JPS62274775A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62274775A
JPS62274775A JP11733886A JP11733886A JPS62274775A JP S62274775 A JPS62274775 A JP S62274775A JP 11733886 A JP11733886 A JP 11733886A JP 11733886 A JP11733886 A JP 11733886A JP S62274775 A JPS62274775 A JP S62274775A
Authority
JP
Japan
Prior art keywords
layer
voltage
drain
metal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11733886A
Other languages
Japanese (ja)
Inventor
Akihiro Shimizu
昭博 清水
Eiji Takeda
英次 武田
Hitoshi Kume
久米 均
Nagatoshi Ooki
長斗司 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP11733886A priority Critical patent/JPS62274775A/en
Publication of JPS62274775A publication Critical patent/JPS62274775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To construct a high-performance basic device structure by a method wherein a Schottky junction is formed between metal and low-concentration semiconductor and electrodes are built on them through the intermediary of an insulating film. CONSTITUTION:An N<+>-layer 2 is kept at a drain voltage VD, a gate electrode 3 at a gate voltage VG, and a metal layer 5 at the ground potential. When a positive voltage (VD>O) is applied only to the drain N<+>-layer 2, no current flows although a Schottky barrier depletion layer in an N<->-layer 1 extends toward a silicon side. Next, when the gate voltage VG is also rendered positive, the Schottky barrier will be so thin that electrons will tunnel from a metal layer 6 into the N<->-layer 1 for the performance of switching actions. In this case, the N<+>-layer 2 contacts with external circuits. It becomes possible for a current flowing from the drain N<+>-layer 2 to a source metal layer 5.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は半導体装置に係り、特に今後のLSIに好適な
基本デバイスに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a basic device suitable for future LSIs.

〔従来の技術〕[Conventional technology]

従来よりLSIの構成素子として君臨してきたMOSト
ランジスタは、その微細化が進むにつれ様々な問題が顕
在化してきている。その例をあげると、1)種々の寄生
効果の増大による電流の理想値からの低下、2)素子内
部電界の上昇による耐圧低下環の信頼性の低下、3)ゲ
ート長が短くなるにつれて閾値電圧が低下する短チヤネ
ル効果の増大等があげられる。このため、今後のVLS
I 。
MOS transistors, which have traditionally dominated as constituent elements of LSIs, are facing various problems as their miniaturization progresses. Examples include 1) a decrease in the current from the ideal value due to an increase in various parasitic effects, 2) a decrease in the reliability of the breakdown voltage reduction ring due to an increase in the internal electric field of the element, and 3) a decrease in the threshold voltage as the gate length becomes shorter. Examples include an increase in the short channel effect, which reduces the For this reason, future VLS
I.

ULSIを構築するには、上記問題をいかに解決するか
にかかつている。現在のところ上記2)j及び3)を同
時に解決する方法としては、98特許738280号に
記載の低濃度ドレイン構造(LightlyDoped
 Drain構造、通称LDD構造)が有力であると考
えられている。
Building ULSI depends on how to solve the above problems. At present, as a method to solve the above 2)j and 3) at the same time, the lightly doped drain structure (LightlyDoped
Drain structure (commonly known as LDD structure) is considered to be effective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術におけるLDDW造は、確かに1ミクロン
レベルでは有効と思われるが、耐圧向上のために多少電
流の低下を招くという犠牲を払っている。このためサブ
ミクロン領域では1本構造では今後USSIの基本デバ
イスとしては不十分である、また、耐圧等の信頼性に注
意を払わなくてすむ方法に電源電圧の低下があげられる
が、これも電流の大きな低下を招く。さらに、MOSト
ランジスタのスケーリングによる性能向上については。
The LDDW structure in the above-mentioned prior art is certainly effective at the 1 micron level, but it comes at the cost of somewhat lowering the current in order to improve the withstand voltage. For this reason, in the submicron region, a single structure will not be sufficient as a basic device for USSI in the future.Also, lowering the power supply voltage is a way to avoid having to pay attention to reliability such as withstand voltage, but this also applies to current This results in a large decrease in Furthermore, regarding performance improvement through scaling of MOS transistors.

各種寄生効果、例えば速度飽和等により限界の存在する
ことも報告されており、将来のIJLSI等の基本構造
としては解決すべき問題が数多くある。
It has also been reported that there are limits due to various parasitic effects, such as speed saturation, and there are many problems to be solved for the basic structure of future IJLSIs.

本発明の目的は、今後のサブミクロン素子でも有効で、
かつ、従来のMOSトランジスタよりも高性能の基本デ
バイス構造を提供することにある。
The purpose of the present invention is to be effective even in future submicron devices,
Another object of the present invention is to provide a basic device structure with higher performance than conventional MOS transistors.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、金属と低濃度半導体を接触させショットキ
ー接合を形成し、かつ、それらに絶縁膜を介して電極を
設けることにより達成される。
The above object is achieved by bringing a metal and a low concentration semiconductor into contact to form a Schottky junction, and by providing an electrode thereon with an insulating film interposed therebetween.

〔作用〕 本発明の素子は、基本的には金属と半導体で形成される
ショットキー接合を流れるトンネル電流を絶縁膜を介し
たゲート電極に印加する電圧で制御するものである。こ
の基本動作を第3.4.5図を用いて説明する。
[Function] The device of the present invention basically controls a tunnel current flowing through a Schottky junction formed of a metal and a semiconductor by applying a voltage to a gate electrode via an insulating film. This basic operation will be explained using FIG. 3.4.5.

まず、第3図に示したものは、低濃度(No<1016
■−11)n型シリコンとメタルとを接触させた時のエ
ネルギーバンド図であり、第3図(a)の如く、ショッ
トキーバリアが形成される。今、n型シリコンを0電位
とし、メタルに電圧Vを印加した場合を考える。(b)
のようにVが負の場合にはシリコン層に空乏層が拡がる
だけで電流は流れない、しかし、(c)のようにVが正
になるとシリコン中よりメタルへ電子が注入され電流が
流れる。つまり、整流性を示すことになる。
First, the one shown in Figure 3 is a low concentration (No<1016
(1-11) This is an energy band diagram when n-type silicon and metal are brought into contact, and a Schottky barrier is formed as shown in FIG. 3(a). Now, consider a case where the n-type silicon is set to 0 potential and a voltage V is applied to the metal. (b)
When V is negative, as shown in (c), a depletion layer simply expands in the silicon layer and no current flows.However, when V becomes positive, as shown in (c), electrons are injected from the silicon into the metal, causing a current to flow. In other words, it exhibits rectification properties.

また、第4図に示したのは、高濃度(No>10”cm
−3) n型シリコンとメタルとを接触させた場合のエ
ネルギーバンド図(a)である。(c)のようにVが正
の場合は先程と同様に電流が流れるが、■が負の場合に
は(b)の如く、不純物濃度が濃いため空乏層があまり
伸びず、バリアの幅が非常に薄くなるためにメタルより
シリコン層へトンネル電流が流れる。これにより、第4
図の場合には第3図のような整流性を示すことなくオー
ミック性となる。以上のようにショットキー接合におい
てはシリコンの不純物濃度を変えることにより電流を制
御できることがわかる。
Also, what is shown in Figure 4 is high concentration (No>10”cm).
-3) Energy band diagram (a) when n-type silicon and metal are brought into contact. When V is positive as shown in (c), the current flows as before, but when ■ is negative, as shown in (b), the depletion layer does not extend much due to the high impurity concentration, and the width of the barrier increases. Because it is extremely thin, tunnel current flows from the metal to the silicon layer. This allows the fourth
In the case shown in the figure, it exhibits ohmic properties without exhibiting rectifying properties as in Fig. 3. As described above, it is understood that in a Schottky junction, the current can be controlled by changing the impurity concentration of silicon.

そこで、第5図の如く上記ショットキー接合上に絶縁膜
を介してゲート電極3をもうけ、これで゛ シリコン表
面のキャリア濃度を変化させると上記理由から電流を制
御可能なスイッチング素子となる。つまり、低濃度のn
型基板とメタルを接触させ、メタル側に負の電圧を印加
する。ゲート電圧VQがovの時は第3図(b)の如く
ショットキーバリアにより電流は流れぬが、Vaを正に
印加してゆくと、n型シリコンの表面が蓄積層となり高
濃度領域となる。これにつれて、表面のバリアは第4図
(b)の如くなり、メタルより電子がトンネルし電流が
流れる。本発明の素子は以上によりスイッチング動作を
行うものである。
Therefore, if a gate electrode 3 is provided on the Schottky junction via an insulating film as shown in FIG. 5, and the carrier concentration on the silicon surface is changed using this gate electrode, a switching element that can control the current for the above-mentioned reasons can be obtained. In other words, a low concentration of n
Bring the mold substrate into contact with the metal, and apply a negative voltage to the metal side. When the gate voltage VQ is ov, no current flows due to the Schottky barrier as shown in Figure 3(b), but as Va is applied positively, the surface of the n-type silicon becomes an accumulation layer and becomes a high concentration region. . As a result, the surface barrier becomes as shown in FIG. 4(b), and electrons tunnel through the metal, allowing current to flow. The element of the present invention performs the switching operation as described above.

また、上記素子のゲート電極に負の電圧を印加し、n型
基板表面に反転層を形成してこの反転層内のキャリアの
濃度を十分濃くすると、やはり上記原理でトンネル電流
が流れ、スイッチング動作をする。つまり、本素子は、
ゲート電圧を正、負どちらでも十分に大きくし、基板表
面のキャリア濃度をあげてやれば、トンネル電流により
電流が流れるものである。なお、上記特性は、本構造が
メタルと低濃度p型シリコンとで形成された場合にも、
上記と逆のバイアスを印加することによりスイッチング
動作をする。
Furthermore, if a negative voltage is applied to the gate electrode of the above device to form an inversion layer on the surface of the n-type substrate and the concentration of carriers in this inversion layer is sufficiently high, a tunnel current will flow based on the above principle, resulting in switching operation. do. In other words, this device is
If the gate voltage is made sufficiently large, either positive or negative, and the carrier concentration on the substrate surface is increased, current will flow due to tunnel current. Note that the above characteristics also apply when this structure is formed of metal and low concentration p-type silicon.
A switching operation is performed by applying a bias opposite to the above.

本発明の素子を用いると、まず微細化しても物理的にシ
ョットキーバリアがあるためパンチスルーは生じない、
このため、パンチスル一対策として基板不純物濃度をあ
げる必要がなく、この結果、耐圧の向上、高移動度1等
の実現が可能となる。
When using the device of the present invention, punch-through does not occur even when miniaturized because there is a physical Schottky barrier.
Therefore, there is no need to increase the substrate impurity concentration as a countermeasure against punch-slip, and as a result, it is possible to improve breakdown voltage and achieve high mobility 1, etc.

また、シリコン基板自身の不純物濃度を変えることによ
り(例えば1通従のMOSトランジスタで用いられてい
る閾値電圧制御用不純物打込み技#r)、本スイッチン
グ素子をエンハンスメント。
In addition, this switching element is enhanced by changing the impurity concentration of the silicon substrate itself (for example, impurity implantation technique #r for threshold voltage control used in conventional MOS transistors).

デプレッションのどちらのモードにも作成できろ。Can be created in either mode of depression.

以−ヒ、従来のMOSトランジスタに比べ、今後のサブ
ミクロン領域へ向けての新デバイスとしての有効性は高
い。
Therefore, compared to conventional MOS transistors, it is highly effective as a new device for the future submicron region.

〔実施例〕〔Example〕

実施例1 以下・本発明の一実施例について第6図におり1てその
製法を、第7図においてその動作について説明する。
Embodiment 1 An embodiment of the present invention will be described below with reference to FIG. 6, and its manufacturing method, and FIG. 7, its operation.

まず、n型1oΩ−1基板1上に、選択的に素子分離領
域を形成後、フォトレジストをマスクに将来ドレインと
なる領域にヒ素(As)の打込みによりn十層2を形成
(XJ=0.5  μm)し、さらに将来ソースとなる
領域のシリコンをフォトエツチングにより0.5 μm
削る(第6図(a))。
First, after selectively forming an element isolation region on an n-type 10Ω-1 substrate 1, an n0 layer 2 is formed by implanting arsenic (As) into a region that will become a drain in the future using a photoresist as a mask (XJ=0 .5 μm), and then photo-etched the silicon in the area that will become the source in the future to 0.5 μm.
Scrape (Figure 6(a)).

次に、そのシリコンの溝に金属としてタングステン(W
)5を埋め込み、ゲート酸化膜(20nm)6と、リン
ドープのpoly−8iゲート電極3(400nm)を
フォトエツチングで形成する[第6図(b)]。そして
、層間絶縁膜のリン硅酸ガラス(P S G)膜9を被
膜後、コンタクトホールをあけ、アルミニラ11電極1
0を形成して完了する[第6図(C)コ。
Next, tungsten (W) is placed as a metal in the silicon groove.
) 5, and a gate oxide film (20 nm) 6 and a phosphorus-doped poly-8i gate electrode 3 (400 nm) are formed by photoetching [FIG. 6(b)]. After coating a phosphosilicate glass (PSG) film 9 as an interlayer insulating film, a contact hole is opened and the aluminum 11 electrode 1
Complete by forming 0 [Fig. 6(C)].

ではこれより、第7図を用いて本実施例の動作を説明す
る。(a)の如<、n十層2にドレイン電圧Voを、ゲ
ート電極3にはゲート電圧Vaを、そしてメタル層5は
接地電位とする。シリコン表面におけるVa=Vo=O
Vの初期状態でのエネルギーバンド図を(b)に示す。
Now, the operation of this embodiment will be explained using FIG. 7. As shown in (a), the drain voltage Vo is applied to the layer 2, the gate voltage Va is applied to the gate electrode 3, and the metal layer 5 is applied to the ground potential. Va=Vo=O on the silicon surface
The energy band diagram of V in its initial state is shown in (b).

まずドレインのn十層2にのみ正の電圧(Vo>O)を
印加すると、 (c)の如くn一層1内のショットキー
バリアの空乏層がシリコン側に伸びるだけで電流は流れ
ない。次に、ゲート電圧Vaをも正にすると(d)の如
くショットキーバリアが薄くなりメタル6からn一層内
へ電子がトンネルする。本発明は以上の如くスイッチン
グ動作を行う、この場合、n十層2は外部とのコンタク
トをとるために形成したものである。
First, when a positive voltage (Vo>O) is applied only to the n layer 2 of the drain, the depletion layer of the Schottky barrier in the n layer 1 extends toward the silicon side, as shown in (c), and no current flows. Next, when the gate voltage Va is also made positive, the Schottky barrier becomes thinner as shown in (d), and electrons tunnel from the metal 6 into the n layer. The present invention performs the switching operation as described above. In this case, the n+ layer 2 is formed to make contact with the outside.

本発明では、ドレインのn÷層からソースのメタル層5
へのみ流れる電流を制御できるものである。このため、
Vo<Oにするとショットキー接合が順バイアスされた
ことになり電流がメタル層からn中層へ逆に流れてしま
い、相方向のスイッチング動作は行えない。
In the present invention, from the drain n÷ layer to the source metal layer 5
It is possible to control the current flowing only to the For this reason,
When Vo<O, the Schottky junction is forward biased, and current flows in the opposite direction from the metal layer to the n-layer, making it impossible to perform switching operations in the phase direction.

実施例2 実施例1では高111i1度拡散層と基板が同一導電型
であったが、次に、両者の導伝型が異なる場合を第8図
を用いて説明する。
Example 2 In Example 1, the high 111i1 degree diffusion layer and the substrate were of the same conductivity type, but next, a case where the conductivity types of both are different will be described with reference to FIG.

第8図(a)にその構造を示すが、その製法については
実施例1において、n中層を形成する代りに、ボロン(
B)を高濃度打込みP十層21を形成すればよい。
The structure is shown in FIG.
B) may be implanted at a high concentration to form a P layer 21.

次に本実施例の動作を説明する。(a)の如く、P十層
21にドレイン電圧VDを、ゲート電極3にはゲート電
圧Voを印加し、そして、ソースのメタル層5と基板1
は接地電位にしておく。まず、VG=VD=OVにおけ
るシリコン表面のエネルギーバンド図を(b)に示す。
Next, the operation of this embodiment will be explained. As shown in (a), a drain voltage VD is applied to the P layer 21, a gate voltage Vo is applied to the gate electrode 3, and the source metal layer 5 and the substrate 1 are applied.
is set to ground potential. First, an energy band diagram of the silicon surface at VG=VD=OV is shown in (b).

この場合、ドレイン基板間にはp+ n接合が形成され
、かつ、基板ドレイン間にはショットキー接合が形成さ
れる。ここで、ゲート電圧Vaのみを負にすると、(c
)の如く基板表面は反転するが電流は流れない。また、
 (d)の如くドレイン電圧Voのみを負にしても、上
記バリアの為電流は流れない日(e)の如く、Vo、V
o共に負にした時のみ、ソース側のショットキーバリア
の幅が狭くなり、ここをトンネル電流が流れ、これが本
トランジスタの電流となる。
In this case, a p+n junction is formed between the drain and the substrate, and a Schottky junction is formed between the substrate and the drain. Here, if only the gate voltage Va is made negative, (c
), the substrate surface is reversed, but no current flows. Also,
Even if only the drain voltage Vo is made negative as shown in (d), no current flows due to the barrier, as shown in (e), Vo, V
Only when both o are made negative, the width of the Schottky barrier on the source side becomes narrower, a tunnel current flows through this, and this becomes the current of this transistor.

本構造では実施例1とは異なり、ドレイン、ソースを逆
接続にしても上記と同様のトランジスタ動作をするため
、相方向スイッチング素子として用いることができる。
In this structure, unlike the first embodiment, the transistor operates in the same manner as described above even if the drain and source are reversely connected, so that it can be used as a phase direction switching element.

また、本構造の高耐圧化には、公知となっている二重ド
レイン構造、及び、前述したLDD構造をドレイン側に
形成することにより達成できる。
Moreover, the high breakdown voltage of this structure can be achieved by forming the known double drain structure and the above-mentioned LDD structure on the drain side.

また、ドレインをもメタルで形成しても相方向動作は可
能となる。
Further, even if the drain is also made of metal, phase direction operation is possible.

実施例3 本発明のスイッチング素子は、ショットキー接合界面近
傍のシリコン側の不純物濃度をゲートで制御するもので
あるから、このゲート電極は第11図の如くショットキ
ーも接合近傍にのみあれば、実施例↓と同様の動作をす
る。
Embodiment 3 The switching element of the present invention uses a gate to control the impurity concentration on the silicon side near the Schottky junction interface, so if this gate electrode also has a Schottky junction only near the junction, as shown in FIG. The operation is the same as in the example ↓.

また、第12図に示すように本発明のトランジスタを縦
型に形成することも可能である。この場合メタル層5が
基板上部に、また高濃度拡散層を下部に形成している。
Further, as shown in FIG. 12, it is also possible to form the transistor of the present invention vertically. In this case, a metal layer 5 is formed on the upper part of the substrate, and a high concentration diffusion layer is formed on the lower part.

このため、プロセス的に理想に近いショットキー接合が
形成しやすくなっている。
Therefore, it is easy to form a Schottky junction that is close to ideal in terms of process.

実施例4 実施例2において、ゲート電極4の長さがあまり短かく
なりすぎる、または、ドレイン電圧があまり大きくなる
と、ドレインよりショットキーバリアの空乏層がソース
側に伸び、Mo8の閾値電圧を上昇させることになる。
Example 4 In Example 2, if the length of the gate electrode 4 becomes too short or the drain voltage becomes too large, the depletion layer of the Schottky barrier extends from the drain to the source side, increasing the threshold voltage of Mo8. I will let you do it.

この為、第13図の如く、本素子のチャネル中央部付近
、つまり、あまりショットキー接合に近づきすぎぬ所に
基板より高濃度の不純物(基板と同じ導伝型)領域4を
収束イオンビーム等で基板深部へ達するように形成した
For this reason, as shown in FIG. 13, a focused ion beam or the like is applied to a region 4 with higher concentration of impurity (same conductivity type as the substrate) than the substrate near the center of the channel of this device, that is, in a place not too close to the Schottky junction. It was formed to reach deep into the substrate.

これによりドレインに印加した電圧によりできる空乏層
は、上記高濃度層4でとまり、これ以上ソース側へは伸
びない。
As a result, the depletion layer formed by the voltage applied to the drain stops at the high concentration layer 4 and does not extend any further toward the source side.

実施例5 実施例1〜4に示したものは、全て本発明のスイッチン
グ素子1についての応用例であるが、これを複数個集積
する場合の実施例を示す。
Embodiment 5 The embodiments 1 to 4 are all application examples of the switching element 1 of the present invention, but an embodiment in which a plurality of switching elements 1 are integrated will be described.

第14図は、実施例2のゲートが正バイアス時に反転層
を電子が流れるスイッチング素子(これをnチャネルと
する)と、逆に負バイアス時に反転層を正孔が流れる素
子(pチャネル)を組み合わせてインバータを構成した
ものである。この場合、従来の相補型MO8(CMO3
)プロセスをそのまま応用して形成できるにの図では、
(a)に示すように、p型基板1にnチャネル素子を直
接作り、nチャネル素子はn型ウェル2o内に形成した
。また、基板、及び、ウェルの電位はそれぞれ、p+ 
21.n+ 22でコンタクトをとっている。本インバ
ータの動作は、従来のCMO5と全く同じ動作を行うこ
とができる。なお、ウェルはn型基板−ヒレこp型のも
のを形成してもよい。本実施例では従来の0MO3特有
のラッチアップ等の問題は生じず、微細化に適している
Figure 14 shows a switching element in Example 2 in which electrons flow through the inversion layer when the gate is positively biased (this is referred to as an n-channel), and a device (p-channel) in which holes flow through the inversion layer when the gate is negatively biased. They are combined to form an inverter. In this case, the conventional complementary MO8 (CMO3
) The diagram shows that the process can be applied as is.
As shown in (a), an n-channel device was directly formed on a p-type substrate 1, and the n-channel device was formed in an n-type well 2o. Also, the potentials of the substrate and well are p+
21. I am in contact with n+ 22. The operation of this inverter can be exactly the same as that of the conventional CMO5. Note that the well may be formed of an n-type substrate and a p-type well. In this embodiment, problems such as latch-up peculiar to conventional OMO3 do not occur, and it is suitable for miniaturization.

また、実施例1においても同様にCMO5化が可能であ
る。
Further, in Example 1 as well, conversion to CMO5 is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のMoSトランジスタ。 According to the invention, a conventional MoS transistor.

微細化において生じる数多くの問題点、(例エバ、耐圧
の低下、各種寄生効果による電流の低下等)を克服でき
、将来の[lLSI等の基本デバイスとして非常に有効
である。
It can overcome many problems that occur in miniaturization (e.g., evaporation, reduction in breakdown voltage, reduction in current due to various parasitic effects, etc.), and is very effective as a basic device for future LSIs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、及び第2図は本発明を示す構造の断面図、第3
図乃至第5図は本発明の動作原理を示した図、第6図及
び第7図は本発明の第1の実施例を示した図、第8図は
本発明の第2の実施例を示した図、第9図乃至第11図
は本発明の他の実施例を示した図、第12図は本発明の
素子を集積した例を示した図である。 1・・・低濃度半導体基板、3・・・ゲート電極、5・
・・金属、6・・・ゲート絶縁膜、9・・・P S G
膜、10・・・アルミニウム膜、1l−Si3Na膜、
19−8iOz膜、20・・・n型ウェル層、21.2
2・・・高濃度拡散層、30・・・p型ウェル層、10
1〜106・・・ア¥−J 3  図 C(L)  V=OCb)  V<0    (C) 
 L/ンθ第 4 図 (、L)  V二o      (b)  V<θ  
 (’−)  V/>l)不 5 図 冨 に 図 第 7 図 石 q 目 第 lρ 図 %  n  国 ”−fi 12図 (b) (/l)3ノ
1 and 2 are cross-sectional views of the structure showing the present invention, and FIG.
5 to 5 are diagrams showing the operating principle of the present invention, FIGS. 6 and 7 are diagrams showing the first embodiment of the present invention, and FIG. 8 is a diagram showing the second embodiment of the present invention. 9 to 11 are diagrams showing other embodiments of the present invention, and FIG. 12 is a diagram showing an example in which elements of the present invention are integrated. DESCRIPTION OF SYMBOLS 1...Low concentration semiconductor substrate, 3...Gate electrode, 5...
...Metal, 6...Gate insulating film, 9...P S G
Film, 10... Aluminum film, 1l-Si3Na film,
19-8iOz film, 20...n-type well layer, 21.2
2... High concentration diffusion layer, 30... P-type well layer, 10
1~106...A¥-J 3 Figure C (L) V=OCb) V<0 (C)
L/n θ Fig. 4 (, L) V2o (b) V<θ
('-) V/>l) Not 5 Figure 7 Figure stone qth lρ Figure % n country''-fi Figure 12 (b) (/l) 3 no

Claims (1)

【特許請求の範囲】 1、金属、第1導電型低濃度半導体、第1導電型高濃度
半導体を順次接続した構造において、低濃度半導体の担
体濃度を絶縁膜を介した導電体で変化させることにより
、金属と半導体界面に形成されるショットキーバリア接
合を流れるトンネル電流を制御することを特徴とする半
導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
上記高濃度半導体が第2導電型であることを特徴とする
半導体装置。
[Claims] 1. In a structure in which a metal, a first conductivity type low concentration semiconductor, and a first conductivity type high concentration semiconductor are sequentially connected, the carrier concentration of the low concentration semiconductor is changed by a conductor via an insulating film. A semiconductor device characterized by controlling a tunnel current flowing through a Schottky barrier junction formed at an interface between a metal and a semiconductor. 2. In the semiconductor device according to claim 1,
A semiconductor device characterized in that the high concentration semiconductor is of a second conductivity type.
JP11733886A 1986-05-23 1986-05-23 Semiconductor device Pending JPS62274775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11733886A JPS62274775A (en) 1986-05-23 1986-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11733886A JPS62274775A (en) 1986-05-23 1986-05-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62274775A true JPS62274775A (en) 1987-11-28

Family

ID=14709240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11733886A Pending JPS62274775A (en) 1986-05-23 1986-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62274775A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115629A (en) * 1987-10-29 1989-05-08 Sumitomo Chem Co Ltd Vibration damping composite structural body by injection molding
DE4001390A1 (en) * 1989-01-18 1990-07-19 Nissan Motor SEMICONDUCTOR DEVICE
DE4001350A1 (en) * 1989-01-18 1990-07-19 Nissan Motor SEMICONDUCTOR DEVICE
US5177568A (en) * 1990-08-03 1993-01-05 Hitachi, Ltd. Tunnel injection semiconductor devices with schottky barriers
US5177572A (en) * 1990-04-06 1993-01-05 Nissan Motor Co., Ltd. Mos device using accumulation layer as channel
JP2008306058A (en) * 2007-06-08 2008-12-18 Sanken Electric Co Ltd Semiconductor device
US7488648B2 (en) 2004-06-23 2009-02-10 Samsung Electronics Co., Ltd. Methods of fabricating scalable two-transistor memory devices having metal source/drain regions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752168A (en) * 1980-09-16 1982-03-27 Toshiba Corp Mos type semiconductor device
JPS61206252A (en) * 1985-03-08 1986-09-12 Fujitsu Ltd Cmos semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752168A (en) * 1980-09-16 1982-03-27 Toshiba Corp Mos type semiconductor device
JPS61206252A (en) * 1985-03-08 1986-09-12 Fujitsu Ltd Cmos semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115629A (en) * 1987-10-29 1989-05-08 Sumitomo Chem Co Ltd Vibration damping composite structural body by injection molding
DE4001390A1 (en) * 1989-01-18 1990-07-19 Nissan Motor SEMICONDUCTOR DEVICE
DE4001350A1 (en) * 1989-01-18 1990-07-19 Nissan Motor SEMICONDUCTOR DEVICE
US5040034A (en) * 1989-01-18 1991-08-13 Nissan Motor Co., Ltd. Semiconductor device
US5049953A (en) * 1989-01-18 1991-09-17 Nissan Motor Co., Ltd. Schottky tunnel transistor device
US5177572A (en) * 1990-04-06 1993-01-05 Nissan Motor Co., Ltd. Mos device using accumulation layer as channel
US5177568A (en) * 1990-08-03 1993-01-05 Hitachi, Ltd. Tunnel injection semiconductor devices with schottky barriers
US7488648B2 (en) 2004-06-23 2009-02-10 Samsung Electronics Co., Ltd. Methods of fabricating scalable two-transistor memory devices having metal source/drain regions
JP2008306058A (en) * 2007-06-08 2008-12-18 Sanken Electric Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US6306691B1 (en) Body driven SOI-MOS field effect transistor and method of forming the same
US20020005559A1 (en) Lateral semiconductor device
KR19980064498A (en) Semiconductor device and manufacturing method thereof
JP3319215B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPS6237545B2 (en)
US8486754B1 (en) Method for manufacturing a gate-control diode semiconductor device
JPH02210871A (en) Semiconductor device
JP2000332247A (en) Semiconductor device
US5418391A (en) Semiconductor-on-insulator integrated circuit with selectively thinned channel region
KR20010102237A (en) Depletion type mos transistor
JPH07131007A (en) Semiconductor device
JPS62274775A (en) Semiconductor device
JPH04241452A (en) Semiconductor integrated circuit device
JP3230184B2 (en) Method for manufacturing semiconductor device
JPH0475387A (en) Mis-type semiconductor device
JP2969833B2 (en) MIS type semiconductor device
TW200405571A (en) A DMOS device with a programmable threshold voltage
JP4577948B2 (en) Offset gate field effect transistor
JPS62274776A (en) Semiconductor device
JPS6146990B2 (en)
JPH04115538A (en) Semiconductor device
JP2921930B2 (en) Field effect transistor, method of manufacturing the same, and semiconductor integrated circuit using the same
JPH10270693A (en) Semiconductor device
JP3191285B2 (en) Semiconductor device and manufacturing method thereof
JPH07249760A (en) Fabrication of semiconductor device