JPH0544767B2 - - Google Patents

Info

Publication number
JPH0544767B2
JPH0544767B2 JP3567086A JP3567086A JPH0544767B2 JP H0544767 B2 JPH0544767 B2 JP H0544767B2 JP 3567086 A JP3567086 A JP 3567086A JP 3567086 A JP3567086 A JP 3567086A JP H0544767 B2 JPH0544767 B2 JP H0544767B2
Authority
JP
Japan
Prior art keywords
cathode
layer
alkaline earth
earth metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3567086A
Other languages
Japanese (ja)
Other versions
JPS62193031A (en
Inventor
Kinjiro Sano
Toyoichi Kamata
Masato Saito
Keiji Fukuyama
Shigeko Ishida
Keiji Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61035670A priority Critical patent/JPS62193031A/en
Priority to CA000513900A priority patent/CA1270890A/en
Priority to US06/886,777 priority patent/US4797593A/en
Priority to DE86305560T priority patent/DE3689134T2/en
Priority to EP86305560A priority patent/EP0210805B1/en
Priority to CN86104753.2A priority patent/CN1004452B/en
Publication of JPS62193031A publication Critical patent/JPS62193031A/en
Publication of JPH0544767B2 publication Critical patent/JPH0544767B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデイスプレイ用陰極線管などの電子
管に用いられる傍熱形の陰極に関し、特に、その
電子放射特性の向上を図つたものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an indirectly heated cathode used in an electron tube such as a display cathode ray tube, and is particularly directed to improving the electron emission characteristics thereof.

〔従来の技術〕[Conventional technology]

従来、この種の陰極には、ニツケルを主成分と
する基体金属上にBaを含むアルカリ土類金属酸
化物層を被着形成した陰極が用いられているが、
最近、デイスプレイ用陰極線管や撮像管の高精細
度化に伴つて、高電流密度で使用する要求が強く
なつてきている。
Conventionally, this type of cathode has used a cathode in which an alkaline earth metal oxide layer containing Ba is deposited on a base metal mainly composed of nickel.
Recently, as cathode ray tubes for displays and image pickup tubes have become more precise, there has been an increasing demand for their use at high current densities.

しかしながら、従来の陰極では0.5〜0.8A/cm2
電流密度での使用が限界であり、これ以上の電流
密度で使用すると、陰極の寿命が短くなるという
問題が生じる。
However, conventional cathodes have a limit of use at a current density of 0.5 to 0.8 A/cm 2 , and when used at a current density higher than this, the problem arises that the life of the cathode is shortened.

第2図は、デイスプレイ用陰極線管や撮像管に
用いられている従来の陰極の構成を示す縦断面図
で、1はSi,Mg等の還元性元素を微量含むニツ
ケルからなる基体金属、2は基体金属1の面上に
被着形成されている電子放射物質層で、Ba,Sr,
Caの三元アルカリ土類金属酸化物で形成され遊
離Baが含まれている。3は基体金属1を介して
電子放射物質層2を加熱するヒータである。アル
カリ土類金属酸化物2は、Ba,Sr,Caの複合炭
酸塩粉末をバインダ溶液中に懸濁させた塗布液
を、スプレなどの方法によつて基体金属1の面上
に塗布し、真空排気工程においてヒータ3によつ
て加熱して炭酸塩から酸化物に変える分解工程
と、さらに900〜1100℃に加熱してその酸化物の
一部を還元して酸素を取り除き、半導体的性質を
有するようにする活性化工程とを施して電子放射
性を得ている。基体金属1の中に微量のSi,Mg
などの還元性元素を含有させているのは、活性化
工程において還元反応を行なわせるためである。
すなわち基体金属1中の還元性元素は、拡散によ
りアルカリ土類金属酸化物と基体金属1との界面
に移動してアルカリ土類金属酸化物と反応する。
例えばBaOは以下のように反応する。
Figure 2 is a vertical cross-sectional view showing the structure of a conventional cathode used in display cathode ray tubes and image pickup tubes, in which 1 is a base metal made of nickel containing trace amounts of reducing elements such as Si and Mg; An electron emitting material layer deposited on the surface of the base metal 1, containing Ba, Sr,
It is formed of ternary alkaline earth metal oxides of Ca and contains free Ba. 3 is a heater that heats the electron emitting material layer 2 via the base metal 1; The alkaline earth metal oxide 2 is prepared by applying a coating solution in which a composite carbonate powder of Ba, Sr, and Ca is suspended in a binder solution onto the surface of the base metal 1 by a method such as spraying, and applying the coating solution in a vacuum. In the exhaust process, there is a decomposition process in which carbonates are converted into oxides by heating with a heater 3, and further heated to 900 to 1100°C to reduce some of the oxides and remove oxygen, giving it semiconductor properties. Electron emissivity is obtained by performing an activation process to Trace amounts of Si and Mg in the base metal 1
The reason why reducing elements such as these are contained is to cause a reduction reaction to occur in the activation step.
That is, the reducing element in the base metal 1 moves to the interface between the alkaline earth metal oxide and the base metal 1 by diffusion and reacts with the alkaline earth metal oxide.
For example, BaO reacts as follows.

2BaO+Si=2Ba+SiO2 BaO+Mg=Ba+MgO この結果、アルカリ土類金属酸化物の一部が還
元されて酸素欠乏型の半導体となり、陰極温度
700〜800℃の動作温度で0.5〜0.8A/cm2の電流密度
で使用できる電子放射物質層2が得られる。
2BaO+Si=2Ba+SiO 2 BaO+Mg=Ba+MgO As a result, part of the alkaline earth metal oxide is reduced and becomes an oxygen-deficient semiconductor, and the cathode temperature
An electron-emissive material layer 2 is obtained which can be used at an operating temperature of 700-800° C. and a current density of 0.5-0.8 A/cm 2 .

従来の陰極が上記以上の電流を取り出すことが
できないのは、 活性化工程における還元反応の結果、基体金
属1と電子放射物質層2との界面にSiO2
MgOなどの酸化物層(中間層)が形成され、
この中間層が高抵抗層となつて電流の流れを妨
げる。
The reason why conventional cathodes cannot extract a current higher than the above is that SiO 2 ,
An oxide layer (intermediate layer) such as MgO is formed,
This intermediate layer becomes a high resistance layer and obstructs the flow of current.

中間層が存在するために、アルカリ土類金属
酸化物と還元性元素との反応が抑制されて、十
分な量のBaが生成されないなどの理由による
ものと考えられる。
This is thought to be due to the fact that the presence of the intermediate layer suppresses the reaction between the alkaline earth metal oxide and the reducing element, preventing a sufficient amount of Ba from being produced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来の陰極では、活性化工程にお
いて、金属基体1とアルカリ土類金属酸化物層2
の界面に中間層が生成されるため、高電流密度で
使用できないという問題点があつた。
As described above, in the conventional cathode, the metal substrate 1 and the alkaline earth metal oxide layer 2 are
Since an intermediate layer is generated at the interface, there is a problem that it cannot be used at high current density.

この発明は上記問題点を解消するためになされ
たもので、中間層の存在による高電流の電子放射
の抑制及び遊離Baの生成の抑制による影響が低
減でき、高電流密度で使用できる陰極を得ること
を目的とする。
This invention was made to solve the above problems, and provides a cathode that can be used at high current densities by reducing the effects of suppressing high current electron emission and suppressing the generation of free Ba due to the presence of the intermediate layer. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る陰極は、ニツケル基体金属上に
ニツケル粉末焼結層を設け、更にその上にアルカ
リ土類金属酸化物の中に酸化スカンジウム
(Sc2O3)粉末を分散して含有させた電子放射物
質層を設けたものである。
The cathode according to the present invention has a nickel powder sintered layer on a nickel base metal, and further has an electron layer containing scandium oxide (Sc 2 O 3 ) powder dispersed in an alkaline earth metal oxide. A radiation material layer is provided.

〔作用〕[Effect]

ニツケル基体上のニツケル粉末焼結層は中間層
の形成による導電性の低下を防止し、更に、アル
カリ土類金属酸化物の中に分散している酸化スカ
ンジウム粉末は、電子放射物質層の導電性を高め
るとともに、酸化スカンジウムがアルカリ土類金
属酸化物と反応して生成された複合酸化物、例え
ばBa3Sc4O9が、陰極の作動中に熱分解を起して
遊離Baを生成し、熱電子の放射を増大させる作
用を行なう。
The sintered nickel powder layer on the nickel substrate prevents the conductivity from decreasing due to the formation of an intermediate layer, and the scandium oxide powder dispersed in the alkaline earth metal oxide improves the conductivity of the electron emitting material layer. At the same time, a complex oxide produced by the reaction of scandium oxide with an alkaline earth metal oxide, such as Ba 3 Sc 4 O 9 , undergoes thermal decomposition during operation of the cathode to produce free Ba, It acts to increase the emission of thermoelectrons.

〔実施例〕〔Example〕

以下この発明の一実施例を第1図により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

粒径3〜5ミクロンのニツケル金属粉末をニト
ロセルロースラツカ、酢酸ブチル等と混合して懸
濁液を作成し、これをスプレイによつて約30ミク
ロンの厚さになるようにニツケル基体金属1上に
塗布し、これを水素雰囲気中にて1000℃、10分間
の熱処理を行ない、上記ニツケル金属粉末の焼結
層4を作成した。また、バリウム、ストロンチウ
ム、カルシウムの三元炭酸塩粉末に酸化スカンジ
ウム粉末を5.0重量%を添加して混合し、これに
ニトロセルロースラツカ、酢酸ブチルを加えてロ
ーリング混合して懸濁液を調製した。この懸濁液
を焼結層4上にスプレイ法により約80ミクロンの
厚さに塗布し、従来と同じ条件で排気加熱工程お
よび活性化工程を施して陰極を製作した。2は電
子放射物質層で、2aはアルカリ土類金属炭酸塩
が熱分解して出来たアルカリ土類金属酸化物、2
bは酸化スカンジウム粉末である。
Mix nickel metal powder with a particle size of 3 to 5 microns with nitrocellulose, butyl acetate, etc. to create a suspension, and spray this onto the nickel base metal 1 to a thickness of about 30 microns. This was heat-treated at 1000° C. for 10 minutes in a hydrogen atmosphere to form the sintered layer 4 of the nickel metal powder. Further, 5.0% by weight of scandium oxide powder was added to and mixed with ternary carbonate powder of barium, strontium, and calcium, and nitrocellulose and butyl acetate were added thereto and mixed by rolling to prepare a suspension. This suspension was applied onto the sintered layer 4 by a spray method to a thickness of about 80 microns, and an exhaust heating process and an activation process were performed under the same conditions as conventional ones to produce a cathode. 2 is an electron emitting material layer, 2a is an alkaline earth metal oxide formed by thermal decomposition of alkaline earth metal carbonate, 2
b is scandium oxide powder.

このようにして製作した陰極を使用して2極真
空管を作成して試験したところ、陰極の動作温度
700〜800℃で1〜2A/cm2の電子放射特性が得ら
れ、従来に比較して高電流密度で長期間使用でき
ることが確認された。
When we created and tested a diode vacuum tube using the cathode manufactured in this way, we found that the operating temperature of the cathode was
It was confirmed that an electron emission characteristic of 1 to 2 A/cm 2 was obtained at 700 to 800°C, and that it could be used for a long period of time at a higher current density than conventional products.

上記実施例において、良好な電子放射が得られ
たのは、つぎの理由によるものと考えられる。
The reason why good electron emission was obtained in the above example is considered to be due to the following reason.

電子放射物質層2内に添加混合した酸化スカ
ンジウム粉末2bがアルカリ土類金属酸化物2
a例えばBaOと反応して生成された複合酸化
物(Ba3Sc4O9)が電子放射物質層2内に分散
しており、この複合酸化物が陰極の動作中に熱
分解を起こして遊離Baを生成しやすくなる。
従来の陰極における遊離Baの生成は、基体金
属1中に微量含まれているSiやMg等の還元性
元素による還元反応に依存していたが、この実
施例においては複合酸化物の熱分解により生成
された遊離Baが付加されるので、たとえ中間
層により還元反応が抑制されていたとしても、
遊離Baの量が不足することがない。
The scandium oxide powder 2b added and mixed in the electron emitting material layer 2 is an alkaline earth metal oxide 2.
aFor example, a complex oxide (Ba 3 Sc 4 O 9 ) produced by reacting with BaO is dispersed in the electron emitting material layer 2, and this complex oxide is thermally decomposed during operation of the cathode and released. It becomes easier to generate Ba.
The generation of free Ba in the conventional cathode was dependent on the reduction reaction of reducing elements such as Si and Mg contained in trace amounts in the base metal 1, but in this example, the generation of free Ba was achieved by thermal decomposition of the complex oxide. Since the generated free Ba is added, even if the reduction reaction is suppressed by the intermediate layer,
There is no shortage of free Ba.

複合酸化物中のScの一部が遊離して金属ス
カンジウムとなり、電子放射物質層2内全体に
分布する。この金属スカンジウムの存在により
電子放射物質層2の導電性が高まり、中間層に
よる導電性の低下を補つて、電子放射物質層2
の導電性が向上する。
A part of Sc in the composite oxide is liberated and becomes metallic scandium, which is distributed throughout the electron emitting material layer 2 . The presence of this metallic scandium increases the conductivity of the electron emitting material layer 2, and compensates for the decrease in conductivity caused by the intermediate layer.
conductivity is improved.

ニツケル粉末による焼結層4は多孔質となつ
ており、この上に塗布された電子放射物質層2
の一部は上記焼結層4の中に浸透してニツケル
基体金属1と接触し、この部分において中間層
が生成するが、大部分の電子放射物質層2は、
焼結層4と接触しているため、上記中間層の生
成による導電性の低下を防ぐことができる。
The sintered layer 4 made of nickel powder is porous, and the electron emitting material layer 2 coated on top of it is porous.
A part of the electron emitting material layer 2 penetrates into the sintered layer 4 and comes into contact with the nickel base metal 1, and an intermediate layer is formed in this part, but most of the electron emitting material layer 2 is
Since it is in contact with the sintered layer 4, it is possible to prevent a decrease in conductivity due to the formation of the intermediate layer.

なお、ニツケル基体金属1上に形成するニツケ
ル粉末焼結層4の厚みは、10〜50ミクロンが望ま
しい。上記厚みが10ミクロン以下であると、中間
層がこの焼結層4を越えて生成され、十分な効果
を発揮しない。又、上記厚みが50ミクロンを越え
ると、アルカリ土類金属酸化物の焼結層4への浸
透が十分でなくなり、ニツケル基体金属1と接触
する割合が少なくなつて陰極の活性化が十分に行
なわれなくなる。
The thickness of the nickel powder sintered layer 4 formed on the nickel base metal 1 is preferably 10 to 50 microns. If the thickness is less than 10 microns, the intermediate layer will be formed beyond the sintered layer 4 and will not exhibit sufficient effects. If the thickness exceeds 50 microns, the alkaline earth metal oxide will not penetrate sufficiently into the sintered layer 4, and the proportion of the alkaline earth metal oxide in contact with the nickel base metal 1 will decrease, making it difficult to activate the cathode sufficiently. will no longer occur.

また、電子放射物質層2に添加する酸化スカン
ジウム粉末については、5.0重量%混合した例を
説明したが、酸化スカンジウムの混合量が0.1重
量%以下では効果が小さくて実用的でなく、他
方、混合量が20重量%以上になると、初期特性が
悪くなつて実用的ではなかつた。
Regarding the scandium oxide powder added to the electron emitting material layer 2, an example was explained in which 5.0% by weight of scandium oxide was mixed, but if the amount of scandium oxide mixed is less than 0.1% by weight, the effect is small and it is not practical. When the amount exceeds 20% by weight, the initial properties become poor and it is not practical.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明は、アルカリ土類金属炭
酸塩粉末に酸化スカンジウム粉末を混合し均一に
分散させたものを、ニツケル金属粉末の焼結層を
備えた基体金属の面上に被着させて形成した陰極
であるから、電子放射物質層内に分散させた酸化
スカンジウムにより生成さている複合酸化物によ
る遊離Baの生成作用と、電子放射物質層の導電
性を高める作用、並びに焼結層の介在により中間
層の生成による導電性の低下を防ぐ作用により従
来の陰極よりも高電流密度で使用できる電子管陰
極が得られる。
As described above, the present invention involves coating a mixture of alkaline earth metal carbonate powder with scandium oxide powder and uniformly dispersing it on the surface of a base metal provided with a sintered layer of nickel metal powder. Since it is a formed cathode, the action of generating free Ba by the complex oxide generated by scandium oxide dispersed in the electron emitting material layer, the action of increasing the conductivity of the electron emitting material layer, and the intervening sintered layer. As a result, an electron tube cathode that can be used at a higher current density than conventional cathodes can be obtained by preventing a decrease in conductivity due to the formation of an intermediate layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子管陰極の一例を示す縦断
面図、第2図は従来の電子管陰極を示す縦断面図
である。 1…基体金属、2…電子放射物質層、2a…ア
ルカリ土類金属酸化物、2b…酸化スカンジウム
粉末、4…焼結層。なお、図中、同一符号は同一
または相当部分を示す。
FIG. 1 is a longitudinal sectional view showing an example of an electron tube cathode of the present invention, and FIG. 2 is a longitudinal sectional view showing a conventional electron tube cathode. DESCRIPTION OF SYMBOLS 1... Base metal, 2... Electron emitting material layer, 2a... Alkaline earth metal oxide, 2b... Scandium oxide powder, 4... Sintered layer. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケル基体金属の面上に10〜50ミクロンの
厚みで設けられたニツケル粉末の焼結層と、バリ
ウムを含むアルカリ土類金属酸化物中に酸化スカ
ンジウム粉末が分散して含まれたものからなり上
記焼結層上に被着された電子放射物質層とを備え
た電子管陰極。
1 Consists of a sintered layer of nickel powder with a thickness of 10 to 50 microns on the surface of a nickel base metal, and scandium oxide powder dispersed in an alkaline earth metal oxide containing barium. and an electron emissive material layer deposited on the sintered layer.
JP61035670A 1985-07-19 1986-02-19 Cathode for electron tube Granted JPS62193031A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61035670A JPS62193031A (en) 1986-02-19 1986-02-19 Cathode for electron tube
CA000513900A CA1270890A (en) 1985-07-19 1986-07-16 Cathode for electron tube
US06/886,777 US4797593A (en) 1985-07-19 1986-07-17 Cathode for electron tube
DE86305560T DE3689134T2 (en) 1985-07-19 1986-07-18 Cathode for electron tube.
EP86305560A EP0210805B1 (en) 1985-07-19 1986-07-18 Cathode for electron tube
CN86104753.2A CN1004452B (en) 1985-07-19 1986-07-18 Cathod for electric valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035670A JPS62193031A (en) 1986-02-19 1986-02-19 Cathode for electron tube

Publications (2)

Publication Number Publication Date
JPS62193031A JPS62193031A (en) 1987-08-24
JPH0544767B2 true JPH0544767B2 (en) 1993-07-07

Family

ID=12448308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035670A Granted JPS62193031A (en) 1985-07-19 1986-02-19 Cathode for electron tube

Country Status (1)

Country Link
JP (1) JPS62193031A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690907B2 (en) * 1988-02-02 1994-11-14 三菱電機株式会社 Electron tube cathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186128A (en) * 1982-04-22 1983-10-31 Mitsubishi Electric Corp Electron tube cathode
JPS58192237A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Impregnation type cathode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186128A (en) * 1982-04-22 1983-10-31 Mitsubishi Electric Corp Electron tube cathode
JPS58192237A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Impregnation type cathode

Also Published As

Publication number Publication date
JPS62193031A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
KR930011964B1 (en) Electron tube cathode
KR900007751B1 (en) Electron tube cathode and method of the same
JPS645417B2 (en)
JPH0544767B2 (en)
JPH0782800B2 (en) Electron tube cathode
JPS61271732A (en) Electron tube cathode
JPS5949131A (en) Electron tube cathode
JPH0318287B2 (en)
JPS62193032A (en) Cathode for electron tube
JPH0418660B2 (en)
JPS6290821A (en) Cathode for electron tube
JPH0546653B2 (en)
JPH0322320A (en) Electron tube cathode
JP2730260B2 (en) Cathode for electron tube
JP2718389B2 (en) Cathode for electron tube
JPH07107824B2 (en) Electron tube cathode
JPH04220926A (en) Cathode for electron tube
JPS6290819A (en) Cathode for electron tube
JPH09320449A (en) Cathode for electron tube
JPH0113187B2 (en)
JPS6340229A (en) Cathode of electron tube
JPH0760632B2 (en) Electron tube cathode
JPH01169827A (en) Cathode of electron tube and its manufacture
JPS63257153A (en) Cathode for electron tube
JPS63257154A (en) Cathode for electron tube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term