にバリウムの単原子
吸着層を形成して仕事関数を小さくシ、、低温動作で熱
電子放射電流密度を向上した陰極である。
The impregnated cathode is a cathode that forms a barium monatomic adsorption layer on the surface of a tungsten substrate to reduce the work function and improve the thermionic emission current density at low temperatures.

含浸形陰極では、陰極基体の種類により電子放射特性を
向上できる。例えば、フィリップス社が提案したオスミ
ウム被覆含浸形陰極がある。これは多孔質タングステン
基板に電子放射物質を含浸した含浸形陰極の電子放射面
にオスミウムの被覆層を設けたものである。この陰極の
動作状態ではオスミウムの表面にバリウムの単原子吸着
層が形成され、タングステン基体の場合に比べてさらに
仕事関数が低下しく1.7〜1.8eV)、熱電子放射
電流密度はさらに向上する。−例としてWを基体とする
含浸形陰極と、前記陰極の電子放射面に0.5μm厚の
オスミウムの被NMを設けたオスミウム被覆含浸形11
3極の1000℃における飽和電流密度を比較すると、
前者に比べて後者のオスミウム被覆含浸形陰極では約3
倍高い飽和電流密度が得られた。
In an impregnated cathode, electron emission characteristics can be improved depending on the type of cathode substrate. For example, there is an osmium-coated impregnated cathode proposed by Philips. This cathode is an impregnated type cathode in which a porous tungsten substrate is impregnated with an electron-emitting substance, and an osmium coating layer is provided on the electron-emitting surface of the cathode. In this cathode operating state, a barium monatomic adsorption layer is formed on the osmium surface, which lowers the work function even further (1.7 to 1.8 eV) than in the case of a tungsten substrate, and further improves the thermionic emission current density. do. - As an example, an osmium-coated impregnated cathode 11 has an impregnated cathode based on W, and an osmium coating NM having a thickness of 0.5 μm on the electron emitting surface of the cathode.
Comparing the saturation current density of three poles at 1000℃,
Compared to the former, the latter osmium-coated impregnated cathode has a
A twice higher saturation current density was obtained.

一方、このオスミウム被覆含浸形陰極は、被覆層の酸化
により熱電子放射特性が劣化するという欠点がある。す
なわち、オスミウムは低温で酸化され易く、オスミウム
の酸化物は蒸気圧が高いため電子管の製造途中に陰極表
面から蒸着して消失し、その結果熱電子放射特性が劣化
する。第1図(a)の曲線はタングステン板にオスミウ
ムを被覆した試料を大気中で熱酸化した時の重量変化(
相を経たオスミウム被覆含浸形陰極の熱電子放射特性は
劣化する。
On the other hand, this osmium-coated impregnated cathode has the disadvantage that thermionic emission characteristics deteriorate due to oxidation of the coating layer. That is, osmium is easily oxidized at low temperatures, and since osmium oxide has a high vapor pressure, it evaporates from the cathode surface during the manufacture of the electron tube and disappears, resulting in deterioration of thermionic emission characteristics. The curve in Figure 1 (a) shows the weight change (
Thermionic emission characteristics of the osmium-coated impregnated cathode deteriorate after passing through the phase.

現在一般的に行われている電子管製造法では、主に第2
図に示す封止工程において陰極は酸化される。
In the currently commonly used electron tube manufacturing method, the second
In the sealing process shown in the figure, the cathode is oxidized.

第2図により電子管製造法における一般的な封止工程に
ついて説明する。陰極1は、電子線集束気管4に固定さ
れる。封止工程においては、真空排気管4は保持具5に
取り付けて、電子管6に設けたネック管7の孔に沿って
挿入する。次に接続部8の周囲をガスバーナ9等で加熱
し、接続部8において真空排気管4とネック管7を接続
する。
A general sealing process in the electron tube manufacturing method will be explained with reference to FIG. The cathode 1 is fixed to the electron beam focusing trachea 4 . In the sealing process, the evacuation tube 4 is attached to the holder 5 and inserted along the hole of the neck tube 7 provided in the electron tube 6. Next, the area around the connection part 8 is heated with a gas burner 9 or the like, and the evacuation pipe 4 and the neck pipe 7 are connected at the connection part 8.

この工程を電子管製造における封止工程と呼んでいる。This process is called the sealing process in electron tube manufacturing.

封止工程は一般に大気中で行われ、また陰極1の周囲は
ガスバーナ9の熱で約400°Cまで昇温するから、陰
極1は酸化される。特にオスミウム被覆含浸形陰極では
、封止工程によりオスミウムが酸化蒸発して陰極表面か
ら消失し、熱電子放射特性が劣化する。
The sealing process is generally performed in the atmosphere, and the temperature around the cathode 1 is raised to about 400° C. by the heat of the gas burner 9, so that the cathode 1 is oxidized. In particular, in the case of an osmium-coated impregnated cathode, osmium is oxidized and vaporized during the sealing process and disappears from the cathode surface, degrading thermionic emission characteristics.

上記封止工程において陰極1の酸化を防止し、熱電子放
射特性の劣化をなくす方法が提案された。
A method has been proposed for preventing oxidation of the cathode 1 in the sealing process and eliminating deterioration of thermionic emission characteristics.

この方法は、封止工程に際し真空排気管4の一端に設け
た真空排気口10から、チッ素、アルゴンガス等の非酸
化性のガスを導入し、陰極1の周囲を非酸化性のガス雰
囲気に置換して封止を行なう。
In this method, a non-oxidizing gas such as nitrogen or argon gas is introduced from a vacuum exhaust port 10 provided at one end of a vacuum exhaust pipe 4 during the sealing process, and a non-oxidizing gas atmosphere is created around the cathode 1. Sealing is performed by replacing with .

この方法は、陰極1が酸化されずオスミウムの蒸発を防
止するのに有効である。
This method is effective in preventing osmium evaporation without oxidizing the cathode 1.

[発明が解決しようとする課題] 製造の手間がかかり、また製造設備が複雑になりコスト
高になるという欠点があった。
[Problems to be Solved by the Invention] There are disadvantages in that it takes time and effort to manufacture, and the manufacturing equipment becomes complicated, resulting in high costs.

本発明は上記封止工程においてオウミウム被覆含浸形陰
極が酸化処理を受けても、オスミウムが目的とする。
The object of the present invention is to remove osmium even if the osmium-coated impregnated cathode is subjected to oxidation treatment in the above-mentioned sealing process.

[課題を解決するための手段] 上記目的は、多孔質タングステン基体にBad。[Means to solve the problem] The above purpose is to provide a porous tungsten substrate with Bad.

Ca O、A Q 203からなる電子放射物質を含浸
した含浸形陰極の電子放射面にオスミウムを被覆した後
、非酸化性雰囲気中で熱処理することにより達成できる
This can be achieved by coating the electron emitting surface of an impregnated cathode impregnated with an electron emitting substance composed of CaO and AQ203 with osmium, and then heat-treating it in a non-oxidizing atmosphere.

また、熱処理温度は1000〜1350℃が適当であり
、より好ましくは1100〜1250℃である。
Moreover, the heat treatment temperature is suitably 1000 to 1350°C, more preferably 1100 to 1250°C.

[作用コ タングステン(W)板にオスミウム(○S)を厚さ0.
5μm被覆したO s / W試料において、例えば真
空中で1100℃2時間の熱処理を施すと、第1図(b
)に示すようにその後大気中で300〜600℃で酸化
処理をしてもオスミウムが酸化蒸発することがなく、耐
酸化性のオスミウム被覆層が形成されていることがわか
る。これは熱処理により耐酸化性をもつ基体材料のタン
グステンが、オスミウム粒子間すなわち粒界を伝わって
オスミウム被膜表面までしみ出し、オスミウム被膜表面
部がタングステンとオスミウムの混在した状態になるた
めと考えられる。
[Osmium (○S) is applied to a cotungsten (W) plate to a thickness of 0.
For example, when an O s / W sample coated with 5 μm is heat-treated at 1100°C for 2 hours in a vacuum, the result is as shown in Figure 1 (b
), it can be seen that osmium does not oxidize and evaporate even if it is subsequently subjected to oxidation treatment at 300 to 600° C. in the atmosphere, and an oxidation-resistant osmium coating layer is formed. This is thought to be due to the fact that the oxidation-resistant tungsten of the base material permeates through the osmium particles, that is, through the grain boundaries, to the surface of the osmium coating due to the heat treatment, resulting in a state where tungsten and osmium coexist on the surface of the osmium coating.

熱処理は非酸化性雰囲気中で行なうので、熱処理中に雰
囲気中の酸化性ガスによりオスミウムが酸化蒸発して消
耗することはない。
Since the heat treatment is performed in a non-oxidizing atmosphere, osmium is not oxidized and vaporized and consumed by oxidizing gas in the atmosphere during the heat treatment.

非酸化性雰囲気としては、02.H2O,CO2等の酸
化性のガス分圧がl X 10−5Torr以下の真空
、あるいは、たとえば露点−50’C以下のアルゴン、
チッ素、水素ガス等の非酸化性ガスがある。
As a non-oxidizing atmosphere, 02. Vacuum where the partial pressure of an oxidizing gas such as H2O, CO2, etc. is 1 x 10-5 Torr or less, or argon with a dew point of -50'C or less, for example,
There are non-oxidizing gases such as nitrogen and hydrogen gas.

耐酸化効果を得るための、熱処理温度と熱処理時間の関
係を第3図に示す。熱処理温度をパラメータにとり、横
軸に熱処理時間、縦軸に耐酸化効果の尺度としてのオス
ミウム減少量をとっている。
FIG. 3 shows the relationship between heat treatment temperature and heat treatment time for obtaining oxidation-resistant effects. The heat treatment temperature is taken as a parameter, the horizontal axis is the heat treatment time, and the vertical axis is the amount of osmium reduction as a measure of the oxidation resistance effect.

図中、曲線11は1000℃熱処理、12は1050°
C熱処理、13は1100°C熱処理、14は1200
’C熱処理の場合を示す。すなわち、耐酸化性のオスミ
ウム被rrIJVJを形成するには、1000℃の場合
は5時間以上、1200’Cの場合は10分以上の熱処
理が必要である。オスミウム被覆i覆層の耐酸化処理効
果は1350°C以上でも得られるが、オスミウム被覆
含浸形陰極では熱処理温度が1350℃を越えると電子
放射物質が変質し、熱電子放射特性を劣化させ、寿命短
縮の原因となる。
In the figure, curve 11 is heat treated at 1000°C, curve 12 is 1050°
C heat treatment, 13 is 1100 °C heat treatment, 14 is 1200 °C heat treatment
'C shows the case of heat treatment. That is, in order to form an oxidation-resistant osmium-coated rrIJVJ, heat treatment is required for 5 hours or more at 1000°C, and for 10 minutes or more at 1200'C. The oxidation-resistant effect of the osmium-coated i-coating layer can be obtained even at temperatures above 1350°C, but in the case of osmium-coated impregnated cathodes, if the heat treatment temperature exceeds 1350°C, the electron emitting material will change, the thermionic emission characteristics will deteriorate, and the service life will be shortened. This causes shortening.

〔実施例J 空孔率26%の多孔質タングステン基体の空孔部にBa
d、Cab、AQ203からなる電子放射物質を含浸し
、表面研磨により滑らかな電子放射面を形成した含浸形
陰極を作る。上記電子放射面に電子線蒸着によりオスミ
ウムを0.5μm厚蒸漬し、オスミウム被覆含浸形陰極
を作る。次にI×1O−5Torr以下の真空中で10
00℃、2時間の熱処理をしてオスミウム被覆の耐酸化
処理をして、耐酸化性のオスミウム被覆含浸形陰極を作
る。
[Example J Ba was added to the pores of a porous tungsten substrate with a porosity of 26%.
An impregnated cathode is prepared by impregnating it with an electron-emitting material consisting of D, Cab, and AQ203, and polishing the surface to form a smooth electron-emitting surface. Osmium is deposited on the electron emitting surface to a thickness of 0.5 μm by electron beam evaporation to produce an osmium-coated impregnated cathode. Next, in a vacuum of I×1O-5 Torr or less,
The osmium coating is heat-treated at 00°C for 2 hours to make the osmium coating oxidation-resistant, thereby producing an oxidation-resistant osmium-coated impregnated cathode.

第4図は、通常のオスミウム被覆含浸形陰極の熱電子放
射特性21、通常のオスミウム被覆含浸形陰極を大気中
で450℃、10分間の酸化処理をした場合の熱電子放
射特性22.及び本発明の真空中で1時間、1100℃
で熱処理した耐酸化性のオスミウム被覆含浸形陰極を大
気中で500℃、10分間の酸化処理をした場合の熱電
子放射特性23を示す。本実施例で明らかなように、本
発明によれば大気中での酸化処理を受けても熱電子放射
特性の劣化のない、耐酸化性のオスミウム被覆含浸形陰
極を容易に得ることができる。
Figure 4 shows thermionic emission characteristics 21 of a normal osmium-coated impregnated cathode, and thermionic emission characteristics 22 of a normal osmium-coated impregnated cathode subjected to oxidation treatment at 450°C for 10 minutes in the air. and 1100°C for 1 hour in the vacuum of the present invention.
Thermionic emission characteristics 23 are shown when an oxidation-resistant osmium-coated impregnated cathode that has been heat-treated is subjected to oxidation treatment in the atmosphere at 500° C. for 10 minutes. As is clear from this example, according to the present invention, it is possible to easily obtain an oxidation-resistant osmium-coated impregnated cathode whose thermionic emission characteristics do not deteriorate even when subjected to oxidation treatment in the atmosphere.

[発明の効果] 以上述べたように、多孔質タングステン基体に電子放射
物質を含浸した含浸形陰極の電子放射面にオスミウムを
被覆したオスミウム被覆含浸形陰極において、電子放射
面にオウミスムを被覆後あらかじめ1000〜1350
℃、より好ましくは1100〜1250℃で熱処理を施
すことにより、熱電子放射特性の良い耐酸化性のオスミ
ウム被覆含浸形陰極を容易に製造できる。
[Effects of the Invention] As described above, in an osmium-coated impregnated cathode in which the electron-emitting surface of an impregnated cathode in which a porous tungsten base is impregnated with an electron-emitting substance is coated with osmium, the electron-emitting surface is coated with osmium. 1000-1350
By performing heat treatment at a temperature of 1,100 to 1,250 degrees Celsius, an osmium-coated impregnated cathode with good thermionic emission characteristics and oxidation resistance can be easily produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、タングステン板にオスミウムを被覆した試料
において、大気酸化によるオスミウムの減少量を示す図
、第2図は、従来の封止工程の説明図、第3図は、オス
ミウム被覆タングステン板の耐酸化処理効果を示す図、
第4図は、本発明の実施例ミのオウミウム被覆合浸形陰
極の熱電子放射特性を示す図である。 1・・・陰極、2・・・電極群、3・・支持金具、4・
・・真空排気管、5・・・保持具、6・・・電子管、7
・・・ネック管、8・・・接続部、9・・・ガスバーナ
、1o・・・真空排気口。 芋 / 2 あ 2 図
Figure 1 is a diagram showing the amount of osmium reduced due to atmospheric oxidation in a sample in which a tungsten plate is coated with osmium, Figure 2 is an explanatory diagram of the conventional sealing process, and Figure 3 is a diagram showing the amount of osmium reduced by atmospheric oxidation in a sample of a tungsten plate coated with osmium. Diagram showing the effect of oxidation resistance treatment,
FIG. 4 is a diagram showing thermionic emission characteristics of the aurium-coated co-immersion type cathode of Example 1 of the present invention. DESCRIPTION OF SYMBOLS 1... Cathode, 2... Electrode group, 3... Support metal fitting, 4...
... Vacuum exhaust pipe, 5... Holder, 6... Electron tube, 7
...Neck pipe, 8...Connection part, 9...Gas burner, 1o...Vacuum exhaust port. Potato / 2 A 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] 1、多孔質タングステン基体にBaO、CaO、Al_
2O_3からなる電子放射物質を含浸した含浸形陰極の
電子放射面にオスミウムを被覆した後、非酸化性雰囲気
中で熱処理し所望の耐酸化性を得ることを特徴とするオ
スミウム被覆含浸形陰極の製造方法。
1. Porous tungsten substrate with BaO, CaO, Al_
Production of an osmium-coated impregnated cathode characterized in that the electron emitting surface of the impregnated cathode impregnated with an electron emitting substance consisting of 2O_3 is coated with osmium, and then heat treated in a non-oxidizing atmosphere to obtain desired oxidation resistance. Method.
JP2750388A 1988-02-10 1988-02-10 Manufacture of osmium-coated impregnated type cathode Granted JPS63211535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2750388A JPS63211535A (en) 1988-02-10 1988-02-10 Manufacture of osmium-coated impregnated type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2750388A JPS63211535A (en) 1988-02-10 1988-02-10 Manufacture of osmium-coated impregnated type cathode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59201654A Division JPS60100333A (en) 1984-09-28 1984-09-28 Osmium coated and impregnated cathode

Publications (2)

Publication Number Publication Date
JPS63211535A true JPS63211535A (en) 1988-09-02
JPH0345856B2 JPH0345856B2 (en) 1991-07-12

Family

ID=12222945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2750388A Granted JPS63211535A (en) 1988-02-10 1988-02-10 Manufacture of osmium-coated impregnated type cathode

Country Status (1)

Country Link
JP (1) JPS63211535A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980588B (en) 2013-12-12 2018-04-27 杰富意钢铁株式会社 Steel plate and its manufacture method

Also Published As

Publication number Publication date
JPH0345856B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JPS61183838A (en) Impregnated type cathode
JPS6113526A (en) Impregnated cathode
JPS63211535A (en) Manufacture of osmium-coated impregnated type cathode
JPH03173034A (en) Scan dart cathode and its manufacture
US3535757A (en) Method for making cathode assembly for electron tube
JPS60100333A (en) Osmium coated and impregnated cathode
JPH0765693A (en) Oxide cathode
JP2668657B2 (en) Impregnated cathode for cathode ray tube
JPH01267927A (en) Solid-liquid matrix cathode
JP2835023B2 (en) Manufacturing method of cathode for electron tube
JP2650638B2 (en) Cathode ray tube
JPS6357902B2 (en)
KR100259298B1 (en) Impregnation-type cathode for crt
JPS5918539A (en) Impregnated cathode
JPH0528918A (en) Sealing method for electron gun
KR100249208B1 (en) Impregnated cathode
JPH073434A (en) Oxide cathode and its preparation
US6641450B2 (en) Method of making a cathode for an electron tube
US3598646A (en) Method for preparing oxide-coated cathodes
JPS63254636A (en) Impregnated cathode
JP3068160B2 (en) Impregnated cathode and method for producing the same
JPS6017831A (en) Impregnated cathode
JPS6334832A (en) Manufacture of impregnated cathode
Yamamoto Recent development of cathodes used for cathode ray tubes
JP2004241249A (en) Impregnation type cathode and its manufacturing method