JPH03792B2 - - Google Patents

Info

Publication number
JPH03792B2
JPH03792B2 JP27393586A JP27393586A JPH03792B2 JP H03792 B2 JPH03792 B2 JP H03792B2 JP 27393586 A JP27393586 A JP 27393586A JP 27393586 A JP27393586 A JP 27393586A JP H03792 B2 JPH03792 B2 JP H03792B2
Authority
JP
Japan
Prior art keywords
region
drain
insulated gate
channel
static induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27393586A
Other languages
Japanese (ja)
Other versions
JPS63128675A (en
Inventor
Junichi Nishizawa
Nobuo Takeda
Sohee Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP27393586A priority Critical patent/JPS63128675A/en
Priority to EP95114168A priority patent/EP0690513B1/en
Priority to DE3752273T priority patent/DE3752273T2/en
Priority to DE3752215T priority patent/DE3752215T2/en
Priority to EP92101661A priority patent/EP0481965B1/en
Priority to EP93101675A priority patent/EP0547030B1/en
Priority to EP87310185A priority patent/EP0268472B1/en
Priority to DE87310185T priority patent/DE3789003T2/en
Priority to DE3752255T priority patent/DE3752255T2/en
Publication of JPS63128675A publication Critical patent/JPS63128675A/en
Publication of JPH03792B2 publication Critical patent/JPH03792B2/ja
Priority to US07/752,934 priority patent/US5115287A/en
Granted legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高速スイツチングを行うことができ
消費電力の少ない切り込み型絶縁ゲート静電誘導
トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a notched insulated gate static induction transistor that can perform high-speed switching and consumes little power.

(従来の技術) 従来より、高周波増幅や集積回路用に絶縁ゲー
ト型トランジスタが用いられているが、駆動能力
が小さいという欠点を有している。例えば、絶縁
ゲート型トランジスタの応用として、相補型絶縁
ゲートトランジスタ集積回路(C−MOS)が知
られているが、消費電力が少ないものの、駆動能
力が小さく動作速度が遅い。このような欠点を克
服するものとして、本発明者の1人から、絶縁ゲ
ート静電誘導トランジスタ(例えば、特願昭52−
1756号)や、切り込み型絶縁ゲート静電誘導トラ
ンジスタ(例えば、特願昭52−13707号)が提案
されている。絶縁ゲート静電誘導トランジスタは
ドレイン電界の効果がソースにまで及ぶように設
計され、半導体・絶縁膜界面のみならず、基板中
をも電流が流れるために、駆動能力が大きいなど
の特徴を持つ。特に、切り込み型絶縁ゲート静電
誘導トランジスタはチヤネルが半導体基板の深さ
方向に形成されるために、チヤネル長やゲート長
の制御性がよく、短チヤネル化に適している。し
たがつて、駆動能力を大きくすることができ、ま
た、寄生容量も減らせるために、高速トランジス
タや高速、低消費電力の集積回路としてすぐれた
性能を発揮する。
(Prior Art) Conventionally, insulated gate transistors have been used for high frequency amplification and integrated circuits, but they have the drawback of low driving capability. For example, a complementary insulated gate transistor integrated circuit (C-MOS) is known as an application of insulated gate transistors, but although it consumes less power, it has a small driving capability and a slow operating speed. In order to overcome these drawbacks, one of the inventors of the present invention proposed an insulated gate static induction transistor (for example, Japanese Patent Application No.
No. 1756) and a notched insulated gate static induction transistor (for example, Japanese Patent Application No. 13707/1983) have been proposed. Insulated gate static induction transistors are designed so that the effect of the drain electric field extends to the source, and because current flows not only at the semiconductor/insulating film interface but also through the substrate, it has features such as high driving ability. In particular, in the notch type insulated gate static induction transistor, since the channel is formed in the depth direction of the semiconductor substrate, the channel length and gate length can be easily controlled, and it is suitable for shortening the channel. Therefore, the drive capability can be increased and the parasitic capacitance can be reduced, so that it exhibits excellent performance as a high-speed transistor or a high-speed, low-power consumption integrated circuit.

以下、第3図を用いて先行技術を説明する。第
3図aに従来の切り込み型絶縁ゲート静電誘導ト
ランジスタの断面構造例を示す。同図中の符号3
0は半導体基板を示しており、その主表面の一部
にU字型の溝が設けられている。そして、このU
字型溝の中にドレイン領域31、チヤネル領域
33、ソース領域32が順に深さ方向に設けられ、
ドレイン領域31にドレイン電極31′が接続さ
れている。ドレイン領域31、ソース領域32は
それぞれ1018〜1021cm-3程度の不純物密度を有し
ており、導電型はp型でもn型でもかまわない。
また、領域31をソース領域、領域32をドレイ
ン領域としてもかまわない。チヤネル領域33は
1012〜1016cm-3程度の不純物密度を有する。その
導電型ドレイン領域31及びソース領域32と同
一でも反対でもかまわないし、多層構造になつて
いてもかまわないが、少なくともその動作領域の
一部においてドレイン領域31から広がつた空乏
層がソース領域32に到達すべく、その不純物密
度が前記U字型溝の深さとともに決定される。チ
ヤネル領域33に接して酸化膜等のゲート絶縁膜
34が設けられており、100〜1000Å程度の膜厚
を有する。そして、ゲート絶縁膜34の反対側に
は金属や多結晶シリコン等からなるゲート電極3
4′が設けらている。なお、図中の符号35はフ
イールド酸化膜を示している。第3図aに示した
ような従来の切り込み型絶縁ゲート静電誘導トラ
ンジスタは半導体基板に対して深さ方向に形成さ
れるために、成膜の精度でトランジスタの寸法を
制御でき、短チヤネルの高速トランジスタには非
常に適しており、高速、低消費電力の集積回路が
実現されている。しかしながら、従来の切り込み
型絶縁ゲート静電誘導トランジスタは、特に高速
化を図り短チヤネルを行つた場合、ドレイン電界
の影響によつてゲート表面から離れた所でもドレ
イン・ソース間に電流が流れる。この電流成分は
ゲート電圧によつて制御できない。したがつて、
オフ時のリーク電流が大きく、ドレイン・ソース
間耐圧が小さいなどの欠点を有することになる。
例えば、第3図bは、チヤネル長約0.5μm、チヤ
ネル不純物ドーズ量約2×1013cm-2、ゲート酸化
膜厚約250Åに設計された従来の切り込み型絶縁
ゲート静電誘導トランジスタのドレイン電流−ド
レイン電圧特性の例である。ゲート電圧が0Vの
時にもドレイン電圧の増加にしたがつてドレイン
電流が流れてしまつている。もち論、チヤネル領
域33の不純物密度を選択することによつて、こ
のようなバルク側を流れる電流をある程度抑える
ことは可能である。同図cは、チヤネル長約0.5μ
m、チヤネル不純物ドーズ量約6×1013cm-2、ゲ
ート酸化膜厚約250Åに設計された従来の切り込
み型絶縁ゲート静電誘導トランジスタのドレイン
電流−ドレイン電圧特性の例である。このよう
に、オフ時のリーク電流は改善されるものの、今
度はドレイン側の静電誘導効果がソース側に及び
にくくなり、素子のスレツシヨルド電圧が上がる
など駆動能力をある程度犠牲にすることになる。
The prior art will be explained below using FIG. 3. FIG. 3a shows an example of the cross-sectional structure of a conventional notched insulated gate static induction transistor. Code 3 in the same figure
0 indicates a semiconductor substrate, and a U-shaped groove is provided in a part of its main surface. And this U
A drain region 31 and a channel region are located in the shape groove.
33, source regions 32 are provided in order in the depth direction,
A drain electrode 31' is connected to the drain region 31. The drain region 31 and the source region 32 each have an impurity density of about 10 18 to 10 21 cm −3 , and the conductivity type may be p-type or n-type.
Further, the region 31 may be used as a source region and the region 32 may be used as a drain region. The channel area 33 is
It has an impurity density of about 10 12 to 10 16 cm -3 . The conductivity types of the drain region 31 and the source region 32 may be the same or opposite, or they may have a multilayer structure, but the depletion layer spreading from the drain region 31 in at least a part of the operating region is the source region 32. The impurity density is determined together with the depth of the U-shaped groove in order to reach . A gate insulating film 34 such as an oxide film is provided in contact with the channel region 33 and has a thickness of about 100 to 1000 Å. On the opposite side of the gate insulating film 34, a gate electrode 3 made of metal, polycrystalline silicon, etc.
4' is provided. Note that the reference numeral 35 in the figure indicates a field oxide film. The conventional notched insulated gate static induction transistor shown in Figure 3a is formed in the depth direction of the semiconductor substrate, so the dimensions of the transistor can be controlled with the precision of film formation, and short channel It is well suited for high-speed transistors, resulting in high-speed, low-power integrated circuits. However, in conventional notched insulated gate static induction transistors, especially when short channels are used to increase speed, current flows between the drain and the source even at a distance from the gate surface due to the influence of the drain electric field. This current component cannot be controlled by the gate voltage. Therefore,
It has drawbacks such as a large leakage current when off and a low breakdown voltage between the drain and source.
For example, Figure 3b shows the drain current of a conventional notched insulated gate static induction transistor designed with a channel length of approximately 0.5 μm, a channel impurity dose of approximately 2×10 13 cm -2 , and a gate oxide film thickness of approximately 250 Å. - This is an example of drain voltage characteristics. Even when the gate voltage is 0V, drain current flows as the drain voltage increases. Of course, by selecting the impurity density of the channel region 33, it is possible to suppress such current flowing through the bulk side to some extent. The channel length in figure c is approximately 0.5μ.
This is an example of the drain current-drain voltage characteristics of a conventional notched insulated gate static induction transistor designed with a channel impurity dose of about 6×10 13 cm -2 and a gate oxide film thickness of about 250 Å. In this way, although the leakage current during off-time is improved, the electrostatic induction effect on the drain side becomes less likely to reach the source side, and the driving ability is sacrificed to some extent, such as by increasing the threshold voltage of the element.

(発明が解決しようとする問題点) 本発明の目的は、前記の切り込み型絶縁ゲート
静電誘導トランジスタの欠点を克して特性を改善
し、より高速スイツチングを行うことができ消費
電力の少ない切み込み型絶縁エート静電誘導トラ
ンジスタを提供することである。
(Problems to be Solved by the Invention) An object of the present invention is to overcome the drawbacks of the above-described notched insulated gate static induction transistor, improve the characteristics, and provide a switching device that can perform faster switching and consume less power. An object of the present invention is to provide an embedded insulated electrostatic induction transistor.

(問題点を解決するための手段) このため、本発明では、第1図aに示すよう
に、切り込み型絶縁ゲート静電誘導トランジスタ
のU字型溝の側壁の表面近傍にのみ低不純物密度
のチヤネル領域13を設け、バルク側のドレイン
領域11とソース領域12にはさまれたチヤネル
領域13′は高不純物密度のものとする。バルク
側のチヤネル領域13′の不純物密度は、通常の
使用状態においてドレイン電界の影響でドレイ
ン・ソース間にリーク電流が流れないように設定
する。
(Means for Solving the Problems) Therefore, in the present invention, as shown in FIG. A channel region 13 is provided, and the channel region 13' sandwiched between the drain region 11 and the source region 12 on the bulk side has a high impurity density. The impurity density of the channel region 13' on the bulk side is set so that no leakage current flows between the drain and the source under the influence of the drain electric field in normal use.

(作用) その結果、この様な構造においては、スレツシ
ヨルド電圧を増加させることなく、また、ドレイ
ン・ソース間のリーク電流を増加させることなく
短チヤネル化が行え、高速スイツチングを行うこ
とができ消費電力の少ない切り込み型絶縁ゲート
静電誘導トランジスタとなる。
(Function) As a result, in such a structure, the channel can be shortened without increasing the threshold voltage or the leakage current between the drain and source, and high-speed switching can be performed, reducing power consumption. This results in a notch-type insulated gate static induction transistor with less noise.

(実施例) 第1図aに本発明による切り込み型絶縁ゲート
静電誘導トランジスタの断面構造の1例を示す。
同図中の符号10は半導体基板を示しており、そ
の主表面の一部にU字型の溝が設けられている。
そして、このU字型溝の中にU字型溝の側壁の上
端に接するようにドレイン領域11が設けられ、
またU字型溝の側壁下端に接するようにソース領
域12が設けられており、ドレイン領域11にド
レイン電極11′が接続されている。ドレイン領
域11、ソース領域12はそれぞれ1018〜1021cm
-3程度の不純物密度を有しており、導電型はp型
でもn型でもかまわない。また、領域11をソー
ス領域、領域12をドレイン領域としてもかまわ
ない。チヤネル領域13はU字型溝の側壁表面近
傍に設けられていて、1012〜1016cm-3程度の不純
物密度を有する。その導電型はドレイン領域11
及びソース領域12と同一でも反対でもかまわな
いが、少なくともその動作領域の一部において、
ドレイン領域11から広がつた空乏層がソース領
域12に到達すべく、その導電型及び不純物密度
が前記U字型溝の深さとともに決定される。そし
て、チヤネル領域13に隣接してドレイン領域1
1とソース領域12の間にはバルク側のチヤネル
領域13′が設けられており、ドレイン領域11
及びソース領域12とは反対の導電型を有してい
て、ドレイン電界の影響でドレイン・ソース間に
リーク電流が流れないようにその不純物密度が設
定される。チヤネル領域13に接して酸化膜等の
ゲート絶縁膜14が設けられており、100〜1000
Å程度の膜厚を有する。そして、ゲート絶縁膜1
4の反対側には金属や多結晶シリコン等からなる
ゲート電極14′が設けられている。なお、第1
図a中の符号15はフイールド酸化膜を示してい
る。
(Example) FIG. 1a shows an example of a cross-sectional structure of a notched insulated gate static induction transistor according to the present invention.
Reference numeral 10 in the figure indicates a semiconductor substrate, and a U-shaped groove is provided in a part of the main surface thereof.
A drain region 11 is provided in this U-shaped groove so as to be in contact with the upper end of the side wall of the U-shaped groove,
Further, a source region 12 is provided so as to be in contact with the lower end of the side wall of the U-shaped groove, and a drain electrode 11' is connected to the drain region 11. Drain region 11 and source region 12 are each 10 18 to 10 21 cm
It has an impurity density of about -3 , and the conductivity type can be p-type or n-type. Further, the region 11 may be used as a source region, and the region 12 may be used as a drain region. The channel region 13 is provided near the side wall surface of the U-shaped groove and has an impurity density of about 10 12 to 10 16 cm −3 . Its conductivity type is drain region 11
and the source region 12 may be the same or opposite, but at least in a part of its operating region,
In order for the depletion layer spreading from the drain region 11 to reach the source region 12, its conductivity type and impurity density are determined together with the depth of the U-shaped groove. A drain region 1 is provided adjacent to the channel region 13.
A channel region 13' on the bulk side is provided between the drain region 11 and the source region 12.
and has a conductivity type opposite to that of the source region 12, and its impurity density is set so that leakage current does not flow between the drain and source due to the influence of the drain electric field. A gate insulating film 14 such as an oxide film is provided in contact with the channel region 13.
It has a film thickness of about Å. And gate insulating film 1
On the opposite side of 4, a gate electrode 14' made of metal, polycrystalline silicon, or the like is provided. In addition, the first
Reference numeral 15 in the figure a indicates a field oxide film.

このようなU字型溝側壁表面近傍のチヤネル領
域13は、U字型溝を掘り込み後、エピタキシヤ
ル成長を行うことによつて形成でき、やはり成膜
の精度で厚さの制御ができる。特に、成長方法と
して分子層エピタキシー(MLE:Molecular
Layer Epitaxy)を用いれば、低温成長が行える
ため、不純物の再分布も少なく、また、成膜の精
度も1分子層のオーダーまで高まる。
Such a channel region 13 near the surface of the side wall of the U-shaped groove can be formed by performing epitaxial growth after digging the U-shaped groove, and the thickness can also be controlled with the precision of film formation. In particular, the growth method is molecular layer epitaxy (MLE).
By using layer epitaxy, low-temperature growth is possible, which reduces the redistribution of impurities and increases the precision of film formation to the order of one molecular layer.

第1図bに、本発明による切り込み型絶縁ゲー
ト静電誘導トランジスタのゲート電圧−ドレイン
電流特性を従来型と比較して示す。この場合は、
チヤネル長約0.5μm、チヤネル不純物ドーズ量約
4×1013cm-2、ゲート酸化膜厚約250Åに設計さ
れている。従来型と同じバルク側チヤネルの不純
物密度においても、スレツシヨルド電圧を下げる
ことができる。
FIG. 1b shows the gate voltage-drain current characteristics of a notched insulated gate static induction transistor according to the present invention in comparison with a conventional type. in this case,
It is designed to have a channel length of approximately 0.5 μm, a channel impurity dose of approximately 4×10 13 cm −2 , and a gate oxide film thickness of approximately 250 Å. Even with the same impurity density in the bulk channel as in the conventional type, the threshold voltage can be lowered.

本発明の切り込み型絶縁ゲート静電誘導トラン
ジスタを相補型絶縁ゲート集積回路に応用した場
合の1ゲートの断面構造側を第2図に示す。半導
体基板20中のNチヤネル・トランジスタは、
n+ドレイン領域21、N+ソース領域23、チヤ
ネル領域25、バルク側のチヤネル領域25′、
ドレイン電極21′、ゲート絶縁膜27、ゲート
電極27′を有しており、Pチヤネル・トランジ
スタは、p+ドレイン領域22、p+ソース領域2
4、チヤネル領域26、バルク側のチヤネル領域
26′、ドレイン電極22′、ゲート絶縁膜27、
ゲート電極27′を有している。n+ドレイン領域
21、p+ドレイン領域22、n+ソース領域23、
p+ソース領域24はそれぞれ1018〜1021cm-3程度
の不純物密度を有する。チヤネル領域25,26
はそれぞれ1012〜1016cm-3程度の不純物密度を有
し、少なくともその動作領域の一部において、ド
レイン領域21,22から広がつた空乏層がソー
ス領域23、24に到達すべく、その不純物密度
が前記U字型溝の深さとともに決定される。バル
ク側のチヤネル領域25′,26′はドレイン領域
21,22及びソース領域23,24とは反対の
導電型を有し(したがつて、領域25′はp型、
領域26′はn型)、ドレイン電界の影響でドレイ
ン・ソース間に電流が流れないように不純物密度
が設定される。酸化膜等のゲート絶縁膜27は
100〜1000Å程度の膜厚を有する。なお、図中の
28はフイールド酸化膜を示している。また、P
チヤネル・トランジスタとNチヤネル・トランジ
スタを分離するためのpウエル29が設けてあ
る。ゲート電極27′が論理入力、ドレイン電極
21′,22′が論理出力であり、電源電圧はソー
ス領域23と24の間に加えられる。
FIG. 2 shows a cross-sectional structure of one gate when the notched insulated gate static induction transistor of the present invention is applied to a complementary insulated gate integrated circuit. The N-channel transistor in the semiconductor substrate 20 is
n + drain region 21, N + source region 23, channel region 25, bulk side channel region 25',
It has a drain electrode 21', a gate insulating film 27, and a gate electrode 27', and the P channel transistor has a p + drain region 22, a p + source region 2
4, channel region 26, bulk side channel region 26', drain electrode 22', gate insulating film 27,
It has a gate electrode 27'. n + drain region 21, p + drain region 22, n + source region 23,
Each p + source region 24 has an impurity density of about 10 18 to 10 21 cm −3 . Channel areas 25, 26
each has an impurity density of about 10 12 to 10 16 cm -3 , and at least in a part of its operating region, the depletion layer spreading from the drain regions 21 and 22 reaches the source regions 23 and 24. The impurity density is determined along with the depth of the U-shaped groove. The bulk side channel regions 25', 26' have a conductivity type opposite to that of the drain regions 21, 22 and the source regions 23, 24 (therefore, the regions 25' are p-type,
The region 26' is n-type), and the impurity density is set so that no current flows between the drain and source due to the influence of the drain electric field. The gate insulating film 27 such as an oxide film is
It has a film thickness of about 100 to 1000 Å. Note that 28 in the figure indicates a field oxide film. Also, P
A p-well 29 is provided to separate the channel and N-channel transistors. Gate electrode 27' is a logic input, drain electrodes 21' and 22' are logic outputs, and a power supply voltage is applied between source regions 23 and 24.

短チヤネル化によつて、ドレイン電圧の静電誘
導効果がソース領域に及びやすくして素子の駆動
能力を増加させても、本発明の切り込み型絶縁ゲ
ート静電誘導トランジスタは、バルク側のチヤネ
ル領域25′,6′の不純物密度を適当に選択する
ことによつて、オフ時のリーク電流を小さくする
ことができ、スタンバイ・パワーを減らすことが
できる。したがつて、高速かつ低消費電力の相補
型絶縁ゲート集積回路を提供することができる。
Even though shortening the channel makes it easier for the electrostatic induction effect of the drain voltage to reach the source region and increases the drive capability of the device, the notched insulated gate electrostatic induction transistor of the present invention does not allow the electrostatic induction effect of the drain voltage to easily reach the source region. By appropriately selecting the impurity densities of 25' and 6', it is possible to reduce the leakage current during off-time and reduce the standby power. Therefore, a complementary insulated gate integrated circuit with high speed and low power consumption can be provided.

(発明の効果) 以上の様に、本発明においては、従来の切り込
み型絶縁ゲート静電誘導トランジスタの欠点を改
良し、短チヤネル化されドレイン電圧の静電誘導
効果が十分に得られる場合においても、不要なド
レイン・ソース間電流を減少させることができ
る。したがつて、本発明は、高速スイツチングを
行うことができ消費電力の少ない切り込み型絶縁
ゲート静電誘導トランジスタを提供することがで
き、このトランジスタを用いて高速・低消費電力
の絶縁ゲート型トランジスタ集積回路を提供する
ことができ、その工業的価値は大きい。
(Effects of the Invention) As described above, the present invention improves the shortcomings of the conventional notch type insulated gate static induction transistor, and even when the channel is shortened and the static induction effect of the drain voltage is sufficiently obtained. , unnecessary drain-source current can be reduced. Therefore, the present invention can provide a notch type insulated gate static induction transistor that can perform high speed switching and has low power consumption, and can be used to integrate high speed and low power consumption insulated gate type transistors. It is possible to provide a circuit, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の切り込み型絶縁ゲート静電誘
導トランジスタの1実施例を示すもので、同図a
は断面構造図、同図bはドレイン電流−ゲート電
圧特性の1例を示すものである。第2図は本発明
の切り込み型絶縁ゲート静電誘導トランジスタを
用いた集積回路の1実施例の断面構造図である。
第3図は従来の切り込み型絶縁ゲート静電誘導ト
ランジスタの1例を示すもので、同図aは断面構
造図、同図bはドレイン電流−ドレイン電圧特性
の1例、同図cはドレイン電流−ドレイン電圧特
性の他の例を示すものである。 10,20,30:半導体基板、11,21,
22,31:ドレイン領域、12,23,24,
32:ソース領域、13,25,26:チヤネル
領域、13′,25′,26′:バルク側のチヤネ
ル領域、11′,21′,22′,31′:ドレイン
電極、14,27,34:ゲート絶縁膜、14′,
27′,34′:ゲート電極、15,28,35:
フイールド酸化膜、29:pウエル。
FIG.
1 is a cross-sectional structure diagram, and FIG. 1B shows an example of drain current-gate voltage characteristics. FIG. 2 is a cross-sectional structural diagram of one embodiment of an integrated circuit using the notched insulated gate static induction transistor of the present invention.
Figure 3 shows an example of a conventional notch-type insulated gate static induction transistor, in which a is a cross-sectional structural diagram, b is an example of drain current-drain voltage characteristics, and c is a drain current. - This shows another example of drain voltage characteristics. 10, 20, 30: semiconductor substrate, 11, 21,
22, 31: drain region, 12, 23, 24,
32: Source region, 13, 25, 26: Channel region, 13', 25', 26': Bulk side channel region, 11', 21', 22', 31': Drain electrode, 14, 27, 34: Gate insulating film, 14',
27', 34': gate electrode, 15, 28, 35:
Field oxide film, 29:p well.

Claims (1)

【特許請求の範囲】 1 半導体基板の主表面にU字型溝を有し、前記
U字型溝の側壁上端の少なくとも一部に接する様
に設けられた高不純物密度のドレイン領域と、前
記U字型溝の側壁下端の少なくとも一部に接する
様に設けられた高不純物密度のソース領域と、前
記U字型溝の側壁表面近傍に設けられた低不純物
密度の第1チヤネル領域と、前記ドレイン領域と
前記ソース領域にはさまれ前記ドレイン領域及び
前記ソース領域の導電型とは異なる導電型の第2
チヤネル領域とを有し、前記第2チヤネル領域を
流れる電流をなくすようにその不純物密度を設定
し、前記第1チヤネル領域を流れる電流を前記U
字型溝の少なくとも一部に設けられた絶縁ゲート
で制御することを特徴とする切り込み型絶縁ゲー
ト静電誘導トランジスタ。 2 前記第1チヤネル領域は前記U字型溝の側壁
にエピタキシヤル成長によつて形成されたもので
あることを特徴とする特許請求の範囲第1項記載
の切り込み型絶縁ゲート静電誘導トランジスタ。 3 ドレイン領域とソース領域を入れ換えたこと
を特徴とする特許請求の範囲第1項又は第2項記
載の切り込み型絶縁ゲート静電誘導トランジス
タ。 4 前記トランジスタが半導体集積回路の構成要
素の少なくとも一部をなしていることを特徴とす
る特許請求の範囲第1項から第3項いずれかに記
載の切り込み型絶縁ゲート静電誘導トランジス
タ。
[Scope of Claims] 1. A drain region having a U-shaped groove on the main surface of a semiconductor substrate, having a high impurity density and provided in contact with at least a part of the upper end of a side wall of the U-shaped groove; a source region with high impurity density provided so as to be in contact with at least a portion of the lower end of the side wall of the U-shaped trench; a first channel region with low impurity density provided near the surface of the side wall of the U-shaped trench; and the drain region. a second region sandwiched between the region and the source region and having a conductivity type different from that of the drain region and the source region.
a channel region, the impurity density is set so as to eliminate the current flowing through the second channel region, and the current flowing through the first channel region is
A notch type insulated gate static induction transistor characterized in that the transistor is controlled by an insulated gate provided in at least a portion of a shaped groove. 2. The notched insulated gate static induction transistor according to claim 1, wherein the first channel region is formed on the sidewall of the U-shaped groove by epitaxial growth. 3. The notched insulated gate static induction transistor according to claim 1 or 2, wherein the drain region and the source region are interchanged. 4. The notched insulated gate static induction transistor according to any one of claims 1 to 3, wherein the transistor constitutes at least a part of a component of a semiconductor integrated circuit.
JP27393586A 1986-11-19 1986-11-19 Notch type insulated-gate static induction transistor Granted JPS63128675A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP27393586A JPS63128675A (en) 1986-11-19 1986-11-19 Notch type insulated-gate static induction transistor
EP95114168A EP0690513B1 (en) 1986-11-19 1987-11-10 Step-cut insulated gate static induction transistors and method of manufacturing the same
DE3752273T DE3752273T2 (en) 1986-11-19 1987-11-10 Static induction transistors with an insulated gate in an incised stage and process for their production
EP93101675A EP0547030B1 (en) 1986-11-19 1987-11-18 Step-cut insulated gate static induction transistors and method of manufacturing the same
EP92101661A EP0481965B1 (en) 1986-11-19 1987-11-18 Method of manufacturing step-cut insulated gate static induction transistors
DE3752215T DE3752215T2 (en) 1986-11-19 1987-11-18 Process for the production of the static induction transistors with an insulated gate in a cut stage
EP87310185A EP0268472B1 (en) 1986-11-19 1987-11-18 Step-cut insulated gate static induction transistors and method of manufacturing the same
DE87310185T DE3789003T2 (en) 1986-11-19 1987-11-18 Static induction transistors with an insulated gate in an incised stage and process for their production.
DE3752255T DE3752255T2 (en) 1986-11-19 1987-11-18 Static induction transistors with an insulated gate in an incised stage and process for their production
US07/752,934 US5115287A (en) 1986-11-19 1991-08-30 Step-cut insulated gate static induction transistors and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27393586A JPS63128675A (en) 1986-11-19 1986-11-19 Notch type insulated-gate static induction transistor

Publications (2)

Publication Number Publication Date
JPS63128675A JPS63128675A (en) 1988-06-01
JPH03792B2 true JPH03792B2 (en) 1991-01-08

Family

ID=17534620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27393586A Granted JPS63128675A (en) 1986-11-19 1986-11-19 Notch type insulated-gate static induction transistor

Country Status (1)

Country Link
JP (1) JPS63128675A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169795A (en) * 1989-02-28 1992-12-08 Small Power Communication Systems Research Laboratories Co., Ltd. Method of manufacturing step cut type insulated gate SIT having low-resistance electrode

Also Published As

Publication number Publication date
JPS63128675A (en) 1988-06-01

Similar Documents

Publication Publication Date Title
US6271067B1 (en) Methods of forming field effect transistors and field effect transistor circuitry
US4967246A (en) Structure of insulated gate bipolar transistors
KR20010090598A (en) Lateral thin-film silicon-on-insulator (soi) pmos device having a drain extension region
JP3282375B2 (en) Complementary insulated gate field effect transistor
JPH0621468A (en) Insulated gate semiconductor device
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
US20080087949A1 (en) Semiconductor device and method of manufacturing the same
JPH11163336A (en) Semiconductor device
US7268378B1 (en) Structure for reduced gate capacitance in a JFET
JPH03160761A (en) Semiconductor device
JP3402043B2 (en) Field effect transistor
JPH03792B2 (en)
JPS62274775A (en) Semiconductor device
JPH04346272A (en) Semiconductor device and manufacture thereof
JPS63254769A (en) Vertical insulated-gate type field effect transistor
JPH04280474A (en) Soi structure mosfet
JPH03791B2 (en)
JP3503094B2 (en) Insulated gate type static induction transistor
JP2540754B2 (en) High voltage transistor
JP3074064B2 (en) Lateral MOS field effect transistor
JP2002343971A (en) Semiconductor device
JP3191285B2 (en) Semiconductor device and manufacturing method thereof
JPH07249760A (en) Fabrication of semiconductor device
JPH01207977A (en) Semiconductor device
JPS6244698B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term