JPH05118999A - X-ray analyzing device - Google Patents

X-ray analyzing device

Info

Publication number
JPH05118999A
JPH05118999A JP3259395A JP25939591A JPH05118999A JP H05118999 A JPH05118999 A JP H05118999A JP 3259395 A JP3259395 A JP 3259395A JP 25939591 A JP25939591 A JP 25939591A JP H05118999 A JPH05118999 A JP H05118999A
Authority
JP
Japan
Prior art keywords
sample
ray
ray beam
beam irradiation
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3259395A
Other languages
Japanese (ja)
Inventor
Shinichi Terada
慎一 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOS KENKYUSHO KK
Original Assignee
TECHNOS KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOS KENKYUSHO KK filed Critical TECHNOS KENKYUSHO KK
Priority to JP3259395A priority Critical patent/JPH05118999A/en
Publication of JPH05118999A publication Critical patent/JPH05118999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To approach both an X-ray collimator and a sample observing means to a sample, set an X-ray spot form small, and improve space resolution of X-ray analysis by setting an X-ray beam irradiating position and a sample observing position at a determined distance, moving the sample in a determined distance to conform the X-ray beam irradiating position to the sample observing area. CONSTITUTION:A sample observing means 10 formed of a light source 11, a beam splitter 14, an objective lens 15, and a collimating plate 6, and an image pickup element 19 is provided at a determined distance to an X-ray beam irradiating position. After the analyzing target of a sample is guided to a determined position of the collimating plate image, a sample 4 is precisely carried by the distance of the coordinate displacement data by a sample carrying means and precisely positioned in an X-ray beam irradiating position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料にX線ビームを照
射して散乱X線や蛍光X線等を検出することにより、試
料情報を分析するX線分析装置に関し、特に試料の分析
領域を特定するための試料観察手段を備えたX線分析装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analyzer for analyzing sample information by irradiating a sample with an X-ray beam and detecting scattered X-rays, fluorescent X-rays, etc. The present invention relates to an X-ray analysis apparatus equipped with a sample observation means for identifying

【0002】[0002]

【従来の技術】従来、試料上でのX線ビーム照射領域と
試料観察領域との対応をとることができるX線分析装置
において、試料をX−Yステージ等の試料保持手段に固
定した状態でX線ビーム照射位置と試料観察位置を同一
場所に設定して、試料の分析領域を確認することが行わ
れてきた。
2. Description of the Related Art Conventionally, in an X-ray analyzer capable of associating an X-ray beam irradiation region on a sample with a sample observation region, the sample is fixed to a sample holding means such as an XY stage. It has been practiced to set the X-ray beam irradiation position and the sample observation position at the same place and confirm the analysis region of the sample.

【0003】図2は、従来のX線分析装置の一例であっ
て、全体の概略的構成は、X線ビーム2は試料4の表面
に対して約45度の角度で斜め照射され、試料観察方向
は試料4の表面に対して略垂直方向に設定されている。
FIG. 2 shows an example of a conventional X-ray analysis apparatus. The overall schematic configuration is such that the X-ray beam 2 is obliquely irradiated to the surface of the sample 4 at an angle of about 45 degrees, and the sample is observed. The direction is set substantially perpendicular to the surface of the sample 4.

【0004】X線ビーム発生器1から出射したX線ビー
ム2は、X線コリメータ3を介して、スポット状に試料
4の表面に照射される。X線コリメータ3は、X線ビー
ム2の径や寸法を制御するものであり、例えば金属板に
小孔を穿設したピンホールコリメータが用いられる。試
料4の表面に照射されるX線スポットを小さくすること
により、試料分析の空間分解能を上げることが可能であ
るが、X線スポットの形状は、X線コリメータ3のピン
ホール径、試料4とX線コリメータ3の距離、X線ビー
ム発生器1とX線コリメータ3の距離、X線ビーム発生
器1のターゲット上でのX線源の形状、等の種々の要因
により左右される。一般には、試料4とX線コリメータ
3の距離は短いほど、X線スポット形状はピンホール形
状に忠実に制御されるため、X線コリメータ3を試料4
に出来るだけ接近させることが要請される。
The X-ray beam 2 emitted from the X-ray beam generator 1 is irradiated onto the surface of the sample 4 in a spot shape via the X-ray collimator 3. The X-ray collimator 3 controls the diameter and size of the X-ray beam 2, and for example, a pinhole collimator having a small hole formed in a metal plate is used. By reducing the X-ray spot irradiated on the surface of the sample 4, it is possible to improve the spatial resolution of sample analysis. However, the shape of the X-ray spot depends on the pinhole diameter of the X-ray collimator 3 and the sample 4. It depends on various factors such as the distance of the X-ray collimator 3, the distance between the X-ray beam generator 1 and the X-ray collimator 3, the shape of the X-ray source on the target of the X-ray beam generator 1, and the like. Generally, the shorter the distance between the sample 4 and the X-ray collimator 3, the more accurately the X-ray spot shape is controlled to the pinhole shape.
It is required to be as close as possible to.

【0005】一方、試料4でのX線ビーム照射領域を確
認するための試料観察手段10も、その領域近傍に配置
される。試料観察手段10としては、例えば光学顕微鏡
と撮像素子とを組み合わせたものが用いられる。対物レ
ンズ15は一般に短焦点距離であるため、試料観察手段
10の受光側も試料4に出来るだけ接近させることが要
請される。
On the other hand, the sample observing means 10 for confirming the X-ray beam irradiation area on the sample 4 is also arranged near the area. As the sample observation means 10, for example, a combination of an optical microscope and an image pickup device is used. Since the objective lens 15 generally has a short focal length, the light receiving side of the sample observing means 10 is required to be as close to the sample 4 as possible.

【0006】なお、X線ビーム2が試料4に照射される
と、散乱X線や蛍光X線等の被検出X線5が放射され、
これをX線検出手段6で検知して電気信号に変換し、後
段の信号処理装置7により様々なデータ解析が行われ
る。
When the sample 4 is irradiated with the X-ray beam 2, detected X-rays 5 such as scattered X-rays and fluorescent X-rays are emitted,
This is detected by the X-ray detection means 6 and converted into an electric signal, and various data analysis is performed by the signal processing device 7 in the subsequent stage.

【0007】図4は、従来のX線分析装置の他の例であ
って、全体の概略的構成は、X線ビーム2は試料4の表
面に対して略垂直方向で照射され、試料観察方向も試料
4の表面に対して略垂直方向に設定されている。
FIG. 4 shows another example of the conventional X-ray analysis apparatus. The overall schematic structure is such that the X-ray beam 2 is irradiated in a direction substantially perpendicular to the surface of the sample 4 and the sample observation direction is shown. Is also set substantially perpendicular to the surface of the sample 4.

【0008】X線ビーム発生器1から出射したX線ビー
ム2は、X線コリメータ3を介して、スポット状に試料
4の表面に照射される。試料4でのX線ビーム照射領域
を観察するための試料観察手段10はその領域近傍に配
置されるが、X線ビーム2への干渉を防ぐために、孔開
きミラー20が用いられる。X線ビーム2はその孔を通
過して直進する一方、試料観察光は孔開きミラー20の
反射面で試料観察手段10の方向へ反射する。図2に示
すX線分析装置との主な相違点は、X線ビーム照射方向
と試料観察方向が同軸構成をとっている点にある。な
お、試料からの散乱X線や蛍光X線等の検出及び信号処
理は、前述の図2と同様である。
The X-ray beam 2 emitted from the X-ray beam generator 1 is irradiated onto the surface of the sample 4 in spots via the X-ray collimator 3. The sample observing means 10 for observing the X-ray beam irradiation region of the sample 4 is arranged in the vicinity of the region, but a perforated mirror 20 is used to prevent interference with the X-ray beam 2. The X-ray beam 2 goes straight through the hole, while the sample observation light is reflected by the reflection surface of the perforated mirror 20 toward the sample observation means 10. The main difference from the X-ray analyzer shown in FIG. 2 is that the X-ray beam irradiation direction and the sample observation direction are coaxial. The detection of scattered X-rays and fluorescent X-rays from the sample and the signal processing are the same as in FIG.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図2の
構成において、試料4でのX線スポット形状を均一に且
つ必要に応じて小さいスポット径に設定するために、X
線コリメータ3を試料4に接近させるという要請と、X
線ビーム照射領域を確認するために試料観察手段10を
試料4に接近させるという要請により、X線コリメータ
3と試料観察手段10との競合が生じ、両者の要請に対
してお互いに妥協した構成をとらざる得ないという課題
があった。即ち、X線コリメータ3を試料4に接近させ
てしまうと試料観察が困難になり、一方、試料観察手段
10を試料4に接近させてしまうと、X線ビーム照射が
困難になる。
However, in the configuration of FIG. 2, in order to set the X-ray spot shape on the sample 4 uniformly and to a small spot diameter as necessary, X
The request to bring the line collimator 3 closer to the sample 4 and X
The request to bring the sample observing means 10 closer to the sample 4 in order to confirm the irradiation area of the beam causes a competition between the X-ray collimator 3 and the sample observing means 10, and a configuration in which both requirements are compromised. There was a problem that I had to take it. That is, if the X-ray collimator 3 is brought closer to the sample 4, it becomes difficult to observe the sample, while if the sample observing means 10 is brought closer to the sample 4, it becomes difficult to irradiate the X-ray beam.

【0010】また、X線ビーム照射方向と試料観察方向
が同軸構成でないために、試料4の表面が凹凸状の不規
則面であったり、試料全体に反りや撓み等の変形があっ
た場合、X線スポット位置と試料観察の焦点位置とがず
れてしまうという課題があった。図3はその様子を示し
たものであり、図3aは試料4の表面が凹んだ状態の断
面図であり、図3bは試料4の表面が凸状に変形した状
態の断面図である。図3a及びに図3bおいて、試料観
察方向は試料表面とほぼ垂直方向であって、試料観察手
段10の対物レンズ15は試料からの光を集光してお
り、試料4の変形により焦点位置がずれたとしても、試
料観察手段10又は試料4を光軸方向に移動させて行う
自動又は手動によるピント調節により、常に一定した位
置を観察することができる。しかし、X線ビーム2は試
料4に対して斜めに入射しているため、試料4の変形に
よりX線ビーム照射位置がずれてしまい、観察位置と一
致しなくなるという現象が生ずる。特に、試料4を光軸
方向に移動させるピント調節の場合には、X線ビーム2
の斜め入射により、試料4の移動と共にX線ビーム照射
位置も移動するため、試料観察位置とX線ビーム照射位
置とを一致させることができるが、その調整精度には試
料観察手段10の焦点深度程度の誤差を必然的に伴うた
め、X線スポット径が例えば20〜30μm程度に小さ
くなると試料観察位置とX線ビーム照射位置とを完全に
一致させることが不可能になり、特に試料表面が鏡面の
ように光学反射率の高い場合には合焦の判断が難しく、
大変困難な調整となる。
Further, since the X-ray beam irradiation direction and the sample observation direction are not coaxial, the surface of the sample 4 is an irregular irregular surface, or the entire sample is deformed such as warped or bent, There is a problem that the X-ray spot position and the focus position for observing the sample are displaced. FIG. 3 shows such a state, FIG. 3a is a cross-sectional view of the sample 4 in which the surface is recessed, and FIG. 3b is a cross-sectional view of the sample 4 in which the surface is deformed into a convex shape. In FIGS. 3A and 3B, the sample observation direction is substantially perpendicular to the sample surface, the objective lens 15 of the sample observation means 10 collects light from the sample, and the sample 4 is deformed so that the focal position is changed. Even if the position shifts, it is possible to always observe a fixed position by automatic or manual focus adjustment performed by moving the sample observing means 10 or the sample 4 in the optical axis direction. However, since the X-ray beam 2 is obliquely incident on the sample 4, the X-ray beam irradiation position is displaced due to the deformation of the sample 4, and the phenomenon that the X-ray beam does not coincide with the observation position occurs. Particularly, in the case of focus adjustment for moving the sample 4 in the optical axis direction, the X-ray beam 2
Since the X-ray beam irradiation position is moved along with the movement of the sample 4 due to the oblique incidence of, the sample observation position and the X-ray beam irradiation position can be made to coincide with each other. Since the X-ray spot diameter is reduced to, for example, about 20 to 30 μm, it becomes impossible to completely match the sample observation position and the X-ray beam irradiation position, and especially the sample surface is a mirror surface. When the optical reflectance is high, it is difficult to determine the focus,
This is a very difficult adjustment.

【0011】また、X線ビーム照射方向が試料法線に対
して角度θで入射すると、例えばX線スポット形状が円
の場合、ビーム傾き方向にCOS(θ)の逆数だけ大き
くなった楕円スポット形状になるため、X線照射角度を
斜めにするほど狭い領域を照射することが困難になると
いう課題があった。
Further, when the X-ray beam irradiation direction is incident at an angle θ with respect to the sample normal, for example, when the X-ray spot shape is a circle, an elliptical spot shape increased by the reciprocal of COS (θ) in the beam inclination direction. Therefore, it is difficult to irradiate a narrow region as the X-ray irradiation angle is inclined.

【0012】次に、図4の構成においても、X線コリメ
ータ3と試料観察手段10との競合が生じて、前述の図
2の系と同様な課題があるが、X線ビーム照射方向と試
料観察方向が同軸構成であり且つX線ビーム照射方向が
試料に対して垂直であるため、X線ビームの斜め照射に
よる課題は解消されている。しかし、X線ビーム照射方
向と試料観察方向を同軸構成にするための孔開きミラー
20が試料近傍に配置する必要があり、そのためX線コ
リメータ3と試料4との距離が長くなるという課題が新
たに発生する。即ち、図5に示すように、X線ビーム発
生器1のターゲット上に形成されるX線源8から出射さ
れたX線は、X線コリメータ3により絞られて、試料4
の表面に照射されるが、図5aではX線コリメータ3と
試料4との距離が短いため、試料4でのX線スポット径
を小さく形成することが可能であるが、図5bではX線
コリメータ3と試料4との距離が長いため、試料4での
X線スポット径が大きくなってしまう所謂ボケという現
象が発生する。従って、図4の構成では、X線スポット
径をあまり小さく形成できないという課題があった。
Next, even in the configuration of FIG. 4, competition occurs between the X-ray collimator 3 and the sample observing means 10 and there is a problem similar to that of the system of FIG. 2 described above. Since the observation direction is coaxial and the X-ray beam irradiation direction is perpendicular to the sample, the problem caused by oblique irradiation of the X-ray beam is solved. However, it is necessary to dispose the perforated mirror 20 in the vicinity of the sample in order to make the X-ray beam irradiation direction and the sample observation direction coaxial, which causes a new problem that the distance between the X-ray collimator 3 and the sample 4 becomes long. Occurs in. That is, as shown in FIG. 5, the X-rays emitted from the X-ray source 8 formed on the target of the X-ray beam generator 1 are focused by the X-ray collimator 3 and the sample 4
However, since the distance between the X-ray collimator 3 and the sample 4 is short in FIG. 5a, it is possible to form the X-ray spot diameter on the sample 4 small, but in FIG. Since the distance between the sample 3 and the sample 4 is long, a phenomenon called so-called blurring in which the X-ray spot diameter on the sample 4 becomes large occurs. Therefore, the configuration of FIG. 4 has a problem that the X-ray spot diameter cannot be formed so small.

【0013】また、図2及び図3の構成において、X線
ビーム照射位置と試料観察手段10による観察位置を一
致させるための位置合わせ操作が不可欠であり、X線の
波長と試料観察波長(例えば可視光)が異なり、その検
出手段が自ずと相違するため、位置合わせが大変困難で
あった。更に、X線ビーム発生器1や試料観察手段10
を交換したり修理する度に位置合わせを行う必要があ
り、位置合わせのために大変な労力を浪費していた。
2 and 3, a positioning operation for matching the X-ray beam irradiation position and the observation position by the sample observation means 10 is indispensable, and the X-ray wavelength and the sample observation wavelength (for example, Since the visible light is different and the detection means is naturally different, the alignment is very difficult. Furthermore, the X-ray beam generator 1 and the sample observation means 10
It was necessary to perform the alignment every time the battery was replaced or repaired, and a great amount of labor was wasted in the alignment.

【0014】本発明は、これらの課題を解決するため、
試料上でのX線ビーム照射領域と試料観察領域との対応
を容易に行うことができるX線分析装置を提供すること
を目的とする。
In order to solve these problems, the present invention provides
It is an object of the present invention to provide an X-ray analyzer capable of easily associating an X-ray beam irradiation region on a sample with a sample observation region.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するた
め、本発明のX線分析装置は、X線ビーム発生器とX線
コリメータを備えたX線ビーム照射手段、X線検出手
段、試料観察手段及び試料搬送手段を備えたX線分析装
置であって、X線ビーム照射位置と試料観察位置が所定
距離隔てて設定され、且つ、試料が前記所定距離を移動
することにより、前記試料上でのX線ビーム照射領域と
試料観察領域を対応させることを特徴とする。
In order to achieve the above-mentioned object, an X-ray analysis apparatus of the present invention comprises an X-ray beam irradiation means equipped with an X-ray beam generator and an X-ray collimator, an X-ray detection means, and sample observation. An X-ray analysis apparatus comprising means and sample transport means, wherein an X-ray beam irradiation position and a sample observation position are set at a predetermined distance, and the sample moves on the sample by the predetermined distance. The X-ray beam irradiation area and the sample observation area are made to correspond to each other.

【0016】前記構成において、X線ビーム照射方向
が、試料表面に対して略垂直方向であることが好まし
い。また、前記構成において、試料観察方向が、試料表
面に対して略垂直方向であることが好ましい。
In the above structure, it is preferable that the X-ray beam irradiation direction is substantially perpendicular to the sample surface. Further, in the above configuration, it is preferable that the sample observation direction is substantially perpendicular to the sample surface.

【0017】[0017]

【作用】前記構成によれば、X線ビーム照射位置と試料
観察位置が所定距離隔てて設定されているため、X線コ
リメータを試料に接近させるという要請と、X線ビーム
照射領域を確認するために試料観察手段を試料に接近さ
せるという要請をどちらも満足することができる。即
ち、X線コリメータを試料に接近させて、X線スポット
の径を小さくしたり、スポット強度分布を均一に、例え
ば矩形に形成することができる。
According to the above construction, since the X-ray beam irradiation position and the sample observation position are set apart from each other by a predetermined distance, it is necessary to bring the X-ray collimator closer to the sample and to confirm the X-ray beam irradiation region. In addition, both of the requirements for bringing the sample observing means closer to the sample can be satisfied. That is, the diameter of the X-ray spot can be reduced by bringing the X-ray collimator close to the sample, and the spot intensity distribution can be formed uniformly, for example, in a rectangular shape.

【0018】また、X線ビーム照射方向が試料表面に対
して略垂直方向であることにより、X線コリメータを通
ったX線ビームは、ほぼ同一の形状で試料を照射するこ
とになり、斜め入射によるX線スポット変形を防ぐこと
ができる。また、試料観察方向が試料表面に対して略垂
直方向であることと併せて、試料の表面が不規則面であ
ったり変形があった場合でも、X線照射位置と観察位置
が一致するため、位置微調整やピント調整等の操作が不
要になって、これらに要する時間を省くことができ、試
料のX線分析作業を迅速に行うことができる。
Further, since the X-ray beam irradiation direction is substantially perpendicular to the sample surface, the X-ray beam that has passed through the X-ray collimator irradiates the sample with substantially the same shape, and is obliquely incident. It is possible to prevent the X-ray spot deformation due to. In addition to the fact that the sample observation direction is substantially perpendicular to the sample surface, the X-ray irradiation position and the observation position match even if the sample surface is irregular or deformed. The operations such as fine position adjustment and focus adjustment are not required, and the time required for these operations can be saved, and the X-ray analysis work of the sample can be performed quickly.

【0019】また、X線ビーム照射位置と観察位置を一
致させるための位置合わせ操作が、試料搬送手段による
試料位置調整により行うことができるため、X線ビーム
位置や試料観察手段の微調整機構が不要となり、また位
置合わせを迅速に行うことができる。従って、X線ビー
ム発生器や試料観察手段を交換したり修理する場合にも
容易に位置合わせを行うことができる。
Further, since the positioning operation for matching the X-ray beam irradiation position and the observation position can be performed by adjusting the sample position by the sample conveying means, the fine adjustment mechanism of the X-ray beam position and the sample observing means can be used. It is not necessary and the alignment can be done quickly. Therefore, the alignment can be easily performed even when the X-ray beam generator or the sample observation means is replaced or repaired.

【0020】[0020]

【実施例】以下、本発明の実施例について、図を用いて
説明する。図1は、本発明のX線分析装置の一実施例の
概略的構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an embodiment of the X-ray analysis apparatus of the present invention.

【0021】試料4は、X−Yテーブル、コンベアベル
ト、ロボットアーム等の試料搬送手段により、試料観察
手段10が設けられた試料観察位置に搬送され固定され
る。試料観察手段10の構成を説明すると、ランプやL
ED等の光源11から出た照明光はコンデンサレンズ1
2により集光され、ハーフミラー等のビームスプリッタ
14により反射されて、対物レンズ15を通って試料4
の表面を照射する。試料4から反射又は散乱した光は再
び対物レンズ15で集光され、ビームスプリッタ14を
通過して十字線等が目盛られた視準板16で一旦結像
し、接眼レンズ17及び撮像レンズ18により、TVカ
メラや2次元アレイセンサー等の撮像素子19に結像さ
れる。撮像素子19の出力信号は、所定の信号処理が施
されて、画像モニター(図示せず)で試料4の様子を観
察することができる。なお、試料観察手段10に自動や
手動の焦点機構を組み込むことも可能であり、また、撮
像素子19の代わりに又は併用してラインセンサー、P
SD、写真フィルム等を使用することができる。
The sample 4 is transported and fixed to the sample observing position where the sample observing means 10 is provided by a sample transporting means such as an XY table, a conveyor belt and a robot arm. Explaining the configuration of the sample observing means 10, a lamp and an L
The illumination light emitted from the light source 11 such as an ED is the condenser lens 1
2 is collected by the beam splitter 2, reflected by the beam splitter 14 such as a half mirror, and passed through the objective lens 15 to obtain the sample 4
Illuminate the surface of. The light reflected or scattered from the sample 4 is collected again by the objective lens 15, passes through the beam splitter 14, and is once focused on the collimation plate 16 having a reticle or the like, and is then focused by the eyepiece lens 17 and the imaging lens 18. An image is formed on the image pickup device 19 such as a TV camera or a two-dimensional array sensor. The output signal of the image sensor 19 is subjected to predetermined signal processing, and the state of the sample 4 can be observed on an image monitor (not shown). It should be noted that it is possible to incorporate an automatic or manual focusing mechanism in the sample observing means 10, and instead of or in combination with the image sensor 19, a line sensor, P
SD, photographic film, etc. can be used.

【0022】分析作業者は、画像モニター上の試料4の
表面及び視準板16の合成像を眺めながら試料表面の観
察を行い、視準板像の所定位置にX線分析領域が導入さ
れるように、試料搬送手段を制御して、試料の位置決め
を行う。なお、他の光検知器を組み込んだり、又は合成
像の画像処理により、X線分析領域の検出を自動的に行
って試料搬送手段を自動制御することも可能である。
The analysis operator observes the surface of the sample 4 and the collimation plate 16 on the image monitor while observing the sample surface, and an X-ray analysis region is introduced at a predetermined position of the collimation plate image. As described above, the sample transport means is controlled to position the sample. It is also possible to incorporate another photodetector or perform image processing of the combined image to automatically detect the X-ray analysis region and automatically control the sample transport means.

【0023】視準板像の所定位置に対応する試料観察位
置と後述するX線ビーム照射位置との相対位置関係は、
予め計測して座標変位データとして試料搬送手段の制御
部のメモリーに記憶した後、前述の試料導入操作の際の
試料位置座標を計測し、この座標に座標変位データを加
減算することによって、X線ビーム照射位置の座標を決
定することができる。従って、視準板像の所定位置に試
料の分析対象領域を導入すれば、試料搬送手段が座標変
位データ分の距離(図1において、Yの距離に相当す
る)を精度良く搬送して、試料4をX線ビーム照射位置
に精度良く位置決めすることができる。このような高精
度搬送手段として、(1) X−Yテーブルをボールねじと
ステッピングモータで駆動する位置制御手段、(2) 前記
(1) のステッピングモータの代わりにDCモータとロー
タリーエンコーダやリニアエンコーダを組み合わせた位
置制御手段、(3)X−Yテーブルをリニアモータとリニ
アエンコーダの組み合わせた位置制御手段、等を用いる
ことができる。これらの搬送手段は、パルス数に比例し
て所定距離を搬送するものであり、コンピュータによる
数値制御を行うことができる。
The relative positional relationship between the sample observation position corresponding to the predetermined position of the collimation plate image and the X-ray beam irradiation position described later is as follows.
After being measured in advance and stored as coordinate displacement data in the memory of the control unit of the sample transport means, the sample position coordinates at the time of the sample introduction operation described above are measured, and coordinate displacement data is added to or subtracted from this coordinate to obtain an X-ray. The coordinates of the beam irradiation position can be determined. Therefore, if the analysis target region of the sample is introduced at a predetermined position of the collimation plate image, the sample transport means accurately transports the distance corresponding to the coordinate displacement data (corresponding to the Y distance in FIG. 1), and 4 can be accurately positioned at the X-ray beam irradiation position. As such a high precision transfer means, (1) position control means for driving an XY table with a ball screw and a stepping motor, (2) the above
Instead of the stepping motor of (1), position control means combining a DC motor and a rotary encoder or a linear encoder, (3) position control means combining an XY table with a linear motor and a linear encoder, etc. can be used. .. These carrying means carry a predetermined distance in proportion to the number of pulses, and can be numerically controlled by a computer.

【0024】X線ビーム照射位置に精度良く位置決めさ
れた試料4は、X線分析が行われる。回転対陰極X線源
や封入X線管等のX線ビーム発生器1から出射したX線
ビーム2は、ピンホールコリメータ等のX線コリメータ
3を介して、スポット状に試料4の表面に照射される。
X線コリメータ3は、他の装置構成部品に干渉されるこ
となく、試料4に接近させることができる。従って、X
線ビーム照射系に関する設定範囲が拡大し、X線スポッ
ト形状やX線ビーム照射角度の設定自由度が大きくな
る。一般に、試料分析の空間分解能が向上するために、
X線スポット形状は小さく設定可能なほうが装置仕様上
好まれており、X線コリメータ3はX線検出に支障が無
い範囲で試料4に可能な限り接近させることが好まし
い。
The sample 4 accurately positioned at the X-ray beam irradiation position is subjected to X-ray analysis. An X-ray beam 2 emitted from an X-ray beam generator 1 such as a rotating anticathode X-ray source or a sealed X-ray tube is irradiated onto the surface of the sample 4 in a spot shape via an X-ray collimator 3 such as a pinhole collimator. To be done.
The X-ray collimator 3 can be brought close to the sample 4 without being interfered by other device components. Therefore, X
The setting range of the line beam irradiation system is expanded, and the degree of freedom in setting the X-ray spot shape and the X-ray beam irradiation angle is increased. Generally, in order to improve the spatial resolution of sample analysis,
It is preferred that the X-ray spot shape can be set small so that the X-ray collimator 3 is brought as close as possible to the sample 4 within a range that does not interfere with X-ray detection.

【0025】X線スペクトル測定等の分析が終了した試
料4は、試料搬送手段により後段にある試料スタッカ
(図示せず)に送られる。
The sample 4 for which analysis such as X-ray spectrum measurement has been completed is sent to a sample stacker (not shown) in the subsequent stage by the sample carrying means.

【0026】[0026]

【発明の効果】以上詳説したように、本発明のX線分析
装置は、X線ビーム照射位置と試料観察位置が所定距離
隔てて設定されているため、X線コリメータ及び試料観
察手段のどちらも試料に接近させることが可能になり、
X線スポット形状を小さく設定して、X線分析の空間分
解能を向上させることができる。
As described above in detail, in the X-ray analyzer of the present invention, the X-ray beam irradiation position and the sample observation position are set at a predetermined distance from each other, and therefore both the X-ray collimator and the sample observation means are provided. It becomes possible to approach the sample,
By setting the X-ray spot shape small, the spatial resolution of X-ray analysis can be improved.

【0027】また、X線ビーム照射方向が試料表面に対
して略垂直方向であることにより、斜め入射によるX線
スポット変形を防いで、X線スポット形状を小さく設定
することができる。また、試料観察方向が試料表面に対
して略垂直方向であることにより、試料の表面が不規則
面であってもX線照射位置と観察位置が一致するため、
試料の位置決めを迅速に行うことができ、X線分析作業
の効率向上を図ることができる。
Further, since the X-ray beam irradiation direction is substantially perpendicular to the sample surface, it is possible to prevent the X-ray spot deformation due to oblique incidence and set the X-ray spot shape small. Further, since the sample observation direction is substantially perpendicular to the sample surface, the X-ray irradiation position and the observation position match even if the sample surface is an irregular surface.
The sample can be positioned quickly, and the efficiency of the X-ray analysis work can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線分析装置の一実施例の概略的構成
図である。
FIG. 1 is a schematic configuration diagram of an embodiment of an X-ray analysis apparatus of the present invention.

【図2】従来のX線分析装置の一例の概略的構成図であ
る。
FIG. 2 is a schematic configuration diagram of an example of a conventional X-ray analysis apparatus.

【図3】X線スポット位置と試料観察の焦点位置の説明
図であり、図3aは試料4の表面が凹んだ状態の断面図
であり、図3bは試料4の表面が凸状に変形した状態の
断面図である。
3A and 3B are explanatory views of an X-ray spot position and a focus position of sample observation, FIG. 3A is a cross-sectional view of a state in which the surface of the sample 4 is recessed, and FIG. 3B is a surface of the sample 4 is deformed into a convex shape. It is sectional drawing of a state.

【図4】従来のX線分析装置の他の例の概略的構成図で
ある。
FIG. 4 is a schematic configuration diagram of another example of a conventional X-ray analysis apparatus.

【図5】X線源8、X線コリメータ3及び試料4の配置
説明図であり、図5aはX線コリメータ3と試料4との
距離が短い場合、図5bはX線コリメータ3と試料4と
の距離が長い場合である。
5 is an explanatory view of the arrangement of an X-ray source 8, an X-ray collimator 3 and a sample 4, FIG. 5a shows a case where the distance between the X-ray collimator 3 and the sample 4 is short, and FIG. 5b shows an X-ray collimator 3 and the sample 4. This is when the distance between and is long.

【符号の説明】[Explanation of symbols]

1 X線ビーム発生器 2 X線ビーム 3 X線コリメータ 4 試料 5 被検出X線 6 X線検出手段 7 信号処理装置 8 X線源 10 試料観察手段 11 光源 12 コンデンサレンズ 14 ビームスプリッタ 15 対物レンズ 16 視準板 17 接眼レンズ 18 撮像レンズ 19 撮像素子 20 孔開きミラー 30 試料テーブル 1 X-ray beam generator 2 X-ray beam 3 X-ray collimator 4 Sample 5 Detected X-ray 6 X-ray detection means 7 Signal processing device 8 X-ray source 10 Sample observation means 11 Light source 12 Condenser lens 14 Beam splitter 15 Objective lens 16 Collimation plate 17 Eyepiece 18 Imaging lens 19 Imaging element 20 Perforated mirror 30 Sample table

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 X線ビーム発生器とX線コリメータを備
えたX線ビーム照射手段、X線検出手段、試料観察手段
及び試料搬送手段を備えたX線分析装置であって、X線
ビーム照射位置と試料観察位置が所定距離隔てて設定さ
れ、且つ、試料が前記所定距離を移動することにより、
前記試料上でのX線ビーム照射領域と試料観察領域を対
応させることを特徴とするX線分析装置。
1. An X-ray analysis apparatus comprising an X-ray beam irradiation unit equipped with an X-ray beam generator and an X-ray collimator, an X-ray detection unit, a sample observation unit, and a sample transportation unit. The position and the sample observation position are set apart from each other by a predetermined distance, and the sample moves by the predetermined distance,
An X-ray analysis apparatus, wherein an X-ray beam irradiation region on the sample and a sample observation region are associated with each other.
【請求項2】 X線ビーム照射方向が、試料表面に対し
て略垂直方向である請求項1に記載のX線分析装置。
2. The X-ray analyzer according to claim 1, wherein the X-ray beam irradiation direction is substantially perpendicular to the sample surface.
【請求項3】 試料観察方向が、試料表面に対して略垂
直方向である請求項1に記載のX線分析装置。
3. The X-ray analyzer according to claim 1, wherein the sample observation direction is a direction substantially perpendicular to the sample surface.
JP3259395A 1991-10-07 1991-10-07 X-ray analyzing device Pending JPH05118999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3259395A JPH05118999A (en) 1991-10-07 1991-10-07 X-ray analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3259395A JPH05118999A (en) 1991-10-07 1991-10-07 X-ray analyzing device

Publications (1)

Publication Number Publication Date
JPH05118999A true JPH05118999A (en) 1993-05-14

Family

ID=17333541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259395A Pending JPH05118999A (en) 1991-10-07 1991-10-07 X-ray analyzing device

Country Status (1)

Country Link
JP (1) JPH05118999A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028815A (en) * 2001-07-13 2003-01-29 Horiba Ltd X-ray analyzer and x-ray conduit used in the same
JP2004340631A (en) * 2003-05-13 2004-12-02 Sony Corp Substrate inspection device
JP2010048727A (en) * 2008-08-22 2010-03-04 Sii Nanotechnology Inc X-ray analyzer and x-ray analysis method
DE102015104066A1 (en) 2014-03-20 2015-09-24 Hitachi High-Tech Science Corp. X-ray analyzer
WO2018110254A1 (en) * 2016-12-15 2018-06-21 株式会社堀場製作所 Radiation detection device and computer program
JP2021063829A (en) * 2016-04-22 2021-04-22 ケーエルエー コーポレイション X-ray measurement method
JP2021081277A (en) * 2019-11-18 2021-05-27 パルステック工業株式会社 X-ray diffraction measurement device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028815A (en) * 2001-07-13 2003-01-29 Horiba Ltd X-ray analyzer and x-ray conduit used in the same
JP4731749B2 (en) * 2001-07-13 2011-07-27 株式会社堀場製作所 X-ray analyzer
JP2004340631A (en) * 2003-05-13 2004-12-02 Sony Corp Substrate inspection device
JP2010048727A (en) * 2008-08-22 2010-03-04 Sii Nanotechnology Inc X-ray analyzer and x-ray analysis method
DE102015104066A1 (en) 2014-03-20 2015-09-24 Hitachi High-Tech Science Corp. X-ray analyzer
US9658175B2 (en) 2014-03-20 2017-05-23 Hitachi High-Tech Science Corporation X-ray analyzer
JP2021063829A (en) * 2016-04-22 2021-04-22 ケーエルエー コーポレイション X-ray measurement method
WO2018110254A1 (en) * 2016-12-15 2018-06-21 株式会社堀場製作所 Radiation detection device and computer program
JPWO2018110254A1 (en) * 2016-12-15 2019-10-24 株式会社堀場製作所 Radiation detection apparatus and computer program
US11125703B2 (en) 2016-12-15 2021-09-21 Horiba, Ltd. Radiation detection device and computer program
JP2021081277A (en) * 2019-11-18 2021-05-27 パルステック工業株式会社 X-ray diffraction measurement device

Similar Documents

Publication Publication Date Title
JP5469839B2 (en) Device surface defect inspection apparatus and method
EP2705354B1 (en) Multi-spot collection optics
TWI292033B (en)
KR101808388B1 (en) Probe apparatus and probe method
JP4650330B2 (en) Combined device of optical microscope and X-ray analyzer
JPH05118999A (en) X-ray analyzing device
US6549290B2 (en) Method and apparatus for aligning target object
JP5268749B2 (en) Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method
JP4603177B2 (en) Scanning laser microscope
JP3593161B2 (en) Measuring device for foreign matter position on rotating body
JP3048895B2 (en) Position detection method applied to proximity exposure
JP2000193434A (en) Foreign substance inspecting device
US10444140B1 (en) Theta-theta sample positioning stage with application to sample mapping using reflectometer, spectrophotometer or ellipsometer system
JP2002228609A (en) Monochromatic x-ray photoelectron spectroscopic instrument
JP7280516B2 (en) X-ray diffraction measurement device
JPH1123482A (en) Method for adjusting irradiation position with beam, foreign matter detecting apparatus using laser beam, scanning electron microscope and composition analyzing apparatus
JP3250537B2 (en) Positioning method and apparatus used for the method
JP2597711B2 (en) 3D position measuring device
JPH07208917A (en) Automatic focusing method and device
JPH1048527A (en) Image rotator device and scanning optical microscope
JPH1123481A (en) Micro-object analyzing apparatus, and adjusting apparatus for micro-object detecting means used in the micro-object analyzing apparatus
JP2024007885A (en) Measurement device and measurement method
JP2000227331A (en) Measuring instrument
JPH10160685A (en) Irradiation position adjusting method for laser beam and electron beam, foreign material detecting device using laser beam, and scan-type electron microscope and foreign material analyzing device
JPH0412254A (en) Method and device for inspecting internal defect

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees