JPH0765712A - Manufacture of oxide cathode - Google Patents

Manufacture of oxide cathode

Info

Publication number
JPH0765712A
JPH0765712A JP21582293A JP21582293A JPH0765712A JP H0765712 A JPH0765712 A JP H0765712A JP 21582293 A JP21582293 A JP 21582293A JP 21582293 A JP21582293 A JP 21582293A JP H0765712 A JPH0765712 A JP H0765712A
Authority
JP
Japan
Prior art keywords
cathode
base metal
heat
oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21582293A
Other languages
Japanese (ja)
Other versions
JP3283116B2 (en
Inventor
Kiyomi Koyama
生代美 小山
Sadao Matsumoto
貞雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21582293A priority Critical patent/JP3283116B2/en
Publication of JPH0765712A publication Critical patent/JPH0765712A/en
Application granted granted Critical
Publication of JP3283116B2 publication Critical patent/JP3283116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To retain high reliability even in operation in high current density for a long time by heat-treating a cathode base metal in each atmosphere of nonoxidation property, oxidation property, and nonoxidation property in this order, and sticking an electron emissive material onto the base metal face. CONSTITUTION:A cathode base metal 11 of Ni alloy including a small amount of reducer is press-fitted in a cathode sleeve 15 consisting of nichrome alloy by press working, and it is welded with a laser. This is heat-treated in humidifying hydrogen, and is oxidized selectively for blackening the surface, and then three strip-shaped supports 16 are welded thereto, and it is welded the opening of a cylindrical cathode holder 17, thus a cathode structure is made. Heat treatment is performed for about ten minutes at 700-900 deg.C in nonoxidative atmosphere such as a hydrogen furnace, and next for about ten minutes at 700-850 deg.C in oxidative atmosphere such as air for relaxing the working distortion of the metal 11. Furthermore, it is heat-treated under the same condition as stated above in a hydrogen furnace so as to reduce the surface layer of the metal 11, and then an electron emissive material layer 12 is applied thereon, whereby it is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱電子管に用いられ
る酸化物陰極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide cathode used in a thermionic tube.

【0002】[0002]

【従来の技術】一般に酸化物陰極構体は、図2に示すよ
うに、陰極基体金属11としてニッケルを主体としてこ
れに微量のマグネシウムやケイ素等の還元剤を含む合金
が使用される。この合金により構成された陰極基体金属
は、所要の形状、厚さにプレス成形されたうえで陰極ス
リーブの先端に接合固定される。そしてこの基体金属面
上に、電子放射物質層12となるバリウム、ストロンチ
ウム、カルシウム等からなるアルカリ土類金属炭酸塩粉
末を吹き付け法などで塗布する。この陰極構体を電子管
内に組み込み、排気工程で炭酸塩を加熱分解し、アルカ
リ土類金属酸化物を形成する。このアルカリ土類金属炭
酸塩は、バリウムを主成分とするアルカリ土類金属の複
塩または混合塩であるが、一般的にはバリウムが57重
量%、ストロンチウムが39重量%、カルシウムが4重
量%の複塩である三元炭酸塩が広く用いられている。こ
のアルカリ土類金属酸化物のうち酸化バリウムが電子放
射に寄与する。この酸化バリウムは、酸化物陰極の動作
中に基体金属中を拡散してくる還元剤のマグネシウム、
ケイ素等により、基体金属と酸化物の境界で還元され、
例えばマグネシウムを還元剤として用いた場合、次式の
反応により電子放射に寄与する遊離バリウムが形成され
る。 BaO+Mg → Ba+MgO 従って、酸化物陰極においては、還元剤と電子放射物質
である酸化物との反応が基体金属と酸化物との界面近傍
で進行するため、両者の中間には中間層と呼ばれる反応
物が形成される。
2. Description of the Related Art Generally, in an oxide cathode assembly, as shown in FIG. 2, an alloy containing nickel as a cathode base metal 11 and a small amount of a reducing agent such as magnesium or silicon is used. The cathode base metal made of this alloy is press-molded into a desired shape and thickness and then bonded and fixed to the tip of the cathode sleeve. Then, an alkaline earth metal carbonate powder made of barium, strontium, calcium or the like, which becomes the electron-emitting substance layer 12, is applied onto the metal surface of the base by a spraying method or the like. This cathode structure is incorporated into an electron tube, and the carbonate is thermally decomposed in an exhaust step to form an alkaline earth metal oxide. This alkaline earth metal carbonate is a double salt or mixed salt of alkaline earth metal containing barium as a main component, but generally 57% by weight of barium, 39% by weight of strontium, and 4% by weight of calcium. The ternary carbonate which is a double salt of is widely used. Among these alkaline earth metal oxides, barium oxide contributes to electron emission. This barium oxide is a reducing agent magnesium that diffuses in the base metal during operation of the oxide cathode,
It is reduced at the boundary between the base metal and the oxide by silicon etc.,
For example, when magnesium is used as a reducing agent, free barium that contributes to electron emission is formed by the reaction of the following formula. BaO + Mg → Ba + MgO Therefore, in the oxide cathode, the reaction between the reducing agent and the oxide as the electron-emitting substance proceeds in the vicinity of the interface between the base metal and the oxide. Is formed.

【0003】ところで、このような従来の酸化物陰極に
おいては、陰極基体金属11の両表面部近傍にそれぞれ
微細結晶粒層13,14が生成することが知られてい
る。この微細結晶粒層の生成は、陰極基体金属の表面部
に存在するプレス加工等による加工歪、陰極スリーブの
表面に黒色層を形成するための湿潤水素処理、あるいは
電子放射物質の炭酸塩から酸化物への分解反応のための
加熱工程等に関係していることが判明している。電子放
射物質層12に接しない方の微細結晶粒層14は、電子
放射性能に格別の影響がないので問題にならないが、電
子放射物質層12に接する方の微細結晶粒層13は、陰
極基体金属中の還元剤の電子放射物質層に接する表面へ
の拡散を阻害し、電子放射能力を著しく低下させる。
By the way, in such a conventional oxide cathode, it is known that fine crystal grain layers 13 and 14 are formed in the vicinity of both surface portions of the cathode base metal 11, respectively. This fine crystal grain layer is formed by processing strain existing on the surface of the cathode base metal due to pressing or the like, wet hydrogen treatment for forming a black layer on the surface of the cathode sleeve, or oxidation from a carbonate of an electron emitting substance. It has been found to be related to the heating process for the decomposition reaction into substances. The fine crystal grain layer 14 which is not in contact with the electron emitting material layer 12 does not cause any problem because it has no particular influence on the electron emission performance, but the fine crystal grain layer 13 which is in contact with the electron emitting material layer 12 is the cathode substrate. It inhibits the diffusion of the reducing agent in the metal to the surface in contact with the electron emitting material layer, and significantly reduces the electron emitting ability.

【0004】この微細結晶粒層を除去する方法として、
電子放射物質の塗布前に切削加工によりこの微細結晶粒
層除去する方法、あるいは化学的に研磨する方法等が提
案されているが、完全に除去することは困難である。ま
た、従来の酸化物陰極は、動作時間と共に、前記した微
細結晶粒層の生成が増加し、長時間の安定した電子放射
が得られない場合が多い。その理由は、陰極動作中に電
子放射物質中の酸化バリウムから解離した酸素が陰極基
体金属中へ固溶し微細結晶粒層に達して、まだ安定でな
い微細結晶粒層の成長を促進するものと考えられる。
As a method of removing this fine crystal grain layer,
Although a method of removing this fine crystal grain layer by cutting before applying the electron emitting substance, a method of chemically polishing, or the like has been proposed, it is difficult to completely remove it. Further, in the conventional oxide cathode, the generation of the fine crystal grain layer described above increases with the operation time, and in many cases, stable electron emission for a long time cannot be obtained. The reason is that oxygen dissociated from barium oxide in the electron emitting material during cathode operation reaches the fine crystal grain layer as a solid solution in the cathode base metal and promotes the growth of the still unstable fine crystal grain layer. Conceivable.

【0005】[0005]

【発明が解決しようとする課題】以上述べたような従来
の酸化物陰極の電子放射特性、特に寿命特性は、陰極基
体金属の表面近くに形成される微細結晶粒層の形成量に
大きく依存している。つまり、基体金属中の還元剤の表
面への拡散が、前記微細結晶粒層の形成量の増加により
阻害されて基体金属表面へ達しないため、界面での還元
剤と酸化バリウムとの反応が減少し、遊離バリウムの生
成が著しく低下する。この微細結晶粒層の形成量の増加
は、動作時間および放出電流密度に依存するため、長時
間、高電流密度の電子放射能力を維持することができな
くなる。
The electron emission characteristics, especially the life characteristics of the conventional oxide cathode as described above depend largely on the amount of the fine crystal grain layer formed near the surface of the cathode base metal. ing. That is, the diffusion of the reducing agent in the base metal to the surface is hindered by the increase in the formation amount of the fine crystal grain layer and does not reach the base metal surface, so that the reaction between the reducing agent and barium oxide at the interface is reduced. However, the production of free barium is significantly reduced. Since the increase in the amount of formation of the fine crystal grain layer depends on the operation time and the emission current density, it becomes impossible to maintain the electron emission ability of high current density for a long time.

【0006】この発明は、以上のような従来の酸化物陰
極の製造方法が持つ不都合を解決し、長時間、高電流密
度で動作させても電子放射特性の劣化が少ない酸化物陰
極の製造方法を提供することを目的とする。
The present invention solves the above-mentioned disadvantages of the conventional method for producing an oxide cathode, and the method for producing an oxide cathode has little deterioration in electron emission characteristics even when operated for a long time at a high current density. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】この発明は、ニッケルを
主体してこれに還元剤を微量添加した陰極基体金属を非
酸化性雰囲気中で加熱処理する工程と、その後この陰極
基体金属を酸化性雰囲気中で加熱処理する工程と、その
後この陰極基体金属を非酸化性雰囲気中で加熱処理する
工程と、その後この陰極基体金属面上に電子放射物層を
付着させる工程とを具備する酸化物陰極の製造方法であ
る。
According to the present invention, a step of heat-treating a cathode base metal containing nickel as a main component and a small amount of a reducing agent added thereto in a non-oxidizing atmosphere, and then oxidizing the cathode base metal An oxide cathode comprising a step of heat treatment in an atmosphere, a step of heat treatment of the cathode base metal in a non-oxidizing atmosphere, and a step of subsequently depositing an electron emission layer on the surface of the cathode base metal. Is a manufacturing method.

【0008】[0008]

【作用】この発明によれば、陰極基体金属の表面近くの
微細結晶粒層を安定で強固なものにでき、その結果、従
来の酸化物陰極にみられるような動作時間と共に微細結
晶粒層の形成量が増加することがなく、安定して高電流
密度を長時間取り出すことが可能となる。また、酸化性
雰囲気中で陰極基体金属を加熱処理する工程で陰極基体
金属の表面に超微細な凹凸ができて電子放射物質層との
付着強度が高まり、長時間の動作でも電子放射物質層が
剥がれるおそれはほとんどない。
According to the present invention, the fine crystal grain layer near the surface of the cathode substrate metal can be made stable and strong, and as a result, the fine crystal grain layer can be formed with the operation time as seen in the conventional oxide cathode. It is possible to stably take out a high current density for a long time without increasing the formation amount. Further, in the process of heat-treating the cathode base metal in an oxidizing atmosphere, ultrafine irregularities are formed on the surface of the cathode base metal, and the adhesion strength with the electron emitting material layer is increased, so that the electron emitting material layer can be formed even during long-term operation. There is almost no danger of peeling.

【0009】[0009]

【実施例】以下、図面を参照してこの発明の一実施例を
詳細に説明する。この発明による酸化物陰極構体は図1
に示すように構成される。すなわち、圧延により得られ
る微量の還元剤を含有したニッケル合金からなる陰極基
体金属11を、上下面から挟んでプレス加工により圧縮
してニクロム合金からなる陰極スリーブ15の内径に密
に嵌合できる外径寸法にしてこの陰極スリーブに圧入
し、レーザ溶接により接合固定する。そして、陰極スリ
ーブ15を加湿水素中で熱処理を行って選択酸化し、表
面を黒化する。次に陰極スリーブに3本の短冊状支持体
16を溶接し、これを円筒状のカソードホルダ17の開
口部に溶接して陰極構体を組立てる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The oxide cathode assembly according to the present invention is shown in FIG.
It is configured as shown in. That is, the cathode base metal 11 made of a nickel alloy containing a small amount of a reducing agent obtained by rolling is sandwiched from the upper and lower surfaces and compressed by press working, so that the inner diameter of the cathode sleeve 15 made of a nichrome alloy can be closely fitted. It is made into a diametrical size and press-fitted into this cathode sleeve, and is joined and fixed by laser welding. Then, the cathode sleeve 15 is heat-treated in humidified hydrogen to be selectively oxidized to blacken the surface. Next, the three strip-shaped supports 16 are welded to the cathode sleeve, and this is welded to the opening of the cylindrical cathode holder 17 to assemble the cathode assembly.

【0010】そして、陰極基体金属12の加工歪を緩和
するために、水素炉のような非酸化性雰囲気中で、70
0〜900℃の範囲の温度、例えば800℃で約10分
間の熱処理を施す。次に、空気のような酸化性雰囲気中
で、700〜850℃の範囲の温度、例えば780℃で
約10分間の加熱処理をする。この工程では、陰極基体
金属表面に酸化層ができるが、表面近くの微細結晶粒層
(図2の13,14に相当)も幾分内部酸化する。更
に、水素炉のような非酸化性雰囲気中で、700〜90
0℃の範囲の温度、例えば800℃で約10分間の加熱
処理をし、陰極基体金属の表面酸化層を還元する。そし
て最後に、陰極基体金属面上に電子放射物層12を塗布
して酸化物陰極構体を完成する。
Then, in order to alleviate the processing strain of the cathode base metal 12, the temperature is reduced to 70 in a non-oxidizing atmosphere such as a hydrogen furnace.
Heat treatment is performed at a temperature in the range of 0 to 900 ° C., for example, 800 ° C. for about 10 minutes. Next, heat treatment is performed in an oxidizing atmosphere such as air at a temperature in the range of 700 to 850 ° C., for example, 780 ° C. for about 10 minutes. In this step, an oxide layer is formed on the metal surface of the cathode substrate, but the fine crystal grain layer (corresponding to 13 and 14 in FIG. 2) near the surface is also internally oxidized to some extent. Furthermore, in a non-oxidizing atmosphere such as a hydrogen furnace, 700 to 90
Heat treatment is performed at a temperature in the range of 0 ° C., for example, 800 ° C. for about 10 minutes to reduce the surface oxide layer of the cathode base metal. Finally, the electron emitter layer 12 is applied on the metal surface of the cathode substrate to complete the oxide cathode assembly.

【0011】このように組立てた酸化物陰極構体と、比
較のために水素雰囲気中で700℃で10分間の加熱処
理をして清浄化した後に電子放射物質を塗布した従来の
製法による陰極構体とを各々カラーブラウン管に組込
み、排気工程中で陰極を加熱して電子放射物質を炭酸塩
から酸化物に分解させ、排気管をチップオフした後にエ
ージング工程で陰極の活性化処理を行ない、完成させ
た。そして、各々のブラウン管の長時間動作に伴う電子
放射特性の測定を行った。
An oxide cathode assembly thus assembled and, for comparison, a cathode assembly manufactured by a conventional method in which a heat treatment was performed at 700 ° C. for 10 minutes in a hydrogen atmosphere to clean and then an electron emitting material was applied. Each was incorporated into a color cathode ray tube, the cathode was heated in the exhaust process to decompose the electron emitting substance from the carbonate to oxide, and after the exhaust pipe was chipped off, the cathode was activated in the aging process to complete the process. . Then, the electron emission characteristics of each cathode ray tube with long-term operation were measured.

【0012】図3は、電流密度2.0A/cm2 で長時
間動作をさせた場合の寿命試験結果である。同図に示す
曲線Xはこの発明の酸化物陰極の場合、曲線Yは従来の
酸化物陰極の場合である。この特性比較で明確なよう
に、この発明の酸化物陰極は、従来の酸化物陰極に比べ
て長時間動作による電子放射特性の劣化が非常に少な
く、その効果は動作時間が長くなるほど顕著なことが明
らかである。
FIG. 3 shows the result of a life test when the device was operated at a current density of 2.0 A / cm 2 for a long time. The curve X shown in the figure is for the oxide cathode of the present invention, and the curve Y is for the conventional oxide cathode. As is clear from this characteristic comparison, the oxide cathode of the present invention has much less deterioration in electron emission characteristics due to long-term operation than the conventional oxide cathode, and the effect is more remarkable as the operation time increases. Is clear.

【0013】また,10000時間の動作試験終了後に
本発明の陰極をブラウン管から取出し、陰極基体金属の
表面近傍の微細結晶粒層を観察した結果、従来の陰極基
体金属に見られた微細結晶粒層の増加はほとんど認めら
れなかった。
After the operation test for 10,000 hours, the cathode of the present invention was taken out from the cathode ray tube and the fine crystal grain layer near the surface of the cathode base metal was observed. As a result, the fine crystal grain layer found in the conventional cathode base metal was observed. Almost no increase was observed.

【0014】なお、上述の実施例では、陰極基体金属の
加工歪を緩和するために水素雰囲気中で800℃、10
分間の熱処理を施した場合について説明したが、この処
理温度が700℃よりも低い場合は陰極基体金属の加工
歪の緩和が充分でなく、微細結晶粒層の生成が多く、初
期特性が問題であった。更にこの処理温度が900℃よ
りも高い場合は、微細結晶粒層の生成は少なくなるが、
陰極スリーブの選択酸化層の脱色、その他陰極構成材料
の機械的強度が低下し、問題であった。これらから最適
温度範囲は、上述のように700℃〜900℃の範囲で
あった。
In the above-mentioned embodiment, 800 ° C. and 10 ° C. are used in a hydrogen atmosphere in order to reduce the working strain of the cathode base metal.
Although the case of performing the heat treatment for 1 minute was explained, when the treatment temperature is lower than 700 ° C., the relaxation of the working strain of the cathode base metal is not sufficient, the fine crystal grain layer is often generated, and the initial characteristics are not a problem. there were. Further, when the processing temperature is higher than 900 ° C., the generation of the fine crystal grain layer is reduced,
This is a problem because the selective oxidation layer of the cathode sleeve is decolorized and the mechanical strength of other cathode constituent materials is lowered. From these, the optimum temperature range was 700 ° C. to 900 ° C. as described above.

【0015】また、安定で強固な微細結晶粒層を形成す
る為の酸化性雰囲気中での加熱処理温度は、この処理温
度が700℃よりも低いと、微細結晶粒層の安定化が不
充分であった。また、この処理温度が850℃よりも高
いと、微細結晶粒層の形成位置が深くなり、また縦粒界
の生成が顕著となった。更に,陰極基体金属以外の陰極
構成材料例えば、短冊状の支持体の酸化が顕著になり且
つ機械的強度が低下し、問題であった。これらから、酸
化性雰囲気中での加熱処理温度は、上述のように700
℃〜850℃の範囲が最適であった。
The heat treatment temperature in an oxidizing atmosphere for forming a stable and strong fine crystal grain layer is insufficient if the treatment temperature is lower than 700 ° C. Met. Further, when the treatment temperature was higher than 850 ° C., the formation position of the fine crystal grain layer became deep and the generation of vertical grain boundaries became remarkable. Further, there is a problem in that the cathode constituent materials other than the cathode base metal, for example, the strip-shaped support becomes significantly oxidized and the mechanical strength is lowered. From these, the heat treatment temperature in the oxidizing atmosphere is 700 as described above.
The optimum range was from ℃ to 850 ℃.

【0016】さらに、陰極基体金属及び他の陰極構成材
料の表面酸化層を還元するための水素雰囲気中での加熱
処理温度は、700℃よりも低いと還元が不充分となり
酸化物が残る。また、この熱処理温度が900℃よりも
高いと、陰極スリーブの選択酸化層の脱色、その他陰極
構成材料の機械的強度が低下し、問題であった。したが
って、この加熱処理温度は、上述のように700℃〜9
00℃の範囲が最適であった。
Furthermore, if the heat treatment temperature in the hydrogen atmosphere for reducing the surface oxide layer of the cathode base metal and other cathode constituent materials is lower than 700 ° C., the reduction is insufficient and the oxide remains. Further, if the heat treatment temperature is higher than 900 ° C., there is a problem that the selective oxidation layer of the cathode sleeve is discolored and the mechanical strength of other cathode constituent materials is lowered. Therefore, the heat treatment temperature is 700 ° C. to 9 ° C. as described above.
The range of 00 ° C was optimal.

【0017】なおまた、この発明の酸化物陰極は、ブラ
ウン管に限らず、他の熱電子管に広く使用し得る。ま
た、電子放射物層としては、少量のスカンジウム酸化
物、その他の酸化物等を含めてもよい。
The oxide cathode of the present invention can be widely used not only for cathode ray tubes but also for other thermionic tubes. The electron emission layer may contain a small amount of scandium oxide, other oxides, or the like.

【0018】[0018]

【発明の効果】以上説明したようにこの発明によれば、
高電流密度での長時間動作にすぐれ、安定した信頼度の
高い酸化物陰極を得ることができる。
As described above, according to the present invention,
It is possible to obtain a stable and highly reliable oxide cathode that is excellent in long-time operation at high current density.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係わる陰極構体を示す断面
図である。
FIG. 1 is a sectional view showing a cathode assembly according to an embodiment of the present invention.

【図2】一般的な陰極基体金属部の部分拡大図である。FIG. 2 is a partially enlarged view of a general cathode base metal part.

【図3】この発明及び従来のものの寿命比較特性図であ
る。
FIG. 3 is a life comparison characteristic diagram of the present invention and the conventional one.

【符号の説明】 11…陰極基体金属 12…電子放射物層 15…陰極スリーブDESCRIPTION OF SYMBOLS 11 ... Cathode base metal 12 ... Electron emission layer 15 ... Cathode sleeve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ニッケルを主体してこれに還元剤を微量
添加した陰極基体金属をプレス成形したうえで陰極スリ
ーブに接合固定し、上記陰極基体金属面上にアルカリ土
類金属炭酸塩の電子放射物層を付着させる酸化物陰極構
体の製造方法において、上記陰極基体金属を非酸化性雰
囲気中で加熱処理する工程と、その後前記陰極基体金属
を酸化性雰囲気中で加熱処理する工程と、その後前記陰
極基体金属を非酸化性雰囲気中で加熱処理する工程と、
その後前記陰極基体金属面上に上記電子放射物層を付着
させる工程とを具備することを特徴とする酸化物陰極の
製造方法。
1. Electron emission of an alkaline earth metal carbonate on the metal surface of the cathode base after press-molding a cathode base metal containing nickel as a main component and adding a small amount of a reducing agent to the cathode sleeve. In the method of manufacturing an oxide cathode assembly for depositing a physical layer, a step of heat-treating the cathode base metal in a non-oxidizing atmosphere, a step of heat-treating the cathode base metal in an oxidizing atmosphere, and then the A step of heat-treating the cathode base metal in a non-oxidizing atmosphere,
And then depositing the electron emission layer on the metal surface of the cathode substrate.
【請求項2】 非酸化性雰囲気中で加熱処理する工程で
の処理温度は、700〜900℃の範囲である請求項1
記載の酸化物陰極の製造方法。
2. The treatment temperature in the heat treatment step in a non-oxidizing atmosphere is in the range of 700 to 900 ° C.
A method for producing an oxide cathode as described above.
【請求項3】 酸化性雰囲気中で加熱処理する工程での
処理温度は、700〜850℃の範囲である請求項1記
載の酸化物陰極の製造方法。
3. The method for producing an oxide cathode according to claim 1, wherein the treatment temperature in the step of performing the heat treatment in an oxidizing atmosphere is in the range of 700 to 850 ° C.
JP21582293A 1993-08-31 1993-08-31 Manufacturing method of oxide cathode Expired - Fee Related JP3283116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21582293A JP3283116B2 (en) 1993-08-31 1993-08-31 Manufacturing method of oxide cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21582293A JP3283116B2 (en) 1993-08-31 1993-08-31 Manufacturing method of oxide cathode

Publications (2)

Publication Number Publication Date
JPH0765712A true JPH0765712A (en) 1995-03-10
JP3283116B2 JP3283116B2 (en) 2002-05-20

Family

ID=16678839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21582293A Expired - Fee Related JP3283116B2 (en) 1993-08-31 1993-08-31 Manufacturing method of oxide cathode

Country Status (1)

Country Link
JP (1) JP3283116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059435A1 (en) * 2010-11-05 2012-05-10 Osram Ag Method for producing an electrode for a high-pressure discharge lamp and high-pressure discharge lamp comprising at least one electrode thus produced

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059435A1 (en) * 2010-11-05 2012-05-10 Osram Ag Method for producing an electrode for a high-pressure discharge lamp and high-pressure discharge lamp comprising at least one electrode thus produced
US8876570B2 (en) 2010-11-05 2014-11-04 Osram Gmbh Method for producing an electrode for a high-pressure discharge lamp and high-pressure discharge lamp comprising at least one electrode thus produced

Also Published As

Publication number Publication date
JP3283116B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
CA1270890A (en) Cathode for electron tube
KR900007751B1 (en) Electron tube cathode and method of the same
JP3283116B2 (en) Manufacturing method of oxide cathode
JPH06101299B2 (en) Method for manufacturing impregnated cathode
KR100244175B1 (en) Cathode for cathode ray tube
JPH0318287B2 (en)
JPS61269828A (en) Manufacture of electron tube cathode
JP2835023B2 (en) Manufacturing method of cathode for electron tube
JPH11283485A (en) Negative electrode for electron tube and manufacture of the same
JP3535277B2 (en) Manufacturing method of oxide cathode
JPH0113187B2 (en)
KR920008299B1 (en) A cathode in crt
US6762544B2 (en) Metal cathode for electron tube
JPH0546653B2 (en)
JPS6340229A (en) Cathode of electron tube
US6641450B2 (en) Method of making a cathode for an electron tube
KR950013862B1 (en) Cathod manufacture method
JPH0620588A (en) Impregnated cathode body structure and manufacture thereof
JPH04220924A (en) Cathode for electron tube
KR830002750B1 (en) Direct Heat Cathode for Electron Tubes
KR920010360B1 (en) Imprgnated cathode and method of manufacturing the same
KR920008786B1 (en) Cathode
JPH04220926A (en) Cathode for electron tube
JPH0544767B2 (en)
JPS6074326A (en) Cathode for electron tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees