JPH038373A - Vertical type field-effect transistor - Google Patents

Vertical type field-effect transistor

Info

Publication number
JPH038373A
JPH038373A JP1144910A JP14491089A JPH038373A JP H038373 A JPH038373 A JP H038373A JP 1144910 A JP1144910 A JP 1144910A JP 14491089 A JP14491089 A JP 14491089A JP H038373 A JPH038373 A JP H038373A
Authority
JP
Japan
Prior art keywords
drain
surge
mosfet
diode
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1144910A
Other languages
Japanese (ja)
Inventor
Yoshitomo Takahashi
美朝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1144910A priority Critical patent/JPH038373A/en
Publication of JPH038373A publication Critical patent/JPH038373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make breakdown strength of a surge-absorbing diode lower than that of a MOSFET for improving surge breakdown strength by heightening concentration on the drain surface of a surge absorbing diode forming region formed on the outside of a cell region of a MOSFET. CONSTITUTION:A surge absorbing diode is formed only on the part outside a cell region 2. In the surge absorbing diode 22, a surface part 21 of an N<-> drain 8 is made to have higher concentration than the drain 8 on the outside 6 of a P well layer 9 by means of phosphor diffusion or ion implantation in order to lower breakdown strength than that of a MOSFET. Thereby, a breakdown current due to surge impressed between drain.source is made to flow only to the diode 22 and a bipolar transistor parasitically existing to the MOSFET does not turn on so that surge breakdown strength is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型電界効果トランジスタの特性改善に関し特
に、ドレイン・ソース間に印加されたサージに対し破壊
耐量を大幅に向上できる縦型電界効果トランジスタに関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to improving the characteristics of vertical field effect transistors, and particularly relates to improving the characteristics of vertical field effect transistors, and particularly relates to the improvement of vertical field effect transistors that can significantly improve breakdown resistance against surges applied between the drain and source. Regarding transistors.

〔従来の技術〕[Conventional technology]

従来、この種の縦型電界効果トランジスタは、ドレイン
・ソース間に印加されたサージを吸収するためMOSF
ETのセル領域の外側にダイオードを形成した縦型電界
効果トランジスタがある。
Conventionally, this type of vertical field effect transistor uses a MOSFET to absorb surges applied between the drain and source.
There is a vertical field effect transistor in which a diode is formed outside the cell region of the ET.

第3図(a)は従来の縦型電界効果トランジスタの平面
図である。第3図(a)に於てサージ吸収用ダイオード
1はMOSFETのセル領域2の外側に形成され、ゲー
トパット3.ゲートパット−4、ソースパット5の下部
にも形成される場合がある。
FIG. 3(a) is a plan view of a conventional vertical field effect transistor. In FIG. 3(a), a surge absorbing diode 1 is formed outside the cell region 2 of the MOSFET, and a gate pad 3. It may also be formed under the gate pad 4 and the source pad 5.

第3図(b)は第3図(a)のX−Xに沿った縦断面図
である。サージ吸収用ダイオード19のアノード層9は
MOSFETのPイー3層10と同時あるいはPイー3
層10の形成に先立って形成される。
FIG. 3(b) is a longitudinal sectional view taken along the line XX in FIG. 3(a). The anode layer 9 of the surge absorbing diode 19 is formed at the same time as the PE3 layer 10 of the MOSFET or at the same time as the PE3 layer 10 of the MOSFET.
It is formed prior to the formation of layer 10.

ドレイン・ソース間耐圧が30Vを超える場合、ドレイ
ン・ソース間耐圧は主にN−ドレイン8の抵抗率及び厚
さにより決まるため、MOSFET部の耐圧とサージ吸
収用ダイオード19の耐圧はほぼ同程度となる。ドレイ
ン・ソース間耐圧が約80Vの場合N−ドレイン8の抵
抗率は約1Ω口(5X 10 ”/d)、厚さは約12
μmである。
When the drain-source breakdown voltage exceeds 30V, the drain-source breakdown voltage is mainly determined by the resistivity and thickness of the N-drain 8, so the breakdown voltage of the MOSFET section and the surge absorption diode 19 are approximately the same. Become. When the drain-source breakdown voltage is about 80V, the resistivity of N-drain 8 is about 1Ω (5×10”/d), and the thickness is about 12
It is μm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来技術の縦型電界効果トランジスタではサー
ジ吸収用ダイオード19とMO8FET20の耐圧がほ
ぼ等しいので、ドレイン・ソース間にサージが印加され
た場合、サージ吸収用ダイオード19とMO8FET2
0のブレークダウンがほぼ同時に起こり、ブレークダウ
ン電流がMO8FET20にも流りてしまい、MO8F
ET20に寄生的に存在するバイポーラトランジスタ2
1がターンオンン破壊しやすいという欠点がある。
In the conventional vertical field effect transistor described above, the surge absorption diode 19 and the MO8FET 20 have approximately the same breakdown voltage, so when a surge is applied between the drain and source, the surge absorption diode 19 and the MO8FET 2
0 breakdown occurs almost simultaneously, the breakdown current also flows to MO8FET20, and MO8F
Bipolar transistor 2 parasitically present in ET20
The drawback is that 1 is easily destroyed on turn.

なお、通常フレークダウン電流工、による電圧降下(R
11(ベース抵抗)XIB)が約0.6vを超えるとバ
イポーラトランジスタ21がターンオンンてしまう。バ
イポーラトランジスタは熱暴走に対し正の温度係数を持
つため1個のMO8FETセルで寄生バイポーラトラン
ジスタがターンオンンてしまうと電流集中、熱暴走が起
こり破壊してしまう。
Note that the voltage drop (R
11 (base resistance) XIB) exceeds about 0.6V, the bipolar transistor 21 turns on. Bipolar transistors have a positive temperature coefficient against thermal runaway, so if a parasitic bipolar transistor is turned on in one MO8FET cell, current concentration and thermal runaway occur, resulting in destruction.

〔課題を解決するための手段〕 本発明の縦型電界効果トランジスタは、MOSFETの
セル領域の外側にMOSFETのブレークダウン耐圧よ
りは低いサージ吸収用ダイオードを有している。
[Means for Solving the Problems] The vertical field effect transistor of the present invention includes a surge absorbing diode having a breakdown voltage lower than the breakdown voltage of the MOSFET outside the cell region of the MOSFET.

本発明においては、MOSFETのセル領域の外側のサ
ージ吸収用ダイオード形成領域のドレイン表面の濃度を
高くすることによりサージ吸収用ダイオードの耐圧をM
OSFETの耐圧よりも低くしている。従って、ドレイ
ン・ソース間に印加されたサージによるブレークダウン
電流が主にサージ吸収用ダイオードに流れ、MOSFE
Tに流れないためサージ破壊耐量が大幅向上するという
相違点を有する。
In the present invention, the withstand voltage of the surge absorbing diode is increased by increasing the concentration on the drain surface of the surge absorbing diode forming region outside the cell region of the MOSFET.
It is lower than the withstand voltage of OSFET. Therefore, the breakdown current due to the surge applied between the drain and source mainly flows to the surge absorption diode, and the MOSFE
The difference is that the surge breakdown resistance is greatly improved because it does not flow into the T.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例の平面図である。サー
ジ吸収用ダイオード1はセル領域2の外側の部分にのみ
形成される。
FIG. 1(a) is a plan view of one embodiment of the present invention. The surge absorbing diode 1 is formed only outside the cell region 2.

第1図(b)は第1図(a)のY−Yに沿った縦断面図
である。サージ吸収用ダイオード22はMO3FET2
0よりも耐圧を低くするためPウェル層9の外側6に於
てN−ドレイン8の表面部21をリンの拡散あるいはイ
オン注入によりN−ドレイン8よりも高濃度にされる。
FIG. 1(b) is a longitudinal sectional view taken along YY in FIG. 1(a). The surge absorption diode 22 is MO3FET2
In order to make the withstand voltage lower than zero, the surface portion 21 of the N-drain 8 on the outer side 6 of the P-well layer 9 is made to have a higher concentration than the N-drain 8 by phosphorus diffusion or ion implantation.

第2図(a)〜(g)は本発明の縦型電界効果トランジ
スタを形成するための工程を示す例であり、60V耐圧
の場合ではドレイン基板としては2×10 ”/at!
程度にアンチモンがドープされたN+シリコン基板7に
1Ωcm(約5.6 X 10 ”/CI+り程度にリ
ンがドープされた厚さ約12μmのエピタキシャル層(
N−ドレイン)8が形成されたものが用いられる。
FIGS. 2(a) to 2(g) are examples showing steps for forming a vertical field effect transistor of the present invention. In the case of a withstand voltage of 60V, the drain substrate is 2×10"/at!
An epitaxial layer (approximately 12 μm thick) doped with phosphorus to an extent of 1 Ωcm (approximately 5.6
An N-drain (N-drain) 8 is used.

第2図(a)はN′″ドレイン8の表面部21をN−ド
レイン8よりも高濃度にするための工程であり、フォト
レジスト工程で拡散用の窓23を形成した後リンを打込
みエネルギー120KeV、  ドーズ量7 X 10
 ”/lri程度でイオン注入することにより8層21
を形成する。全ての拡散工程終了後では8層21の表面
濃度は約9 X 10 ”/a+t、深さは約3.0μ
m程度である。
FIG. 2(a) shows a process for making the surface portion 21 of the N''' drain 8 more highly concentrated than the N- drain 8. After forming a diffusion window 23 in a photoresist process, phosphorus is implanted with energy. 120KeV, dose 7 x 10
8 layers 21 by ion implantation at about ”/lri.
form. After all the diffusion steps are completed, the surface concentration of the 8 layers 21 is approximately 9×10”/a+t, and the depth is approximately 3.0μ.
It is about m.

第2図(b)はサージ吸収用ダイオード22の7ノ−F
層9を形成するための工程でフォトレジスト工程で拡散
用の窓24を形成した後ポロンを打込みエネルギー70
KeV、  ドーズ量8X10”/d程度でイオン注入
することによりアノード層9が形成される。7ノ一ド層
9はMO8FETO20のベース抵抗の低減、ドレイン
・ソース間耐圧の向上のためMO8FET20にも形成
される場合もある。全ての拡散工程終了後ではアノード
層90表面濃度は約I X 10 ”/cl、深さは約
4μmである。
Figure 2(b) shows the 7-F of the surge absorbing diode 22.
In the process for forming layer 9, after forming the diffusion window 24 in the photoresist process, poron is implanted with an energy of 70
The anode layer 9 is formed by ion implantation at a KeV dose of about 8×10”/d.The anode layer 9 is also formed in the MO8FET20 to reduce the base resistance of the MO8FETO20 and improve the breakdown voltage between the drain and source. After all the diffusion steps are completed, the surface concentration of the anode layer 90 is about I x 10 ''/cl, and the depth is about 4 μm.

第2図(c)は厚さ約500人のゲート酸化膜13を選
択的に形成するための工程、第2図(d)はゲート電極
としてのポリシリコン層14を選択するための工程であ
る。ポリシリコン層14は5X I Q ”/a&程度
にリンをドープした厚さ約0.6μのN形のものが用い
られる。
FIG. 2(c) shows a process for selectively forming a gate oxide film 13 with a thickness of approximately 500 nm, and FIG. 2(d) shows a process for selecting a polysilicon layer 14 as a gate electrode. . The polysilicon layer 14 is of N type and has a thickness of about 0.6 μm and is doped with phosphorus to about 5X I Q ”/a&.

第2図(d)はMO8FET20のベース層10を形成
するための工程でありポーンを打込みエネルギー約70
KeV、  ドーズ量約8X10”/C11!のイオン
注入後窒素雰囲気で温度1200℃で約1時間の押込み
を行うことによりベース層10を形成する。この場合ベ
ース層10の表面濃度は約5 X 10 ′7/ant
、深さ約3.5 μmである。
FIG. 2(d) shows the process for forming the base layer 10 of the MO8FET 20, in which a pawn is implanted with an energy of about 70%.
The base layer 10 is formed by implanting KeV ions at a dose of about 8×10”/C11! and then indenting in a nitrogen atmosphere at a temperature of 1200° C. for about 1 hour. In this case, the surface concentration of the base layer 10 is about 5×10 '7/ant
, the depth is approximately 3.5 μm.

第2図(e)はソース層11を選択的に形成するための
工程であり、フォトレジスト工程により、アルミニウム
あるいは酸化膜あるいはポリシリコンが選択的に残され
、イオン注入あるいは拡散のマスク材として用いられる
。ソース層11はリンを打込みエネルギー約80KeV
、  ドーズ量的5X 1016/cdのイオン注入後
窒素雰囲気で温度的1000℃で約30分アニールして
形成される。
FIG. 2(e) shows a process for selectively forming the source layer 11, in which aluminum, oxide film, or polysilicon is selectively left in the photoresist process, and is used as a mask material for ion implantation or diffusion. It will be done. The source layer 11 is implanted with phosphorus with an energy of approximately 80 KeV.
After ion implantation at a dose of 5×10 16 /cd, annealing is performed at a temperature of 1000° C. for about 30 minutes in a nitrogen atmosphere.

この場合ソース層11の表面濃度は約lXl0”/−1
深さは約1.0μmである。
In this case, the surface concentration of the source layer 11 is approximately lXl0''/-1
The depth is approximately 1.0 μm.

第2図(「)は層間絶縁膜15、及びコンタクトホール
を形成するための工程で層間絶縁膜15としてはリンを
8モル程度含んだ厚さ約50000程度の酸化膜をCV
Dにより形成したものを用いる。またコンタクトホール
はウェットあるいはドライエツチングによる酸化膜エツ
チングにより形成される。
Figure 2 () shows a process for forming an interlayer insulating film 15 and a contact hole.As the interlayer insulating film 15, an oxide film with a thickness of about 50,000 and containing about 8 moles of phosphorus is used.
The one formed by D is used. Further, the contact hole is formed by etching the oxide film by wet or dry etching.

第2図(g)はソース電極としてのアルミニウム16、
EQ17.ゲート電極(ポリシリコンゲートとコンタク
トされている)を選択的に形成する工程であり、アルミ
ニウムを蒸着あるいはスパッタにより厚さ約3.5μm
つけて選択的にエツチングすることにより各電極のパタ
ーンを得る。この後裏面にドレイン電極18としてAg
を主体とする金属層が蒸着により形成される。
FIG. 2(g) shows aluminum 16 as a source electrode,
EQ17. This is a process of selectively forming the gate electrode (contacted with the polysilicon gate), and aluminum is deposited or sputtered to a thickness of approximately 3.5 μm.
A pattern of each electrode is obtained by selectively etching the electrode. After this, Ag is placed on the back side as the drain electrode 18.
A metal layer mainly consisting of is formed by vapor deposition.

なお、以上はnチャネル型の縦型電界効果トランジスタ
の場合について述べたが、本発明はpチャネル型の縦型
電界効果トランジスタについても同様に適用できる。
Note that although the case of an n-channel type vertical field effect transistor has been described above, the present invention can be similarly applied to a p-channel type vertical field effect transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、MOSFETのセル領域
の外側にMOSFETのドレイン・ソース間耐圧よりも
低いサージ吸収用ダイオードを内蔵させることにより、
ドレイン・ソース間に印加されたサージによるブレーク
ダウン電流をこのサージ吸収用ダイオードのみに流すこ
とにより、MOSFETに寄生的に存在するバイポーラ
トランジスタがターンオンせず、サージ破壊耐量を大幅
に向上できる効果がある。
As explained above, the present invention has a built-in surge absorbing diode outside the cell area of the MOSFET, which has a lower breakdown voltage between the drain and source of the MOSFET.
By allowing the breakdown current caused by the surge applied between the drain and source to flow only through this surge absorbing diode, the bipolar transistor that exists parasitically in the MOSFET will not be turned on, and the surge breakdown capability can be greatly improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の縦型電界効果トランジスタの平
面図、第1図(b)は第1図(a)のY−Y線に沿った
縦断面図、第2図(a)〜(g)は本発明の縦型電界効
果トランジスタの製造工程を示す縦断面図、第3図(a
)は従来の縦型電界効果トランジスタの平面図、第3図
(b)は第3図(a)のX−X線に沿った縦断面図であ
る。 1・・・・・・サージ吸収用ダイオード(従来例)、2
・・・・・・MOSFETOのセル領域、3・・・・・
・ゲートバット、4・・・・・・ゲートフィンガー 5
・・・・・・ソースバット、6・・・・・・サージ吸収
用ダイオード(本発明)、7・・・・・・N+ドレイン
、8・・・・・・N−ドレイン、9・・・・・・Pウェ
ル(7ノード)、9’・・・・・・pウェル、lO・・
・・・・Pベース、11・・・・・・N+ソース、11
′・・・・・・N層層、12・・・・・・酸化膜、13
・・・・・・ゲート酸化膜、14・・・・・・ゲート電
極(ポリシリコン)、15・・・・・・層間絶縁膜、1
6・・・・・・ソース電極、17・・・・・・EQR(
Pアルミニウム)、18・・・・・・ドレイン電極(A
g)、19・・・・・・サージ吸収用ダイオード(従来
例)、20・・・・・・MOSFET部、21・・・・
・・N層、22・・・・・・サージ吸収用ダイオード(
本発明)。
FIG. 1(a) is a plan view of a vertical field effect transistor of the present invention, FIG. 1(b) is a vertical cross-sectional view along the Y-Y line of FIG. 1(a), and FIG. 2(a) ~(g) are vertical cross-sectional views showing the manufacturing process of the vertical field effect transistor of the present invention, and FIG.
) is a plan view of a conventional vertical field effect transistor, and FIG. 3(b) is a longitudinal sectional view taken along the line X--X in FIG. 3(a). 1... Surge absorption diode (conventional example), 2
...MOSFETO cell area, 3...
・Gate bat, 4...Gate finger 5
... Source bat, 6 ... Surge absorption diode (present invention), 7 ... N+ drain, 8 ... N- drain, 9 ... ...P well (7 nodes), 9'...p well, lO...
...P base, 11...N+ source, 11
'...N layer, 12...Oxide film, 13
......Gate oxide film, 14...Gate electrode (polysilicon), 15...Interlayer insulating film, 1
6... Source electrode, 17... EQR(
P aluminum), 18... Drain electrode (A
g), 19... Surge absorption diode (conventional example), 20... MOSFET section, 21...
...N layer, 22...Surge absorption diode (
present invention).

Claims (1)

【特許請求の範囲】[Claims] 表面にソース及びゲート、裏面にドレインを有する縦型
電界効果トランジスタに於て前記ソース及び前記ドレイ
ンの間に縦型電界効果トランジスタよりは耐圧の低いダ
イオードを内蔵した事を特徴とする縦型電界効果トラン
ジスタ
A vertical field effect transistor having a source and a gate on the front surface and a drain on the back surface, characterized in that a diode having a lower breakdown voltage than that of the vertical field effect transistor is built in between the source and the drain. transistor
JP1144910A 1989-06-06 1989-06-06 Vertical type field-effect transistor Pending JPH038373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144910A JPH038373A (en) 1989-06-06 1989-06-06 Vertical type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144910A JPH038373A (en) 1989-06-06 1989-06-06 Vertical type field-effect transistor

Publications (1)

Publication Number Publication Date
JPH038373A true JPH038373A (en) 1991-01-16

Family

ID=15373123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144910A Pending JPH038373A (en) 1989-06-06 1989-06-06 Vertical type field-effect transistor

Country Status (1)

Country Link
JP (1) JPH038373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472771A (en) * 1990-07-13 1992-03-06 Matsushita Electron Corp Mosfet
US5313088A (en) * 1990-09-19 1994-05-17 Nec Corporation Vertical field effect transistor with diffused protection diode
US6855981B2 (en) 2001-08-29 2005-02-15 Denso Corporation Silicon carbide power device having protective diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472771A (en) * 1990-07-13 1992-03-06 Matsushita Electron Corp Mosfet
US5313088A (en) * 1990-09-19 1994-05-17 Nec Corporation Vertical field effect transistor with diffused protection diode
US6855981B2 (en) 2001-08-29 2005-02-15 Denso Corporation Silicon carbide power device having protective diode

Similar Documents

Publication Publication Date Title
US6380004B2 (en) Process for manufacturing radhard power integrated circuit
US7408234B2 (en) Semiconductor device and method for manufacturing the same
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
TW200525753A (en) Insulation gate type semiconductor device and its manufacture method
JPS6243549B2 (en)
US7008865B2 (en) Method of manufacturing a semiconductor device having a high breakdown voltage and low on-resistance
JP2004508717A (en) Method and device for reducing gate induced drain leakage (GIDL) current in thin gate oxide MOSFETs
JPS634683A (en) Field-effect transistor
JPH038373A (en) Vertical type field-effect transistor
JPH09232458A (en) Bicmos device and its manufacture
JP2004039773A (en) Semiconductor device and its manufacturing method
RU2361318C2 (en) Method of making power insulated-gate field-effect transistors
JPH03104169A (en) Semiconductor device
US6878997B2 (en) Compensation component and method for fabricating the component
JPH09153609A (en) Vertical insulated gate field-effect transistor
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH06252345A (en) Manufacture of semiconductor integrated circuit
JPH03214740A (en) Manufacture of vertical type mos field effect transistor
JP3126082B2 (en) Complementary transistor and method of manufacturing the same
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JPH02105469A (en) Mis type semiconductor device
JP2002184784A (en) Vertical double diffusion mos fet and method of manufacturing the same
JPS63281470A (en) Semiconductor device
JPH0766398A (en) High withstand voltage semiconductor device
JPS6261370A (en) Gaas field effect semiconductor device