JPH0418660B2 - - Google Patents

Info

Publication number
JPH0418660B2
JPH0418660B2 JP11260185A JP11260185A JPH0418660B2 JP H0418660 B2 JPH0418660 B2 JP H0418660B2 JP 11260185 A JP11260185 A JP 11260185A JP 11260185 A JP11260185 A JP 11260185A JP H0418660 B2 JPH0418660 B2 JP H0418660B2
Authority
JP
Japan
Prior art keywords
cathode
alkaline earth
earth metal
scandium oxide
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11260185A
Other languages
Japanese (ja)
Other versions
JPS61269828A (en
Inventor
Toyoichi Kamata
Kinjiro Sano
Keiji Fukuyama
Masato Saito
Keiji Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60112601A priority Critical patent/JPS61269828A/en
Priority to KR1019860003666A priority patent/KR900007751B1/en
Priority to US06/864,566 priority patent/US4864187A/en
Priority to DE8686303959T priority patent/DE3660878D1/en
Priority to EP86303959A priority patent/EP0204477B1/en
Publication of JPS61269828A publication Critical patent/JPS61269828A/en
Priority to US07/377,516 priority patent/US5015497A/en
Publication of JPH0418660B2 publication Critical patent/JPH0418660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、陰極線管等の電子管に使用される
陰極に関し、特に、その電子放射特性の向上を図
つたものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cathode used in an electron tube such as a cathode ray tube, and is particularly directed to improving the electron emission characteristics thereof.

〔従来の技術〕[Conventional technology]

デイスプレイ装置に使用される高解像度陰極線
管や投与形受像機のような大形受像機用の陰極線
管等は、電子ビームの直径を小さくして解像度の
向上を図り、さらに受像機の大形化に伴つて画明
の明るさを上げるためには陰極から取り出す電流
を大きくする必要があり、このため、高電流密度
で使用できる陰極の要求が高まつている。
High-resolution cathode ray tubes used in display devices and cathode ray tubes for large receivers such as dose-type receivers are designed to improve resolution by reducing the diameter of the electron beam, and also to increase the size of the receiver. In order to increase the brightness of the image, it is necessary to increase the current extracted from the cathode, and therefore there is an increasing demand for a cathode that can be used at a high current density.

ところで、従来の陰極は第1図に示すように陰
極スリーブ1に嵌着したSi,Mg等の還元性元素
を微量含むニツケル基体2に、Ba,Sr,Caから
なる複合アルカリ土類金属炭酸塩粉末を、バイン
ダを含む液中に懸濁させた塗布液を、スプレ等の
方法で塗布し、排気過熱工程およびエージング工
程を施して形成した電子放射性物質層3と、ニツ
ケル基体2を介して電子放射物質層3を加熱する
ヒータ4とで構成されている。
By the way, as shown in Fig. 1, a conventional cathode has a nickel substrate 2 fitted in a cathode sleeve 1 containing a trace amount of reducing elements such as Si and Mg, and a composite alkaline earth metal carbonate consisting of Ba, Sr, and Ca. A coating liquid in which powder is suspended in a liquid containing a binder is applied by a method such as spraying, and electrons are transferred through the electron emitting material layer 3 formed by performing an exhaust heating process and an aging process and the nickel substrate 2. It is composed of a heater 4 that heats the radiation material layer 3.

通常、アルカリ土類金属炭酸塩の塗布液は、た
とえばスプレー塗布に最適な粘度およびニツケル
基体2との接着力を均一にするために、代表的に
はニトロセルロースを酢酸ブチル等の有機溶媒に
溶解したバインダと、酢酸ブチルアルコール等の
有機溶媒とをボールミルポツトで調合して約24時
間ボールミルに掛けて懸濁液としたものを使用す
る。
Usually, the alkaline earth metal carbonate coating solution is typically prepared by dissolving nitrocellulose in an organic solvent such as butyl acetate in order to achieve the optimum viscosity for spray coating and uniform adhesion to the nickel substrate 2. The prepared binder and an organic solvent such as butyl acetate are mixed in a ball mill pot, and a suspension is prepared by ball milling for about 24 hours.

ニツケル基体2上に塗布されたアルカリ土類金
属炭酸塩は、真空排気加熱工程に於いてヒータ4
によつて加熱され、Ba,Sr,Caの三元複合酸化
物に変換される。この時の反応式は(1)式によつて
表わされ、この時発生するCO2ガスは排気ポンプ
により管外に排出される。
The alkaline earth metal carbonate coated on the nickel substrate 2 is heated by the heater 4 in the vacuum evacuation heating process.
is heated and converted into a ternary composite oxide of Ba, Sr, and Ca. The reaction equation at this time is expressed by equation (1), and the CO 2 gas generated at this time is exhausted outside the tube by an exhaust pump.

(Ba,Sr,Ca)CO3 →(Ba,Sr,Ca)O+CO2 ……(1) 排気加熱工程の完了後、さらにエージング工程
に移り、ニツケル基体2は900〜1100℃の高温に
加熱され、(Ba,Sr,Ca)Oからなる三元複合
酸化物は、ニツケル基体2に含有されているSiや
Mgと反応してBa等を遊離生成して電子放射物質
層3が形成される。この反応は(2)式の如くであ
る。
(Ba, Sr, Ca) CO 3 → (Ba, Sr, Ca) O + CO 2 ...(1) After the exhaust heating process is completed, the aging process is further carried out, and the nickel substrate 2 is heated to a high temperature of 900 to 1100°C. , (Ba, Sr, Ca) O is a ternary composite oxide consisting of Si and
The electron emitting material layer 3 is formed by reacting with Mg to liberate Ba and the like. This reaction is shown in equation (2).

BaO+Mg→Ba+MgO ……(2) この反応により、例えば三元複合酸化物のうち
のBaOの一部が還元されて遊離Baが生成し、酸
素欠乏型の半導体となつて700〜800℃の動作温度
に於いて電子放射が活発に行なわれ、陰極線管の
寿命中もこの反応が維持される。
BaO+Mg→Ba+MgO...(2) Through this reaction, for example, a part of BaO in the ternary composite oxide is reduced to generate free Ba, which becomes an oxygen-deficient semiconductor with an operating temperature of 700 to 800℃. Electron emission is active during this process, and this reaction is maintained throughout the life of the cathode ray tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような方法で製造された従来の陰
極の電子放射物質層3を形成する三元複合酸化物
は半導体構造を形成しているために、高電流を取
り出し時にジユール熱を発生し、三元複合酸化物
の熱的破壊をもたらすという問題点があるため、
使用電流に制限があつた。この発明はこのような
従来の陰極の問題点を解決するためになされたも
ので、高電流を継続して取り出しても寿命中の陰
極電流劣化が少く安定した高電流密度陰極の製造
方法を提供することを目的とする。
However, since the ternary composite oxide forming the electron emitting material layer 3 of the conventional cathode manufactured by such a method has a semiconductor structure, it generates Joule heat when drawing a high current, Due to the problem of thermal destruction of the original composite oxide,
There was a limit to the current that could be used. This invention was made to solve these problems with conventional cathodes, and provides a method for producing a stable high current density cathode with little cathode current deterioration during its life even when high current is continuously drawn. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、大気雰囲気中で800〜1100℃、30
分〜2時間熱処理した酸化スカンジウム粉末を、
三元アルカリ土類金属炭酸塩粉末に0.1〜20重量
%加えて混合して調製した塗布液を陰極のニツケ
ル基体上に塗布し、排気加熱工程およびエージン
グ工程を施して熱電子放射物質層を形成したもの
である。
This invention can be applied at 800 to 1100℃ and 30℃ in the air atmosphere.
Scandium oxide powder heat-treated for minutes to 2 hours,
A coating solution prepared by adding 0.1 to 20% by weight to ternary alkaline earth metal carbonate powder and mixing is applied onto the nickel substrate of the cathode, and subjected to an exhaust heating process and an aging process to form a thermionic emissive material layer. This is what I did.

〔作用〕[Effect]

電子放射物質層を形成する三元アルカリ土類金
属酸化物中に分散している酸化スカンジウム粉末
は、電子放射物質層の導電性を高めるとともに、
アルカリ土類金属酸化物と反応して生成された複
合酸化物、例えばBa3Sc4O9が陰極の作動中に熱
分解を起して遊離Baを生成し、熱電子の放射を
増大させる作用を作う。
The scandium oxide powder dispersed in the ternary alkaline earth metal oxide that forms the electron emitting material layer increases the conductivity of the electron emitting material layer, and
A complex oxide produced by reacting with an alkaline earth metal oxide, such as Ba 3 Sc 4 O 9 , undergoes thermal decomposition during operation of the cathode to produce free Ba, which increases the emission of thermoelectrons. make

〔発明の実施例〕[Embodiments of the invention]

この発明は、電子放射特性に有効とされる種々
の物質について実験した結果、大気雰囲気中で熱
処理した酸化スカンジウム粉末をアルカリ土類金
属炭酸塩に混合した懸濁液を用いて、従来と同じ
方法で陰極のニツケル基体2上に塗布し、その陰
極基体を過熱してアルカリ土類金属炭酸塩を酸化
物に変化させる排気加熱工程、さらに900℃〜
1100℃に過熱してアルカリ土類金属酸化物に酸化
スカンジウムの複合酸化物を形成させるエージン
グ工程を施して製造した陰極が安定した初期電子
放射特性を有し、かつ、電流加速寿命試験に於て
も安定した寿命特性を示すことを発見して完成し
たものである。
As a result of experiments on various substances that are effective for electron emission properties, this invention was developed using the same method as before, using a suspension of scandium oxide powder heat-treated in the atmosphere and mixed with alkaline earth metal carbonate. The cathode is coated on the nickel substrate 2 of the cathode, and the cathode substrate is heated to convert the alkaline earth metal carbonate into an oxide.
The cathode manufactured by heating to 1100°C and undergoing an aging process to form a composite oxide of scandium oxide on alkaline earth metal oxide has stable initial electron emission characteristics, and also has stable initial electron emission characteristics in a current accelerated life test. It was completed after discovering that the same showed stable life characteristics.

以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.

酸化スカンジウム粉末を大気雰囲気中で1000℃
で1時間の熱処理を行なう。次にこの酸化スカン
ジウム粉末を、予め調整したアルカリ土類金属炭
酸塩懸濁液に含まれているアルカリ土類金属炭酸
塩に対して1重量%、5重量%および10重量%の
重量比でそれぞれ混合し、ボールミルに掛けて酸
化スカンジウム粉末をよく分散させて塗布液を調
整する。次にこれらの塗布液をそれぞれニツケル
基体2上にスプレ法によつて塗布する。塗布厚さ
はニツケル基体2の直径が2mmの場合、60〜
100μmが好適である。ついでこの陰極を電子銃
(図示せず)に組み込んで、通常の方法で排気加
熱工程、エージング工程を通し陰極線管を製造し
た。
Scandium oxide powder at 1000℃ in air atmosphere
Heat treatment is performed for 1 hour. Next, this scandium oxide powder was added at a weight ratio of 1% by weight, 5% by weight, and 10% by weight, respectively, with respect to the alkaline earth metal carbonate contained in the alkaline earth metal carbonate suspension prepared in advance. Mix and use a ball mill to thoroughly disperse the scandium oxide powder to prepare a coating solution. Next, each of these coating liquids is applied onto the nickel substrate 2 by a spray method. When the diameter of the nickel substrate 2 is 2 mm, the coating thickness is 60~
100 μm is suitable. This cathode was then assembled into an electron gun (not shown) and subjected to an exhaust heating process and an aging process in a conventional manner to produce a cathode ray tube.

第2図はこの実施例の陰極と、大気雰囲気中で
熱処理しない酸化スカンジウムを混合して製造し
た陰極線管との初期電子放射能力を比較した特性
図で、縦軸に最大陰極電流(以下、MIKという)
を示し、横軸に酸化スカンジウムの混合量を示し
たもので、熱処理しない酸化スカンジウムを混合
した陰極線管の特性Aは、混合量の増加に伴つて
MIKの値が低くなつているが、大気雰囲気中で
熱処理をしたこの実施例の陰極線管の特性Bは、
安定した特性を示している。これは第3図に示す
ように、酸化スカンジウムのガス放出特性が、熱
処理によつて少くなつているためと考えられる。
すなわち、熱処理しない酸化スカンジウムは、特
性Aに示すように、酸素を含むガス放出が多いた
めに、エージング工程中に放出された酸素ガスが
遊離Baと結合して酸化Baに変化し、遊離状態の
Baが減少するためであると考えられる。
Figure 2 is a characteristic diagram comparing the initial electron emission ability of the cathode of this example and a cathode ray tube manufactured by mixing scandium oxide that is not heat-treated in the atmosphere. )
, and the horizontal axis shows the amount of scandium oxide mixed.Characteristic A of a cathode ray tube mixed with scandium oxide that is not heat-treated changes as the amount of mixture increases.
Although the MIK value is low, the characteristic B of the cathode ray tube of this example heat-treated in an atmospheric atmosphere is as follows.
It shows stable characteristics. This is thought to be because the gas release characteristics of scandium oxide are reduced by heat treatment, as shown in FIG.
In other words, as shown in characteristic A, scandium oxide that is not heat-treated releases a large amount of oxygen-containing gas, so the oxygen gas released during the aging process combines with free Ba and changes to Ba oxide.
This is thought to be due to a decrease in Ba.

第4図は上記実施例の陰極を使用した陰極線管
と、従来の陰極を使用した陰極線管の電子放射能
力の加速寿命試験結果を示す特性を示す図で、図
中、縦軸はMIKの初期化、横軸は寿命試験時間
である。寿命試験条件は通常の5倍の電流加速寿
命試験で、従来の陰極を用いた陰極線管の特性A
に対し、この実施例の陰極を用いた陰極線管の特
性Bは、非常に安定している。
Figure 4 is a graph showing the characteristics of the accelerated life test results of the electron emission ability of a cathode ray tube using the cathode of the above embodiment and a cathode ray tube using a conventional cathode. The horizontal axis is the life test time. The life test conditions were a current accelerated life test that was 5 times the normal current, and the characteristics of a cathode ray tube using a conventional cathode were A.
On the other hand, the characteristic B of the cathode ray tube using the cathode of this example is very stable.

熱処理を施した酸化スカンジウム粉末の混合量
を、0.1重量%より少なくすると、実用上効果が
認められず、また20重量%より多くすると、初期
特性の低下が著しくなつて実用的でない。
If the amount of heat-treated scandium oxide powder mixed is less than 0.1% by weight, no practical effect will be observed, and if it is more than 20% by weight, the initial properties will deteriorate significantly, making it impractical.

上記実施例では、酸化スカンジウム粉末の熱処
理を、大気雰囲気中で1000℃、1時間とした例を
説明したが、酸素ガスを含む酸化雰囲気中で、加
熱温度は800〜1100℃、加熱時間は30分間以上で
効果が認められ、2時間以上ではほとんど効果上
の相違は認められなかつた。
In the above example, the scandium oxide powder was heat-treated at 1000°C for 1 hour in an air atmosphere, but the heating temperature was 800-1100°C and the heating time was 30°C in an oxidizing atmosphere containing oxygen gas. The effect was observed for more than a minute, and almost no difference in effectiveness was observed for more than 2 hours.

また、上記実施例では、まえもつて調合したア
ルカリ土類金属炭酸塩懸濁液に、熱処理した酸化
スカンジウム粉末を混合して塗布液を調整する例
を説明したが、アルカリ土類金属炭酸塩と、バイ
ンダと、有機溶媒を調合する工程で熱処理を施し
た酸化スカンジウム粉末を加えた後、ボールミル
に掛けて混合して、塗布液を調整しても同様の効
果が得られる。
In addition, in the above example, an example was explained in which a coating liquid was prepared by mixing heat-treated scandium oxide powder into a previously prepared alkaline earth metal carbonate suspension. The same effect can be obtained by adjusting the coating liquid by adding heat-treated scandium oxide powder to the binder and the organic solvent in the step of preparing the mixture, and then mixing the mixture in a ball mill.

さらに上記実施例では、陰極線管に用いた例に
ついて説明したが、撮像管、送信管、放電管等に
適用して同様の効果が得られる。
Further, in the above embodiments, an example in which the present invention is used in a cathode ray tube has been described, but similar effects can be obtained by applying the present invention to an image pickup tube, a transmitting tube, a discharge tube, etc.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明は、酸素ガスを含む酸化
雰囲気中において、800〜1100℃、30分間以上熱
処理を施した酸化スカンジウム粉末を、アルカリ
土類炭酸塩に0.1〜20重量%混合して調整した塗
布液を陰極のニツケル基体上に塗布し、排気加熱
工程とエージング工程とを施して熱電子放射物質
層を形成する陰極の製造方法であつて、この方法
によれば、高電流密度で使用できる陰極が得られ
る。
As described above, this invention is prepared by mixing 0.1 to 20% by weight of scandium oxide powder, which has been heat-treated at 800 to 1100°C for 30 minutes or more in an oxidizing atmosphere containing oxygen gas, to an alkaline earth carbonate. A method for producing a cathode in which a coating solution is applied onto a nickel substrate of the cathode, and a thermionic emissive material layer is formed by performing an exhaust heating step and an aging step, and according to this method, it can be used at a high current density. A cathode is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は陰極線管用陰極の縦断面図、第2図は
この発明の実施例の陰極を使用した陰極線管と、
熱処理していない酸化スカンジウム粉末を用いた
陰極を使用した陰極線管との初期電子放射能力を
比較した特性図、第3図は熱処理した酸化スカン
ジウムと、熱処理していない酸化スカンジウムの
ガス放出特性図、第4図は上記実施例の陰極を使
用した陰極線管と、従来の陰極を使用した陰極線
管の電流加速寿命試験特性図である。 1……陰極スリーブ、2……ニツケル基体、3
……電子放射物質層。
FIG. 1 is a longitudinal sectional view of a cathode for a cathode ray tube, and FIG. 2 is a cathode ray tube using a cathode according to an embodiment of the present invention.
A characteristic diagram comparing the initial electron emission capacity with a cathode ray tube using a cathode using scandium oxide powder that has not been heat-treated. Figure 3 is a gas release characteristic diagram of heat-treated scandium oxide and scandium oxide that has not been heat-treated. FIG. 4 is a current accelerated life test characteristic diagram of a cathode ray tube using the cathode of the above embodiment and a cathode ray tube using a conventional cathode. 1... Cathode sleeve, 2... Nickel substrate, 3
...Electron-emitting material layer.

Claims (1)

【特許請求の範囲】[Claims] 1 800℃〜1100℃の酸化雰囲気中で30分以上熱
処理を施した酸化スカンジウムをアルカリ土類金
属炭酸塩粉末に対して、0.1〜20重量パーセント
の割合で混合した懸濁液を調整し、この懸濁液を
微量の還元性元素を含むニツケルを主体とする陰
極基体上に塗布して薄層を形成し、電子管の製造
工程において、前記陰極基体を過熱してアルカリ
土類金属炭酸塩を酸化物に変化させる排気過熱工
程と、さらに900℃〜1100℃に過熱してアルカリ
土類金属酸化物と酸化スカンジウムの複合酸化物
を形成させるエージング工程とを施すことを特徴
とする電子管陰極の製造方法。
1 Prepare a suspension by mixing scandium oxide, which has been heat-treated for 30 minutes or more in an oxidizing atmosphere at 800℃ to 1100℃, to alkaline earth metal carbonate powder at a ratio of 0.1 to 20% by weight. The suspension is applied onto a cathode substrate mainly made of nickel containing a trace amount of reducing elements to form a thin layer, and during the electron tube manufacturing process, the cathode substrate is heated to oxidize the alkaline earth metal carbonate. A method for manufacturing an electron tube cathode, which comprises performing an exhaust overheating step in which the exhaust gas is converted into a substance, and an aging step in which the exhaust gas is further heated to 900°C to 1100°C to form a composite oxide of an alkaline earth metal oxide and scandium oxide. .
JP60112601A 1985-05-25 1985-05-25 Manufacture of electron tube cathode Granted JPS61269828A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60112601A JPS61269828A (en) 1985-05-25 1985-05-25 Manufacture of electron tube cathode
KR1019860003666A KR900007751B1 (en) 1985-05-25 1986-05-12 Electron tube cathode and method of the same
US06/864,566 US4864187A (en) 1985-05-25 1986-05-16 Cathode for electron tube and manufacturing method thereof
DE8686303959T DE3660878D1 (en) 1985-05-25 1986-05-23 Cathode for electron tube and manufacturing method thereof
EP86303959A EP0204477B1 (en) 1985-05-25 1986-05-23 Cathode for electron tube and manufacturing method thereof
US07/377,516 US5015497A (en) 1985-05-25 1989-07-10 Cathode for electron tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112601A JPS61269828A (en) 1985-05-25 1985-05-25 Manufacture of electron tube cathode

Publications (2)

Publication Number Publication Date
JPS61269828A JPS61269828A (en) 1986-11-29
JPH0418660B2 true JPH0418660B2 (en) 1992-03-27

Family

ID=14590813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112601A Granted JPS61269828A (en) 1985-05-25 1985-05-25 Manufacture of electron tube cathode

Country Status (1)

Country Link
JP (1) JPS61269828A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002969B1 (en) * 1987-06-12 1991-05-11 미쓰비시전기주식회사 Electron tube cathode
JPS63313446A (en) * 1987-06-15 1988-12-21 Mitsubishi Electric Corp Electron tube cathode
JPS63313447A (en) * 1987-06-15 1988-12-21 Mitsubishi Electric Corp Electron tube cathode
JPH0690907B2 (en) * 1988-02-02 1994-11-14 三菱電機株式会社 Electron tube cathode
KR19990033174A (en) 1997-10-23 1999-05-15 손욱 Cathode for electron tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778759A (en) * 1980-11-05 1982-05-17 Mitsubishi Electric Corp Metal halide lamp
JPS57202621A (en) * 1981-06-09 1982-12-11 Mitsubishi Electric Corp Manufacturing method for electron emission substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778759A (en) * 1980-11-05 1982-05-17 Mitsubishi Electric Corp Metal halide lamp
JPS57202621A (en) * 1981-06-09 1982-12-11 Mitsubishi Electric Corp Manufacturing method for electron emission substance

Also Published As

Publication number Publication date
JPS61269828A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
KR900007751B1 (en) Electron tube cathode and method of the same
JPH0418660B2 (en)
JPH0765694A (en) Cathode for electron tube
KR100814838B1 (en) A carbon nanotube emitter composition for field emision device and preparation method of the same
JP2928155B2 (en) Cathode for electron tube
JPH0778550A (en) Oxide cathode
JPS59191226A (en) Cathode body of electron tube or the like
KR100246293B1 (en) Cathode for emitting electrons and manufacturing method thereof
JPH04220924A (en) Cathode for electron tube
JPH07201271A (en) Electron tube
KR100192035B1 (en) Manufacturing method of cathode
US6641450B2 (en) Method of making a cathode for an electron tube
JPH04220925A (en) Cathode for electron tube
JPH0574324A (en) Cathode for electron tube
KR920009323B1 (en) Cathode
KR910007697B1 (en) Method of manufacturing a cathode for color crt
JPH0997561A (en) Manufacture of cathode for electron tube
JPH04220926A (en) Cathode for electron tube
JPH0275128A (en) Electron tube cathode
JPH09320449A (en) Cathode for electron tube
JPH01169827A (en) Cathode of electron tube and its manufacture
JPS6340229A (en) Cathode of electron tube
JPS62193032A (en) Cathode for electron tube
JPH0544767B2 (en)
JPS6338816B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term