JPH0381654A - Radiation measuring instrument - Google Patents

Radiation measuring instrument

Info

Publication number
JPH0381654A
JPH0381654A JP1215981A JP21598189A JPH0381654A JP H0381654 A JPH0381654 A JP H0381654A JP 1215981 A JP1215981 A JP 1215981A JP 21598189 A JP21598189 A JP 21598189A JP H0381654 A JPH0381654 A JP H0381654A
Authority
JP
Japan
Prior art keywords
radiation
sample
sample holder
holder
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1215981A
Other languages
Japanese (ja)
Inventor
Shozo Kobayashi
祥三 小林
Hiroshi Idekawa
井出川 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1215981A priority Critical patent/JPH0381654A/en
Publication of JPH0381654A publication Critical patent/JPH0381654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To detect radiation from a radiation source directly without any influence of a sample holder and to easily and accurately return the holder to its original position by allowing the sample holder of a goniometer to slant freely. CONSTITUTION:When a rotation introducing machine 11 is rotated, a sample holder setting base 19 provided to a goniometer part 5 in a vacuum container 1 slants about a rotor 12A, etc., through an eccentric shaft 11A against the elastic force of a spring 19D and the sample holder 21 for a sample 10 to be measured on the base 19 slants. Then the radiation X rays from an X-ray genera tion part provided on the internal wall of vacuum chamber 1 provided with an observation hold 1A are made incident directly on a detection part 7 without being affected by the holder 21 and detected. When the introducing machine 11 reverses, the holder 21 is easily and accurately returned to its original posi tion with the elastic force of the spring 19D and the whole constitution is re duced in size.

Description

【発明の詳細な説明】 し発明の目的1 (産業上の利用分野) 本発明は、X線等の放射線を測定する放射線測定装置に
関し、特にX線露光装置、X線顕微鏡、X線望遠鏡、及
び一般のX線分析装置等に使用されるミラー及びモノク
ロメータ等の反射率測定装置等におけるダイレクトビー
ムの測定方法を改善した放射線測定装置に関する。
Detailed Description of the Invention Object of the Invention 1 (Industrial Application Field) The present invention relates to a radiation measuring device that measures radiation such as X-rays, and in particular to an X-ray exposure device, an X-ray microscope, an X-ray telescope, The present invention also relates to a radiation measurement device that improves the direct beam measurement method in reflectance measurement devices such as mirrors and monochromators used in general X-ray analysis devices.

(従来の技術) 従来の放射線測定装置の一例を第4図を参照して説明す
る。
(Prior Art) An example of a conventional radiation measuring device will be described with reference to FIG. 4.

この従来の放射線測定装置は、真空容器101中に図示
しないX線発生部、X線検出部107、ゴニオメータ部
105を配設し、またゴニオメータ部105の下部には
該ゴニオメータ部105及びX線検出部107を水平方
向に回転駆動する駆動部109が設けられ、上部には該
ゴニオメータ部105上部の突起部121Aと掛合して
被測定試料10を保持づる当該ゴニオメータ部105の
ホルダ部121を上方に引き上げる操作軸111が取り
付けられている。
This conventional radiation measuring device has an X-ray generating section (not shown), an X-ray detecting section 107, and a goniometer section 105 (not shown) arranged in a vacuum container 101, and the goniometer section 105 and the X-ray detecting section 105 are disposed below the goniometer section 105. A driving part 109 is provided to rotate the part 107 in the horizontal direction, and the holder part 121 of the goniometer part 105, which holds the sample 10 to be measured by engaging with the projection part 121A on the upper part of the goniometer part 105, is provided at the upper part. A lifting operation shaft 111 is attached.

ダイレクトビームの測定の際には、この操作軸111を
引き上げて、対向するX線発生部とX線検出部107と
の間から被測定試料10を保持するホルダ部121を、
X線発生部から放射されたX線が直接X線検出部107
へ人則し得る高さまで上方へ移動する。また、ダイレク
トビームの測定が終了したときには操作軸111を押し
下げて当該ホルダ部121を元の位置に戻す。
During direct beam measurement, the operation shaft 111 is pulled up and the holder section 121 that holds the sample to be measured 10 is moved from between the opposing X-ray generating section and the X-ray detecting section 107.
X-rays emitted from the X-ray generating section are directly transmitted to the X-ray detecting section 107
Move upward to a comfortable height. Furthermore, when the direct beam measurement is completed, the operating shaft 111 is pushed down to return the holder portion 121 to its original position.

このとき、前記ホルダ部121下部の突出部121Bを
ゴニオメータ部105下部のθ軸113上面に設けられ
るガイド穴113Aに嵌合すると共に、ホルダ部121
の側面の一部をθ軸113上の基準板113Bに当接さ
せてホルダ部121、すなわち被測定試料10の位置決
めを行なうようにしている。
At this time, the protruding part 121B at the lower part of the holder part 121 is fitted into the guide hole 113A provided on the upper surface of the θ axis 113 at the lower part of the goniometer part 105, and the holder part 121
The holder portion 121, that is, the sample to be measured 10 is positioned by a part of the side surface of the holder portion 121 being brought into contact with a reference plate 113B on the θ axis 113.

(発明が解決しようとする課題〉 しかしながら、上述した従来の放射線測定装置において
は、被測定試料10の表面の所定の部分をゴニオメータ
部105のθ軸113の回転中心と一致させ、かつXs
!発生部とX線検出部107によって構成される測定系
のゼロライン上に合致させる必要がある。そのため、位
置決めを行なうための突出部121Bとガイド穴113
A、及び基準板113Bの加工には高い精度が要求され
、さらに初期設定及びダイレクトビーム設定後の再設定
等の際の操作軸111の操作には熟練が要求された。
(Problems to be Solved by the Invention) However, in the conventional radiation measuring device described above, a predetermined portion of the surface of the sample to be measured 10 is aligned with the rotation center of the θ axis 113 of the goniometer section 105, and
! It is necessary to match the zero line of the measurement system constituted by the generation section and the X-ray detection section 107. Therefore, the protrusion 121B and guide hole 113 for positioning
A and the reference plate 113B require high accuracy, and skill is required for operating the operating shaft 111 during initial setting and resetting after direct beam setting.

一方、上記操作軸111の操作を容易にするために突出
部121 +3とガイド穴113A及び基準板113B
との位置関係に、いわゆる遊びを持たせることが考えら
れる。しかしながら、この遊びによってゼロラインに対
して被測定試料10の表面位置にゴニオメータ部105
のθ軸113の回転中心に対して回転方向の遊びを生ず
る。そのため、被測定試料10の回転角θに対するX線
検出器の回転角2θに角度誤差が生じ、ゴニオメータの
精度を高めることは困難であった。
On the other hand, in order to facilitate the operation of the operation shaft 111, a protrusion 121 +3, a guide hole 113A and a reference plate 113B are provided.
It is conceivable to give so-called play in the positional relationship between the two. However, due to this play, the goniometer section 105 is located at the surface position of the sample to be measured 10 with respect to the zero line.
This causes play in the rotational direction with respect to the center of rotation of the θ-axis 113. Therefore, an angular error occurs in the rotation angle 2θ of the X-ray detector with respect to the rotation angle θ of the sample to be measured 10, making it difficult to improve the accuracy of the goniometer.

また、ダイレクトビームの測定の際には被測定試料10
を保持するホルダ部121を引き上げるようにしている
ため、該ホルダ部121がXa発生部から放射される放
射線に影響を与えない位置まで引き上げることのできる
高さを有することが当該真空容器101に要求された。
In addition, when measuring the direct beam, the sample to be measured 10
Since the holder part 121 holding the It was done.

さらに当該真空容器101を大型化することによって、
IOA以下から10OAまでの軟X線を全反射させる際
のXIiの減衰を防ぐに十分な到達真空度(通常10′
4〜1O−7Torr)を得るためにより大きな排気能
力を有するポンプを使用しなければならず、装置の大型
化と共にコストの上昇を招来するところとなった。
Furthermore, by enlarging the vacuum container 101,
The ultimate vacuum (usually 10'
In order to obtain a pressure of 4 to 1 O-7 Torr), a pump with a larger exhaust capacity must be used, leading to an increase in the size of the device and the cost.

本発明は、上記事情に鑑みてなされたもので、その目的
としては、ダイレクトビーム測定後のゴニオメータ部の
再設定が容易かつ高精度に行ない得ると共に装置を小型
化することのできる放射線測定装置を提供することにあ
る。
The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a radiation measuring device in which the goniometer section can be easily and accurately reset after direct beam measurement, and the device can be miniaturized. It is about providing.

[発明の構成] (課題を解決するための手段〉 上記目的を達成するため、本発明の放射線測定装置は、
放射線源から放射線を放射して、ゴニオメータ部の保持
手段に保持される被測定体での反射放射線を検出手段で
検出し測定する族9Ali!測定装置においで、前記放
射線源から放射された放射線が当該被測定体に影響され
ることなく検出手段に入射される位置に、前記保持手段
を傾動する傾動手段を有して構成した。
[Structure of the invention] (Means for solving the problem) In order to achieve the above object, the radiation measuring device of the present invention has the following features:
Group 9Ali! which emits radiation from a radiation source and detects and measures the reflected radiation from the object to be measured held by the holding means of the goniometer section using the detection means! The measuring device is configured to include a tilting means for tilting the holding means to a position where the radiation emitted from the radiation source is incident on the detection means without being influenced by the object to be measured.

(作用) 本発明における放射線測定装置においては、放射線源か
ら検出手段に向けて放射線を放射し、該放射線源と検出
手段との間に介在するゴニオメータ部の被測定体表面で
反則した放I31線を検出手段で検出するようにしてい
る。またダイレクトビームの測定の際には傾動手段で前
記被測定体を保持する保持手段を傾動して、当該被測定
体等が放DAwA源から放射される放tJA線が当該被
測定体等によって影響されることなく検出されるように
している。
(Function) In the radiation measurement device of the present invention, radiation is emitted from the radiation source toward the detection means, and the emitted I31 rays are emitted by the surface of the object to be measured in the goniometer section interposed between the radiation source and the detection means. is detected by a detection means. In addition, when measuring the direct beam, the holding means that holds the object to be measured is tilted by the tilting means, so that the object to be measured is affected by the radiation tJA rays emitted from the DAwA source. This allows it to be detected without being detected.

(実施例) 以下、本発明を図面を用いて詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の放射線測定装置に係る一実施例の断面
を示す正面図、第2図は同側面図である。
FIG. 1 is a front view showing a cross section of an embodiment of the radiation measuring device of the present invention, and FIG. 2 is a side view of the same.

本実施例のt1i銅線測定装置は、真空容器1と、この
真空容器に配設される放射線源としてのX線発生部3、
ゴニオメータ部5、検出部7及び駆動部9によって構成
される。
The t1i copper wire measuring device of this embodiment includes a vacuum container 1, an X-ray generating section 3 as a radiation source disposed in the vacuum container,
It is composed of a goniometer section 5, a detection section 7, and a drive section 9.

真空容器1は、容器内を真空状態に保持すると共に放射
線等を遮蔽するように構成される。また、この真空容器
1の一側側壁面には容器内部を観察する観察窓IAが窓
部を開閉自在にして設けられ、この観側1Aに対向する
側壁面下部には当該側壁面を貢′AI、て後述する回転
導入機11が設けられる。さらに容器底面には円筒ウオ
ームギヤによって構成される駆動部9が配設される。こ
の駆動部9は容器内のゴニオメータ部5を回転駆動する
θ軸駆動部9Aと、検出部7を回転駆動する20軸駆動
部9Bがそれぞれの回転中心を同一にして構成される。
The vacuum container 1 is configured to maintain the inside of the container in a vacuum state and to shield radiation and the like. In addition, an observation window IA for observing the inside of the vacuum vessel 1 is provided on one side wall surface of the vacuum vessel 1 so as to be openable and closable. AI is provided with a rotation introduction machine 11 which will be described later. Furthermore, a drive section 9 constituted by a cylindrical worm gear is disposed on the bottom of the container. This drive unit 9 is composed of a θ-axis drive unit 9A that rotationally drives the goniometer unit 5 in the container, and a 20-axis drive unit 9B that rotationally drives the detection unit 7, each having the same rotation center.

X線発生部3は、真空容器1の前記観察窓1Aの設けら
れる側壁に隣接する側壁の内側面に固設され、拡がりの
少ない、いわゆるペンシルビーム状のX線を略水平方向
に放射する。
The X-ray generating section 3 is fixed to the inner surface of the side wall of the vacuum container 1 adjacent to the side wall where the observation window 1A is provided, and emits X-rays in a so-called pencil beam shape with little spread in a substantially horizontal direction.

次に、ゴニオメータ部5の構成を説明する。Next, the configuration of the goniometer section 5 will be explained.

θ軸13は、前記θ軸駆動部9aによって回動される円
盤状の回転軸体であって、θ軸台15を載置する。
The θ-axis 13 is a disk-shaped rotating shaft body rotated by the θ-axis drive unit 9a, and on which the θ-axis stand 15 is placed.

θ軸台15は前記θ軸13上に固設される円柱体であっ
て、上面にはコロ17A、17Bを保持するための溝が
所定の距離だけ離間して平行に刻設される。
The θ-axis stand 15 is a cylindrical body fixed on the θ-axis 13, and grooves for holding the rollers 17A and 17B are carved in parallel on the upper surface at a predetermined distance apart.

試料ホルダ設定台19は、コロ17A、17Bを介して
θ軸台15上に載置されており、下面には回転導入機1
1側のコロ17Aに対向する位置にコロ17Aを上側か
ら保持するための溝が刻設される。
The sample holder setting table 19 is placed on the θ-axis table 15 via rollers 17A and 17B, and the rotation introduction device 1 is mounted on the lower surface.
A groove for holding the roller 17A from above is carved at a position facing the roller 17A on the first side.

また、第2図を参照するに試料ホルダ設定台1つの左右
両側には、ローラ19A、19Bが設けられる。ローラ
19A、19Bは、それぞれ2個の截頭円錐体の底が互
いに結合し、且つ両截頭面の間を貫通する孔を有する、
いわゆるそろばん玉状である。またローラ19Aは、該
ローラ19Aの孔を試料ホルダ設定台19に直接立設さ
れる軸に回動自在に嵌合して保持される。ローラ19B
は、平行する2枚のプレートの端部が、これに直角をな
すプレートによって連結され、いわゆるコの字形を成す
部材の、該平行する2枚のプレートによって支持される
軸を、該ローラ19Bの孔に回動自在に嵌合させて保持
される。また該コの字部材19Cは、スプリング19D
でローラ19Aの方向へ付勢される。
Further, referring to FIG. 2, rollers 19A and 19B are provided on both left and right sides of one sample holder setting table. Each of the rollers 19A and 19B has two truncated cones whose bottoms are connected to each other, and a hole passing through between the two truncated surfaces.
It has a so-called abacus bead shape. Further, the roller 19A is held by rotatably fitting a hole in the roller 19A to a shaft that stands directly on the sample holder setting table 19. Roller 19B
The ends of two parallel plates are connected by a plate that is perpendicular to the ends, and the shaft of the member forming a U-shape is supported by the two parallel plates of the roller 19B. It is rotatably fitted into the hole and held. Further, the U-shaped member 19C has a spring 19D.
is urged toward the roller 19A.

また試料ホルダ設定台19の左右両側の下面とθ軸13
との間には、それぞれ引張コイルばね19Dが取り付け
られ、試料ホルダ設定台19を下方に付勢する。
In addition, the lower surface of the left and right sides of the sample holder setting table 19 and the θ axis 13
A tension coil spring 19D is attached between the sample holder setting table 19 and the sample holder setting table 19, respectively.

また試料ホルダ設定台19の回転導入機11側端部には
軸受台19Eが突設され、この軸受台19Eには回転導
入機11の先端の偏心軸11Aを保持する軸受9Fが因
゛設される。従って回転導入機11を回すことによって
偏心軸11Aが偏心して回転し、軸受19Fを下側に押
し下げ、試料ホルダ設定台19のコロ17B側をコロ1
7Aを回転中心にして前記引張コイルばね19Dの付勢
に抗して押上げる。
Further, a bearing pedestal 19E is protruded from the end of the sample holder setting table 19 on the side of the rotation introduction device 11, and a bearing 9F for holding the eccentric shaft 11A at the tip of the rotation introduction device 11 is installed on this bearing pedestal 19E. Ru. Therefore, by turning the rotation introduction device 11, the eccentric shaft 11A rotates eccentrically, pushing down the bearing 19F and moving the roller 17B side of the sample holder setting table 19 to the roller 1.
7A as the center of rotation and push up against the bias of the tension coil spring 19D.

試料ホルダ21は、被測定試料10を試料ホルダ21前
面内側の基準面に密着させて被測定試料10表面を含む
平面を前記X線発生部3から放射されるX線の放射中心
に略一致させ、かつ略垂直となるように保持する。また
、被測定試料10を試料ボルダ21の基準面にこの被測
定試料10の厚みに拘らず常に密着させるために、試料
ホルダ21の後部内側に螺嵌されるねじリング23と当
該被測定試料10背面との間に介装されるスプリング2
5によって背面側から押圧する。
The sample holder 21 brings the sample 10 to be measured into close contact with a reference surface inside the front surface of the sample holder 21 so that a plane including the surface of the sample 10 to be measured substantially coincides with the radiation center of the X-rays emitted from the X-ray generating section 3. , and hold it so that it is approximately vertical. In addition, in order to keep the sample to be measured 10 in close contact with the reference surface of the sample boulder 21 regardless of the thickness of the sample to be measured 10, a threaded ring 23 screwed into the rear inner side of the sample holder 21 and a screw ring 23 screwed into the inside of the rear part of the sample holder 21 and Spring 2 interposed between the back and the
5 to press from the back side.

また試料ホルダ21の前記ローラ19A、”19B側の
両側面下部には、当該ローラ19A、19Bと嵌合する
溝が刻設される。
In addition, grooves that fit with the rollers 19A and 19B are carved in the lower portions of both sides of the sample holder 21 on the rollers 19A and 19B sides.

検出部7は、スリット7Aと検出器7Bによって構成さ
れる。検出器7Bに・はマイクロチャンネルプレート等
の任意の検出手段が用いられ、スリット7Aを介して入
射する必要線量のX線の強度を測定する。
The detection section 7 is composed of a slit 7A and a detector 7B. An arbitrary detection means such as a microchannel plate is used as the detector 7B, and the intensity of the required dose of X-rays incident through the slit 7A is measured.

次に本実施例の作用を第1図乃至第3図を参照して説明
する。
Next, the operation of this embodiment will be explained with reference to FIGS. 1 to 3.

まず、試料ホルダ21に被測定試料10を挿入した後、
ねじリング23を螺嵌して、被測定試料10の表面を該
試料ホルダ21前茜内側の基準面に密着させる。この被
測定試料10をセットした試料ホルダ21を試料ホルダ
設定台19上に載置した後、この試料ホルダ21の下部
両側の溝にローラ19A、19Bの突出部を掛合させて
該試料ホルダ21の下部先端部が試料ホルダ設定台19
の基準面に当接するまで移動する。これにより被測定試
料10の表面とX線発生部3から放射されるX線の放射
中心とが略一致する。
First, after inserting the sample 10 to be measured into the sample holder 21,
The screw ring 23 is screwed in to bring the surface of the sample 10 to be measured into close contact with the reference surface inside the front edge of the sample holder 21. After placing the sample holder 21 with the sample 10 set thereon on the sample holder setting table 19, the protrusions of the rollers 19A and 19B are engaged with the grooves on both sides of the lower part of the sample holder 21, and the sample holder 21 is The lower tip is the sample holder setting table 19
Move until it touches the reference surface. As a result, the surface of the sample to be measured 10 and the radiation center of the X-rays emitted from the X-ray generating section 3 substantially coincide.

反射X線を検出づる際には、まず第3図に示すように駆
動部9を駆動して検出部7を被測定試料10を介してX
wA発生部3と則向する位置に移動する。このときのX
線発生部3と検出部7とを結ぶ1:t、4k、すなわち
ゼロラインは被測定試料10の表面と一致する。その後
、駆動部9を順次駆動しつつ測定を行なう。このとき、
被測定試料10がθ度回転する間に、検出部7は20度
回転する。
When detecting reflected X-rays, first drive the drive section 9 as shown in FIG.
Move to a position facing the wA generating section 3. X at this time
1:t, 4k, that is, the zero line connecting the line generating section 3 and the detecting section 7 coincides with the surface of the sample 10 to be measured. Thereafter, measurements are performed while sequentially driving the drive section 9. At this time,
While the sample to be measured 10 rotates by θ degrees, the detection section 7 rotates by 20 degrees.

次にダイレクトビームの測定する場合について説明する
Next, the case of direct beam measurement will be explained.

回転導入機11を回して試料ホルダ設定台19を、コロ
17Aを回転中心にして、引張コイルばね19Dの付勢
に抗して押し上げる。このとき、試料ホルダ設定台19
上に載置固定される試料ホルダ21が傾動され、被測定
試料10の表面が前記X線の放射中心から大ぎく外れる
。従って、X線発生部3から放射されたX線は被測定試
料10の影響を受けることなく、検出部7へ入射して、
ダイレクトビームの測定が行なわれる。
Rotating the rotation introducing device 11, the sample holder setting table 19 is pushed up against the bias of the tension coil spring 19D, with the roller 17A as the center of rotation. At this time, the sample holder setting table 19
The sample holder 21 placed and fixed thereon is tilted, and the surface of the sample 10 to be measured deviates from the center of radiation of the X-rays. Therefore, the X-rays emitted from the X-ray generating section 3 enter the detecting section 7 without being affected by the sample to be measured 10, and
Direct beam measurements are taken.

ダイレクトビームの測定が終了した後は、前記回転導入
機11を逆方向に回して、試料ホルダ設定台19を元の
位置に戻す。このときコロ17Aと引張コイルばね19
Dの前方及び下方向への付勢によって試料ホルダ設定台
19は精密な位置決めがなされる。
After the direct beam measurement is completed, the rotating introduction device 11 is rotated in the opposite direction to return the sample holder setting table 19 to its original position. At this time, the roller 17A and the tension coil spring 19
By urging D forward and downward, the sample holder setting table 19 is precisely positioned.

上述してきたように、本実施例によればダイレクトビー
ムの測定が試料ホルダ21の傾動によって容易に行ない
得るようになるので、測定に際しては高度な熟練を要す
ることもなく精密な測定を行なうことができる。また装
置が小型化され排気時間の短縮及び排気装置の小型化が
容易になる。
As described above, according to this embodiment, direct beam measurements can be easily performed by tilting the sample holder 21, so that precise measurements can be performed without requiring a high degree of skill. can. Furthermore, the device is made smaller, making it easier to shorten the evacuation time and downsize the evacuation device.

[発明の効果] 以上説明したように、本発明によれば、被測定体を保持
する保持手段の傾動によって放射線源から放射された放
射線が当該保持手段の影響を受けることなく検出手段に
入射するようにしたので、傾動後保持手段を元の位置に
戻す際の再設定が容易にかつ精密に行なうことができ、
また装置の小型化にも寄与する等の効果を奏するもので
ある。
[Effects of the Invention] As explained above, according to the present invention, the radiation emitted from the radiation source due to the tilting of the holding means that holds the object to be measured enters the detection means without being affected by the holding means. This makes it possible to easily and precisely reset the holding means when returning it to its original position after tilting.
It also has the effect of contributing to miniaturization of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す正面断面図、第2図は
第1図の側面図、第3図は入OAX線と検出器との関係
を説明する説明図、第4図は従来例を示す断面図である
。 1・・・真空容器     3・・・X線発生部5・・
・ゴニオメータ部  7・・・検出部9・・・駆動部 
    10・・・被測定試料11・・・回転導入1 
  11A・・・偏心軸13・・・θ軸      1
5・・・θ軸台17A、17B・・・コロ 19・・・試料ホルダ設定台 21・・・試料ホルダ
FIG. 1 is a front sectional view showing an embodiment of the present invention, FIG. 2 is a side view of FIG. FIG. 2 is a sectional view showing a conventional example. 1... Vacuum container 3... X-ray generation section 5...
・Goniometer section 7...Detection section 9...Drive section
10... Sample to be measured 11... Rotating introduction 1
11A...Eccentric shaft 13...θ axis 1
5... θ axis stand 17A, 17B... Roller 19... Sample holder setting table 21... Sample holder

Claims (1)

【特許請求の範囲】 放射線源から放射線を放射して、ゴニオメータ部の保持
手段に保持される被測定体での反射放射線を検出手段で
検出し測定する放射線測定装置において、 前記放射線源から放射された放射線が当該被測定体に影
響されることなく検出手段に入射される位置に、前記保
持手段を傾動する傾動手段を有することを特徴とする放
射線測定装置。
[Scope of Claims] A radiation measuring device that emits radiation from a radiation source and detects and measures reflected radiation from an object to be measured held by a holding means of a goniometer section, comprising: 1. A radiation measuring device comprising a tilting means for tilting the holding means to a position where the radiation is incident on the detection means without being influenced by the object to be measured.
JP1215981A 1989-08-24 1989-08-24 Radiation measuring instrument Pending JPH0381654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215981A JPH0381654A (en) 1989-08-24 1989-08-24 Radiation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215981A JPH0381654A (en) 1989-08-24 1989-08-24 Radiation measuring instrument

Publications (1)

Publication Number Publication Date
JPH0381654A true JPH0381654A (en) 1991-04-08

Family

ID=16681438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215981A Pending JPH0381654A (en) 1989-08-24 1989-08-24 Radiation measuring instrument

Country Status (1)

Country Link
JP (1) JPH0381654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034473A (en) * 2006-07-26 2008-02-14 Toyoda Gosei Co Ltd Surface light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034473A (en) * 2006-07-26 2008-02-14 Toyoda Gosei Co Ltd Surface light source

Similar Documents

Publication Publication Date Title
JP3697246B2 (en) X-ray diffractometer
US10598615B2 (en) Method of adjusting the primary side of an X-ray diffractometer
US7848489B1 (en) X-ray diffractometer having co-exiting stages optimized for single crystal and bulk diffraction
US7600916B2 (en) Target alignment for X-ray scattering measurements
CN109507220B (en) Multi-axis special-shaped sample X-ray fluorescence spectrum analysis device
JPH0381654A (en) Radiation measuring instrument
US3649831A (en) Device for determining the crystallographic directions in single crystals by x-rays
JP2022093313A (en) Sample mounting system for x-ray analysis apparatus
JPH1144662A (en) Minute part x-ray analysis device
JPH05118999A (en) X-ray analyzing device
JP3499209B2 (en) Optical component focus detection method and apparatus
JPH07294400A (en) Sample retention device for x-ray diffraction device
JP4718208B2 (en) Eccentricity measurement method
JP3507431B2 (en) Non-planar mirror adjustment method and apparatus
JP5455792B2 (en) X-ray analyzer
JP3773413B2 (en) Method for adjusting reference light generator
CN217404186U (en) X-ray fluorescence spectrometer
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
CN109839396B (en) Synchrotron radiation confocal fluorescence experiment method based on KB mirror focusing
JPS63285440A (en) Lens eccentricity measuring apparatus
US4496242A (en) Apparatus for positioning a contact lens under a radiuscope
CN109839399B (en) Instrument calibration method of synchronous radiation confocal fluorescence experimental device based on KB mirror
JP2004347373A (en) Apparatus for positioning measuring equipment
JP3529245B2 (en) Total reflection X-ray analyzer
JPH04128641A (en) Detecting device for x-ray specimen