JPH0372602A - Manufacture of square sheet type thin film chip resistor - Google Patents

Manufacture of square sheet type thin film chip resistor

Info

Publication number
JPH0372602A
JPH0372602A JP1191011A JP19101189A JPH0372602A JP H0372602 A JPH0372602 A JP H0372602A JP 1191011 A JP1191011 A JP 1191011A JP 19101189 A JP19101189 A JP 19101189A JP H0372602 A JPH0372602 A JP H0372602A
Authority
JP
Japan
Prior art keywords
resistor
thin film
electrode
layers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1191011A
Other languages
Japanese (ja)
Other versions
JP2718196B2 (en
Inventor
Masato Hashimoto
正人 橋本
Osamu Makino
治 牧野
Koji Nishida
孝治 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH0372602A publication Critical patent/JPH0372602A/en
Application granted granted Critical
Publication of JP2718196B2 publication Critical patent/JP2718196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a title square sheet type thin film chip resistor with strong electrodes during soldering process as well as excellent in thermal resistance and insulation resistance by a method wherein the film resistor is printed with a resistor material comprising a metallic organic matter to be baked and then glass-coat layer are used as protective coat. CONSTITUTION:A thermal resistant and insulation resistant alumina substrate 1 wherein grooves 2 for separating the substrate 1 into strip type and piece type chips are cut is screen-printed with a paste and then baked so that under coated glass layers 3, surface electrode layers 4 partly overlapping with the layers 3, resistor layers 5 comprising metallic organic paste so as to partly overlapping with the surface electrodes 4 on the said glass layers 3 as well as overcoat layers 6 may be respectively formed. Next, after destructing the resistor layers 5 only by laser beams to correct the resistance value, the substrate 1 is divided into strip type chips and after coating the sides with a thick film silver paste to partly overlap on the surface electrode layers 5 and baking the same to form an end electrode layer 8, the substrate 1' is further divided into piece type substrate 1'' finally to form Ni, Si-Pb plated layers 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は角板型薄膜チップ抵抗器の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a rectangular plate type thin film chip resistor.

従来の技術 近年、電子機器の「軽薄短小」化に対する要求が1す1
す増大していく中、回路基板の抵抗素子には実装密度を
高めるため、小形で面実装できる角板型チップ抵抗器が
多く用いられるようになってきている。また、近年は部
品の高精度化、低雑音化が進み、角板型チップ抵抗器も
厚膜タイプか31・−7 ら高精度で低雑音の薄膜タイプの需要が延びつつある。
Conventional technology In recent years, there has been a growing demand for electronic equipment to become lighter, thinner, and smaller.
In order to increase the mounting density of resistance elements on circuit boards, square plate type chip resistors, which are small and can be surface mounted, are increasingly being used as resistance elements on circuit boards. In addition, in recent years, parts have become more accurate and have lower noise, and the demand for rectangular plate type chip resistors is increasing from the thick film type or 31.-7 to the thin film type with high precision and low noise.

従来の小型の角板型薄膜チップ抵抗器の製造方法の一例
(進工業(株)DATABOOKよジ引用)を第6図に
示す。
An example of a conventional manufacturing method for a small square plate type thin film chip resistor (cited from Susumu Kogyo Co., Ltd.'s DATABOOK) is shown in FIG.

1ず、従来の製造工程は高純度のアルミナ基板などから
なる。耐熱性の絶縁基板21を受は入れる基板受は入れ
工程Aをスタートとし、つぎに。
First, the conventional manufacturing process consists of a high-purity alumina substrate. Start with step A of inserting the heat-resistant insulating substrate 21 into the substrate receiver, and then proceed to the next step.

前記絶縁基板21上にNi−0r等の薄膜抵抗体22を
形成するスバツタ工程Bを経て、前記薄膜抵抗体22を
抵抗パターン23に整形するエッチング工程Cを行い、
抵抗パターン23を安定な膜にするために、窒素中など
で360℃〜400℃の温度の雰囲気熱処理工程りを行
う。その後、抵抗パターンの抵抗値を所定の値に修正す
るためにレーザートリミング法等によシ、抵抗パターン
にトリミング溝24を形成する抵抗値修正工程Eを行う
。更に、抵抗パターン23を保護するために、熱硬化性
の樹脂膜25を形成する保護コート形成工程Fを行う。
After a sputtering process B in which a thin film resistor 22 made of Ni-0r or the like is formed on the insulating substrate 21, an etching process C is performed in which the thin film resistor 22 is shaped into a resistance pattern 23.
In order to make the resistor pattern 23 a stable film, an atmospheric heat treatment process is performed at a temperature of 360° C. to 400° C. in nitrogen or the like. Thereafter, in order to correct the resistance value of the resistance pattern to a predetermined value, a resistance value correction step E is performed in which a trimming groove 24 is formed in the resistance pattern by a laser trimming method or the like. Furthermore, in order to protect the resistor pattern 23, a protective coat forming step F is performed in which a thermosetting resin film 25 is formed.

次に、絶縁基板21を分割し、端面電極層26を形成す
るための準備工程として、絶縁基板21に分割のための
溝27を形成するスクライプ工程Gと、絶縁基板21を
短冊状基板21′に分割する、−次基板分割工程Hを行
い、その短冊状基板21の端面にスパッタ等を用い、端
面電極層26を形成する端面電極形成工程工を行う。そ
して、露出している抵抗パターン及び、端面電極面にメ
ッキ層27を施すための準備工程として、短冊状基板2
1′を個片状基板21“に分割する二次基板分割工程J
を行い、露出している抵抗パターン及び、端面電極層の
半田付は時の喰われの防止、半田付は性の信頼性の確保
のために電極メッキ層27を形成する電極メッキ工程K
を行い、角板型薄膜チップ抵抗器が完成する。
Next, as a preparation step for dividing the insulating substrate 21 and forming the end electrode layer 26, a scribing step G is performed to form grooves 27 for dividing the insulating substrate 21, and a strip-shaped substrate 21' A second substrate dividing step H is performed to divide the strip substrate 21 into two, and an end electrode forming step is performed to form an end electrode layer 26 on the end surface of the strip-shaped substrate 21 using sputtering or the like. Then, as a preparation process for applying a plating layer 27 to the exposed resistance pattern and the end electrode surface, the strip-shaped substrate 2
1' into individual pieces of substrates 21''
Electrode plating process K is performed to form an electrode plating layer 27 in order to prevent the exposed resistor pattern and the end surface electrode layer from being eaten away by time, and to ensure the reliability of soldering.
The square plate type thin film chip resistor is completed.

発明が解決しようとする課題 しかし、この工程による角板型薄膜チップ抵抗器は次に
示すような課題を有していた。
Problems to be Solved by the Invention However, the rectangular plate type thin film chip resistor produced by this process had the following problems.

(1)スパッタによシ抵抗膜を形成しているので、連続
処理が難しく、量産するためには多くのスパッタ装置が
必要となシ、厚膜チップ抵抗器と5・\−7 比べ約2倍のコスト高になる。
(1) Since the resistive film is formed by sputtering, continuous processing is difficult and many sputtering devices are required for mass production. The cost will be twice as high.

@)抵抗膜の熱処理が360℃〜400℃であるので約
500℃以上の熱処理を必要とする、ガラスの保護コー
トを使用できないので、樹脂の保護コートを用いらざる
をえない。このため、耐熱性が厚膜のチップ抵抗器と比
べ劣る。
@) Since the resistive film is heat treated at 360°C to 400°C, a glass protective coat, which requires heat treatment at about 500°C or higher, cannot be used, so a resin protective coat must be used. Therefore, their heat resistance is inferior to that of thick-film chip resistors.

(3)厚膜角板型チップ抵抗器によく用いられている分
割溝入9基板は、特有の分割溝間の基板のうねジが存在
し薄膜の形成が困難であるために、従来の角板型薄膜チ
ップ抵抗器は、うねシの少ない分割溝無しの基板にレー
ザースクライプによって、分割のための溝を形成してい
る。しかし、レーザースクライブは、チップ抵抗器の美
観を損なうばかシでなく、レーザーの熱的衝撃による基
板のマイクロクラックが生じやすく、絶縁の劣化の原因
に戒シかねない。
(3) The split-grooved 9-board substrate, which is often used in thick-film square chip resistors, is difficult to form a thin film due to the presence of unique ridges in the board between the split grooves, making it difficult to form a thin film. In the square plate type thin film chip resistor, grooves for dividing are formed by laser scribing on a substrate with few ridges and no dividing grooves. However, laser scribing does not only detract from the aesthetic appearance of chip resistors, but also tends to cause microcracks in the substrate due to the thermal shock of the laser, which can lead to insulation deterioration.

(4)端面電極はスパッタによシ懲戒しているので、電
極の密着強度が、厚膜銀電極を塗布・焼成した従来の厚
膜のチップ抵抗器の端面電極の強度に比べ弱い。これに
対し従来の角板型薄膜チン6・・ / プ抵抗器では、端面電極として低温焼成の厚膜端面電極
を薄膜抵抗体の上に重なるように塗布・焼成する工法が
検討されてきているが厚膜端面電極焼成時に薄膜抵抗体
が喰われるという問題があり、実現は出来なかった。
(4) Since the end electrodes are processed by sputtering, the adhesion strength of the electrodes is weaker than the strength of the end electrodes of conventional thick film chip resistors in which thick film silver electrodes are coated and fired. On the other hand, for conventional square plate type thin film resistors, a method of coating and firing a thick film end face electrode fired at a low temperature so as to overlap the thin film resistor as the end face electrode has been considered. However, this could not be realized due to the problem that the thin film resistor would be eaten away during firing of the thick film end face electrode.

本発明はこのような課題を一挙に解決するもので、安価
で、ガラスコートを用いたことによる耐熱性が良好で、
基板の絶縁性に優れ、半田付は時の電極強度の強い角板
型薄膜チップ抵抗器を提供するものである。
The present invention solves these problems all at once; it is inexpensive, has good heat resistance due to the use of glass coating,
The present invention provides a rectangular plate type thin film chip resistor with excellent substrate insulation and strong electrode strength when soldered.

課題を解決するための手段 上記課題を解決するために本発明の角板型薄膜チップ抵
抗器の製造方法は、耐熱性絶縁基板の表面を平滑化する
ためにアンダーコートガラスを形成する工程と、前記ア
ンダーコートガラスの一部に重なる上面部電極を形成す
る工程と、前記アンダーコートガラス上で前記上面部電
極の一部に重なるように金属有機物からなる抵抗材料を
印刷して薄膜抵抗体を形成する工程と、前記抵抗体を被
覆し保護するためにオーバーコートガラスを形成する工
程と、前記抵抗7・・ 7 体の特性をそろえるための抵抗値修正工程と、端面電極
を形成するための準備工程である1次基板分割工程およ
び前記分割基板の端面部の電極形成を行うための端面電
極形成工程と、電極メッキの準備工程である2次基板分
割工程於よびはんだ付けによる電極喰われ防止およびは
んだ付は性の信頼性を確保するための電極メッキ工程と
を備えたものである。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a rectangular thin film chip resistor of the present invention includes the steps of: forming an undercoat glass to smooth the surface of a heat-resistant insulating substrate; forming a top electrode overlapping a part of the undercoat glass; and forming a thin film resistor by printing a resistance material made of a metal-organic material on the undercoat glass so as to overlap a part of the top electrode. a step of forming an overcoat glass to cover and protect the resistor, a step of modifying the resistance value to match the characteristics of the resistor, and preparation for forming an end electrode. A primary board dividing process, an end face electrode forming process for forming electrodes on the end faces of the divided boards, a secondary board dividing process, which is a preparation process for electrode plating, and prevention of electrode erosion by soldering. Soldering includes an electrode plating process to ensure reliability.

作用 これにより、次に示すような作用が得られる。action As a result, the following effects can be obtained.

(1)スパッタ装置を用いず、印刷機とベルト式連続焼
成炉によって連続的に薄膜抵抗膜を形成できるので、製
造コストが下がり、厚膜角板型チップ抵抗器と同程度の
安価な角板型薄膜チップ抵抗器が提供できる。
(1) Thin film resistance films can be continuously formed using a printing machine and a belt-type continuous firing furnace without using sputtering equipment, reducing manufacturing costs and producing square plates as cheap as thick film square plate chip resistors. type thin film chip resistors can be provided.

(2)薄膜抵抗体は金属有機物からなる抵抗材料を印刷
して形成しているので、保護コートとしてガラスコート
を用いることができ、従来の角板型薄膜チップ抵抗器に
比べ耐熱性の向上が図れる。
(2) Since the thin film resistor is formed by printing a resistance material made of organic metal, a glass coat can be used as a protective coat, and it has improved heat resistance compared to the conventional square plate type thin film chip resistor. I can figure it out.

(3)アンダーコートガラスによって分割溝入シ基板特
有の分割溝間の基板のうね9を吸収し、表面を平滑にし
ている。このため、従来のように、うねジのない平滑な
基板にレーザースクライプを行うことによって分割溝を
形成する必要がないので、基板の絶縁性が向上する。
(3) The undercoat glass absorbs the ridges 9 of the substrate between the dividing grooves, which are peculiar to divided grooved substrates, and makes the surface smooth. Therefore, it is not necessary to form dividing grooves by performing laser scribing on a smooth substrate without ridges as in the conventional method, and thus the insulation properties of the substrate are improved.

(4)上面の厚膜の電極を焼成後に薄膜の抵抗を印刷焼
成しているので薄膜抵抗体が端面電極焼成時に上面電極
に喰われることがなく、厚膜の端面電極を焼成によって
強固に形成できるので端面電極の強度を従来の厚膜チッ
プ抵抗器と同等にできる。
(4) Since the thin film resistor is printed and fired after firing the thick film electrode on the top surface, the thin film resistor will not be eaten by the top electrode during firing of the end face electrode, and the thick film end face electrode can be strongly formed by firing. Therefore, the strength of the end face electrode can be made equal to that of conventional thick film chip resistors.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の角板型薄膜チップ抵抗器の製造方法の
実施例を示す工程図で、第2図は第1図の工程によって
製造した製品の断面図、第3図は本発明の角板型薄膜チ
ップ抵抗器の耐熱性を示す説明図で、第4図は本発明の
角板型薄膜チップ抵9ヘ−7 抗器の端面電極引っ張ジ強度を示す説明図、第5図は上
面電極に金系薄膜導伝材を用いたときの耐湿負荷試験に
よる抵抗値変化を示す説明図である。
FIG. 1 is a process diagram showing an embodiment of the method for manufacturing a rectangular plate type thin film chip resistor of the present invention, FIG. 2 is a cross-sectional view of a product manufactured by the process of FIG. 1, and FIG. FIG. 4 is an explanatory diagram showing the heat resistance of a square plate type thin film chip resistor, and FIG. 4 is an explanatory diagram showing the tensile strength of the end face electrode of the square plate type thin film chip resistor of the present invention. FIG. 3 is an explanatory diagram showing a change in resistance value due to a moisture resistance load test when a gold-based thin film conductive material is used for the top electrode.

第1図を用いて、本発明の実施例について説明する。は
ず、耐熱性釦よび絶縁性に優れた96アルミナ基板1を
受は入れる工程Aを行った。このアルミナ基板1には短
冊状、釦よび個片状に分割するために、分割のための溝
2(グリーンシート時に金型成形)が形成されている。
An embodiment of the present invention will be described with reference to FIG. As expected, Step A was performed to insert a heat-resistant button and a 96 alumina substrate 1 with excellent insulation. In order to divide the alumina substrate 1 into strips, buttons, and individual pieces, grooves 2 for dividing are formed (molded with a mold when forming a green sheet).

次に、基板のうねりや突起を平滑にするために、アンダ
ーコートガラスペーストをスクリーン印刷し、ベルト式
連続焼成炉によシ900°Cの温度でピーク15分、l
N−0UT2時間のプロファイルによって焼成し、アン
ダーコートガラス層3を形成する工程Bを行った。次に
、前記アンダーコートガラス層3の一部に重なるように
厚膜銀ペーストをスクリーン印刷し、ベルト式連続焼成
炉によって600’Cの温度で、ピーク時間6分、lN
−0UT45分のプロファイルによって焼成し、上面電
極層4を形成する工程Cを行った。次に、前記アンダー
ツ10/\ フ ートガラス層3の上で上面電極層4の一部に重なるよう
にRuO2を主成分とする金属有機物からなる抵抗ペー
ストをスクリーン印刷した。そして、金属有機物抵抗ペ
ーストの有機成分だけを飛ばし、金属成分だけをアンダ
ーコートガラス層に焼き付けるために、ベルト式連続焼
成炉により640℃の温度でピーク時間10分、lN−
0UT時間45分のプロファイルによって焼成し、抵抗
体層5を形成する工程りを行った。更に、前記抵抗体層
4を保護するために、前記抵抗層4を完全に覆うように
、オーバーコートガラスペーストをスクリーン印刷し、
ベルト式連続焼成炉によって600′cの温度で、ピー
ク時間15分、lN−0UT90分の焼成プロファイル
によって焼成し、オーバーコートガラス層6を形成する
工程Eを行った。次に、前記上面電極層5間の前記抵抗
層4の抵抗値を揃えるために、オーバーコートガラス層
6を透過するレーザー光(発振周波数はesKIlz出
力は0.3 W )によって、前記抵抗体層4のみを破
壊する抵抗値修正工程Fを行った。次に、端面電極を1
1 ヘ−7 形成するための準備工程として、端面電極を露出させる
ために、アルミナ基板1を短冊状に分割し。
Next, in order to smooth out the undulations and protrusions on the substrate, an undercoat glass paste was screen-printed, and it was baked in a belt-type continuous firing furnace for 15 minutes at a peak temperature of 900°C.
Step B was performed in which the undercoat glass layer 3 was formed by firing according to a profile of N-0UT for 2 hours. Next, a thick film silver paste was screen printed so as to overlap a part of the undercoat glass layer 3, and a belt-type continuous firing furnace was used to heat the film at a temperature of 600'C for a peak time of 6 minutes and lN.
Baking was performed according to a profile of -0UT45 minutes, and Step C of forming the upper surface electrode layer 4 was performed. Next, a resistance paste made of a metal-organic substance containing RuO2 as a main component was screen printed on the foot glass layer 3 so as to partially overlap the upper electrode layer 4. Then, in order to remove only the organic components of the metal-organic resistance paste and bake only the metal components onto the undercoat glass layer, a belt-type continuous firing furnace was used at a temperature of 640°C for 10 minutes at a peak time of 1N-
The process of forming the resistor layer 5 was performed by firing according to a profile with a 0UT time of 45 minutes. Furthermore, in order to protect the resistor layer 4, an overcoat glass paste is screen printed to completely cover the resistor layer 4,
Step E was performed in which the overcoat glass layer 6 was formed by firing in a belt-type continuous firing furnace at a temperature of 600'C, a peak time of 15 minutes, and a firing profile of 1N-0UT of 90 minutes. Next, in order to equalize the resistance value of the resistor layer 4 between the upper electrode layers 5, the resistor layer is Resistance value correction step F was carried out to destroy only 4. Next, attach the end electrode to 1
1 H-7 As a preparatory step for forming the alumina substrate 1, the alumina substrate 1 is divided into strips in order to expose the end electrodes.

短冊状アルミナ基板1′を得る一次基板分割工程Gを行
った。更に、前記短冊状アルミナ基板1′の側面に、前
記上面電極層5の一部に重なるように厚膜銀ペーストを
ローラーによって塗布し、ベルト式連続焼成炉によって
600℃の温度で、ピーク時間6分、lN−0UT45
分の焼成プロファイルによって焼成し端面電極層8を形
成する端面導体ペースト印刷、焼成工程Rを行った。次
に、電極メッキ工程Jの準備工程として、前記端面電極
層8を形成済みの短冊上アルミナ基板1′を個片状に分
割する二次基板分割工程Jを行い、個片状アルミナ基板
1#を得た。そして最後に、露出している上面電極層5
と端面電極層8のはんだ付は時の電極喰われの防止およ
びはんだ付けの信頼性の確保のため、電解メッキによっ
てNi、5n−Pbのメッキ層9を形成する電極メッキ
工程Jを行った。
A primary substrate dividing step G was performed to obtain strip-shaped alumina substrates 1'. Further, a thick film silver paste was applied to the side surface of the strip-shaped alumina substrate 1' by a roller so as to overlap a part of the upper surface electrode layer 5, and was heated in a belt-type continuous firing furnace at a temperature of 600° C. for a peak time of 6. min, lN-0UT45
An end face conductor paste printing and firing process R was carried out to form the end face electrode layer 8 by firing according to the firing profile of 10 minutes. Next, as a preparation step for the electrode plating step J, a secondary substrate dividing step J is performed in which the rectangular alumina substrate 1' on which the end face electrode layer 8 has already been formed is divided into individual pieces. I got it. And finally, the exposed top electrode layer 5
When soldering the end face electrode layer 8, an electrode plating process J was performed in which a plating layer 9 of Ni and 5n-Pb was formed by electrolytic plating to prevent the electrode from being eaten away and to ensure reliability of soldering.

以上の工程によシ、本発明の実施例による角板型薄膜チ
ップ抵抗器を試作した。
Through the above steps, a rectangular plate type thin film chip resistor according to an embodiment of the present invention was fabricated.

この本発明の実施例による角板型薄膜チップ抵抗器の抵
抗値ばらつき、抵抗温度特性(TGR)。
The resistance value variations and resistance temperature characteristics (TGR) of the rectangular plate type thin film chip resistor according to this embodiment of the present invention.

電流雑音特性、耐熱試験(450℃10分)による抵抗
値変化を従来の角板型薄膜チップ抵抗器と比較した。こ
の結果、抵抗値ばらつき・TCR・電流雑音特性は従来
の角板型薄膜チップ抵抗器と同等であることが分かった
。また、第3図、第4図に示すように、耐熱性・電極強
度に訃いては従来の角板型薄膜チップ抵抗器よシ優れて
いるといえる。
The current noise characteristics and resistance change during a heat resistance test (450°C for 10 minutes) were compared with a conventional square plate type thin film chip resistor. As a result, it was found that the resistance value variation, TCR, and current noise characteristics were equivalent to those of the conventional square plate type thin film chip resistor. Furthermore, as shown in FIGS. 3 and 4, it can be said that the heat resistance and electrode strength are superior to conventional square plate type thin film chip resistors.

また、実施例では上面電極層5は銀系厚膜導伝材を印刷
焼成して形成したが、これを金系薄膜導伝材を印刷し焼
成することによって上面電極層5を形成した角板型薄膜
チップ抵抗器を試作したところ、更に第5図に示すよう
に長時間(10000時間)の耐湿負荷試験を行っても
抵抗値がほとんど変化しなくなった。
In the example, the top electrode layer 5 was formed by printing and firing a silver-based thick film conductive material, but the top electrode layer 5 was formed by printing and firing a gold-based thin film conductive material on a square plate. When a prototype thin-film chip resistor was manufactured, the resistance value hardly changed even after a long-term (10,000 hours) moisture resistance load test, as shown in FIG.

なお実施例ではアンダーコートの焼成温度を、900℃
、金属有機物抵抗ペーストの焼成温度を13べ−7 640℃、上面導体の焼成温度を600℃、オーバーコ
ートガラスペーストの焼成温度を600℃、端面導体ペ
ーストの焼成温度を600’Qとしたがこれは焼成温度
を限定するものではない。
In the example, the firing temperature of the undercoat was 900°C.
The firing temperature of the metal-organic resistance paste was 13B-7640℃, the firing temperature of the top conductor was 600℃, the firing temperature of the overcoat glass paste was 600℃, and the firing temperature of the end conductor paste was 600'Q. does not limit the firing temperature.

また、金属有機物抵抗ペーストはRuO2を主成分とす
る抵抗ペーストを用いたが、金属有機物抵抗ペーストを
限定するものではない。
Further, although a metal-organic resistance paste containing RuO2 as a main component was used, the metal-organic resistance paste is not limited to the metal-organic resistance paste.

!た、上面電極層及び、端面電極層は銀系の厚膜電極ペ
ーストを用いたが、これは金や白金等の貴金属系の厚膜
電極ペーストでもよい。
! Furthermore, although a silver-based thick film electrode paste was used for the top electrode layer and the end face electrode layer, a thick film electrode paste based on a noble metal such as gold or platinum may be used instead.

會た、第5図に示すように、上面電極に層に金系薄膜導
伝材を用いることによシ長時間(100oO時間)の耐
湿負荷試験による抵抗値変化を大幅に低減できる。
In addition, as shown in FIG. 5, by using a gold-based thin film conductive material as a layer for the upper electrode, it is possible to significantly reduce the change in resistance value caused by a long-term (100 oO hours) moisture resistance load test.

発明の効果 以上の説明から明らかなように本発明は、耐熱性絶縁基
板の表面を平滑化するためにアンダーコートガラスを印
刷し焼成する工程と、前記アンダーコートガラスの一部
・に重なる上面部電極を形成するために化学的に安定な
導電材を印刷し焼成す14、、; る工程と、前記アンダーコートガラス上で前記上面部電
極の一部に重なる薄膜抵抗体を形成するために金属有機
物からなる抵抗材料を印刷し焼成する工程と、前記抵抗
体を被覆し保護するためにオーバーコートガラスを印刷
し焼成する工程と、前記抵抗体の特性をそろえるための
抵抗値修正工程と、端面電極を形成するための準備工程
である1次基板分割工程釦よび前記分割基板の端面部の
電極形成を行うための端面電極印刷焼成工程と、電極メ
ッキの準備工程である2次基板分割工程をよびはんだ付
けによる電極喰われ防止およびはんだ付は性の信頼性を
確保するための電極メッキ工程とを順次通過させるよう
に構成されているため、次の様な効果が得られる。
Effects of the Invention As is clear from the above description, the present invention includes a step of printing and firing an undercoat glass to smooth the surface of a heat-resistant insulating substrate, and a step of printing and firing an undercoat glass to smooth the surface of a heat-resistant insulating substrate, and a step of printing and firing an upper surface portion that partially overlaps the undercoat glass. printing and baking a chemically stable conductive material to form an electrode; and printing a metal on the undercoat glass to form a thin film resistor overlapping a portion of the top electrode. A step of printing and firing a resistive material made of organic matter, a step of printing and firing an overcoat glass to cover and protect the resistor, a step of modifying the resistance value to match the characteristics of the resistor, and an end face. The primary substrate dividing step is a preparatory step for forming electrodes, the edge electrode printing and firing step is to form electrodes on the end surfaces of the divided substrates, and the secondary substrate dividing step is a preparatory step for electrode plating. Since the structure is such that the electrode plating process is sequentially performed to prevent the electrode from being eaten away by soldering and to ensure the reliability of the soldering process, the following effects can be obtained.

(1)スパッタ装置を用いず、印刷機とベルト式連続焼
成炉によって連続的に薄膜抵抗膜を形成できるので、生
産性が高まシ、厚膜角板型チップ抵抗器と同程度の安価
な角板型薄膜チップ抵抗器が提供できる。
(1) Thin film resistive films can be formed continuously using a printing machine and a belt-type continuous firing furnace without using sputtering equipment, increasing productivity and making them as inexpensive as thick film rectangular chip resistors. A square plate type thin film chip resistor can be provided.

(2)薄膜抵抗体は金属有機物からなる抵抗材料を15
 ”−/ 印刷し焼成しているので、保護コートとしてガラスコー
トを用いることができ、従来の角板型薄膜チップ抵抗器
に比べ耐熱性の向上が図れる。
(2) The thin film resistor is made of a resistance material made of a metal organic substance.
”-/ Since it is printed and fired, a glass coat can be used as a protective coat, and heat resistance can be improved compared to conventional square plate type thin film chip resistors.

(3)従来の薄膜チップ抵抗器はうねシのない平滑な基
板にレーザースクライブを行うことによって分割溝を形
成する必要があったが、本発明によればアンダーコート
ガラス層を形成することにより、うねりのある分割溝入
り基板でも使用できるので、基板の絶縁性が向上する。
(3) In conventional thin film chip resistors, it was necessary to form dividing grooves by laser scribing on a smooth substrate without ridges, but according to the present invention, dividing grooves are formed by forming an undercoat glass layer. It can also be used on substrates with undulations and grooves, improving the insulation properties of the substrate.

(4)厚膜の端面ペーストを塗布・焼成することによっ
て電極を強固に形成できるので端面電極の強度を従来の
厚膜チップ抵抗器と同等にできる。
(4) Since the electrodes can be strongly formed by applying and baking a thick film end face paste, the strength of the end face electrodes can be made equal to that of conventional thick film chip resistors.

(5)また、上面電極に層に金系薄膜導伝材を用いるこ
とにより長時間(10o○0時間)の耐湿負荷試験によ
る抵抗値変化を大幅に低減できる。
(5) Furthermore, by using a gold-based thin film conductive material as a layer for the upper electrode, it is possible to significantly reduce changes in resistance value due to a long-term (10 o o o o hour) moisture resistance load test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の角板型薄膜チップ抵抗器の製造工程を
示す説明図、第2図は第1図の角板型薄膜チップ抵抗器
の製造方法によって製造されたサンプルの断面図、第3
図は本発明の角板型薄膜チップ抵抗器の耐熱性を示す説
明図、第4図は本発明の角板型薄膜チップ抵抗器の端面
電極の強度を示す説明図、第5図は上面電極に金系薄膜
導伝材を用いたときの長時間(1o○00時間)の耐湿
負荷試験による抵抗値変化を示す説明図、第6図は従来
の角板型薄膜チップ抵抗器の製造工程の一例を示す説明
図である。 1・・・・96アルミナ基板、1 ・ 短冊状96アル
ミナ基板、1“・・・・・・個片状96アルミナ基板、
2・・・・分割のための溝、3・・・・アンダーコート
ガラス層、4・・・・・・抵抗体層、5・・・・・・上
面電極層、6・・・・・オーバーコートガラス層、7・
印トリミング溝、8・・・・・・端面電極層、9・・・
電極メッキ層。
1 is an explanatory diagram showing the manufacturing process of the rectangular plate type thin film chip resistor of the present invention, FIG. 2 is a sectional view of a sample manufactured by the method of manufacturing the rectangular plate type thin film chip resistor of FIG. 3
The figure is an explanatory diagram showing the heat resistance of the rectangular plate type thin film chip resistor of the present invention, Figure 4 is an explanatory diagram showing the strength of the end electrode of the rectangular plate type thin film chip resistor of the present invention, and Figure 5 is an explanatory diagram showing the top electrode. An explanatory diagram showing the change in resistance value due to a long-term (1000 hours) moisture resistance load test when a gold-based thin film conductive material is used in the process. Figure 6 shows the manufacturing process of a conventional square plate type thin film chip resistor. It is an explanatory diagram showing an example. 1...96 alumina substrate, 1. 96 alumina substrate in the form of a strip, 1"...96 alumina substrate in the form of individual pieces,
2...Groove for division, 3...Undercoat glass layer, 4...Resistor layer, 5...Top electrode layer, 6...Over Coated glass layer, 7.
mark trimming groove, 8... end face electrode layer, 9...
Electrode plating layer.

Claims (3)

【特許請求の範囲】[Claims] (1) 耐熱性絶縁基板の表面を平滑化するためにアン
ダーコートガラスを形成する工程と、前記アンダーコー
トガラスの一部に重なる上面部電極を形成する工程と、
前記アンダーコートガラス上で前記上面部電極の一部に
重なるように金属有機物からなる抵抗材料を印刷して薄
膜抵抗体を形成する工程と、前記抵抗体を被覆し保護す
るためにオーバーコートガラスを形成する工程と、前記
抵抗体の特性をそろえるための抵抗値修正工程と、端面
電極を形成するための準備工程である1次基板分割工程
および前記分割基板の端面部の電極形成を行うための端
面電極形成工程と、電極メッキの準備工程である2次基
板分割工程およびはんだ付けによる電極喰われ防止およ
びはんだ付け性の信頼性を確保するための電極メッキ工
程とを備えたことを特徴とする角板型薄膜チップ抵抗器
の製造方法。
(1) a step of forming an undercoat glass to smooth the surface of the heat-resistant insulating substrate; a step of forming an upper surface electrode overlapping a part of the undercoat glass;
forming a thin film resistor by printing a resistive material made of a metal-organic substance on the undercoat glass so as to overlap a part of the upper surface electrode; and applying an overcoat glass to cover and protect the resistor. a resistance value correction step for aligning the characteristics of the resistor, a primary substrate dividing step which is a preparation step for forming end surface electrodes, and a step for forming electrodes on the end surface portions of the divided substrates. It is characterized by comprising an end face electrode forming process, a secondary board dividing process which is a preparation process for electrode plating, and an electrode plating process to prevent the electrode from being eaten away by soldering and to ensure reliability of solderability. A method for manufacturing a square plate type thin film chip resistor.
(2) 上面部電極は金系薄膜導伝材を印刷し焼成する
ことによって形成することを特徴とする請求項1記載の
角板型薄膜チップ抵抗器の製造方法。
(2) The method for manufacturing a rectangular plate type thin film chip resistor according to claim 1, wherein the upper surface electrode is formed by printing and firing a gold-based thin film conductive material.
(3) オーバーコートガラスを透過するレーザー光に
よって、オーバーコートに覆われた抵抗体を破壊するこ
とによって抵抗値を修正することを特徴とする請求項1
記載の角板型薄膜チップ抵抗器の製造方法。
(3) Claim 1, characterized in that the resistance value is modified by destroying the resistor covered by the overcoat with a laser beam that passes through the overcoat glass.
A method of manufacturing the rectangular plate type thin film chip resistor described above.
JP1191011A 1989-05-24 1989-07-24 Manufacturing method of square plate type thin film chip resistor Expired - Lifetime JP2718196B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-130851 1989-05-24
JP13085189 1989-05-24

Publications (2)

Publication Number Publication Date
JPH0372602A true JPH0372602A (en) 1991-03-27
JP2718196B2 JP2718196B2 (en) 1998-02-25

Family

ID=15044177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191011A Expired - Lifetime JP2718196B2 (en) 1989-05-24 1989-07-24 Manufacturing method of square plate type thin film chip resistor

Country Status (1)

Country Link
JP (1) JP2718196B2 (en)

Also Published As

Publication number Publication date
JP2718196B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
WO1999003112A1 (en) Resistor and method for manufacturing the same
JPH11204304A (en) Resistor and its manufacture
JP2836303B2 (en) Square chip resistor and method of manufacturing the same
JP3129170B2 (en) Method of manufacturing rectangular thin film chip resistor
US4694568A (en) Method of manufacturing chip resistors with edge around terminations
JP3304130B2 (en) Method of manufacturing rectangular thin film chip resistor
JP2718232B2 (en) Manufacturing method of square plate type thin film chip resistor
JPH0372602A (en) Manufacture of square sheet type thin film chip resistor
JP3231370B2 (en) Manufacturing method of square chip resistor
JP2718178B2 (en) Manufacturing method of square plate type thin film chip resistor
JP3111823B2 (en) Square chip resistor with circuit inspection terminal
JPH08255701A (en) Chip-electronic component
JP3370685B2 (en) Manufacturing method of square chip resistor
JP3159440B2 (en) Square chip resistors
JPH04214601A (en) Rectangular chip resistor for function correction use and manufacture thereof
JPH0969406A (en) Manufacture of square-shaped thin film chip resistor
JPH07169601A (en) Square-shaped chip resistor and its manufacture
JPH03215901A (en) Square plate type chip resistor
JP3767084B2 (en) Resistor manufacturing method
JPH08255702A (en) Chip-electronic component
JPH03263301A (en) Rectangular type chip resistor and manufacture thereof
JPH05152101A (en) Rectangular chip resistor and manufacture thereof and a series of taping parts thereof
JPH0653071A (en) Thick film capacitor and manufacture thereof
JPH10275705A (en) Rectangular chip resistor
JPH07211504A (en) Terminal electrode for surface-mounting type electronic parts and its production