JPH0371396B2 - - Google Patents

Info

Publication number
JPH0371396B2
JPH0371396B2 JP58145004A JP14500483A JPH0371396B2 JP H0371396 B2 JPH0371396 B2 JP H0371396B2 JP 58145004 A JP58145004 A JP 58145004A JP 14500483 A JP14500483 A JP 14500483A JP H0371396 B2 JPH0371396 B2 JP H0371396B2
Authority
JP
Japan
Prior art keywords
crystal
crucible
raw material
liquid sealant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58145004A
Other languages
Japanese (ja)
Other versions
JPS6036400A (en
Inventor
Kazutaka Terajima
Tooru Katsumata
Tsuguo Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14500483A priority Critical patent/JPS6036400A/en
Publication of JPS6036400A publication Critical patent/JPS6036400A/en
Publication of JPH0371396B2 publication Critical patent/JPH0371396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は液体封止引き上げ法による化合物半
導体単結晶の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing a compound semiconductor single crystal using a liquid-sealed pulling method.

最近−族化合物半導体は高品質な単結晶が
得られるようになり、高速集積回路、光−電子集
積回路、エレクトロニクス素子用材料として広く
利用されるようになつてきた。−族化合物半
導体の中でもガリウム砒素(GaAs)はシリコン
に較べて電子移動度がはるかに早く、比抵抗が
107Ω・cm以上の高品質大型ウエハーが容易に得
られることなどにより注目を浴びている。このよ
うなGaAs単結晶は現在主として、結晶原料融液
を直接合成する液体封止引き上げ法(LEC法)
により製造されている。この単結晶製造装置の一
実施例を第1図の概略図により説明すると、1は
高圧容器であつて、この高圧容器1内にはその外
周を炭素材料等のルツボ支持治具4に収納保持さ
れたルツボ3を設け、このルツボ3は回転支持軸
9により回転且つ上下動できるように支持され、
ルツボ3の周囲には加熱炉2を設けて、ルツボを
所定の温度に加熱、維持する。ルツボ3の上部に
は下端に種結晶7を取付けた引き上げ軸8を設
け、この引き上げ軸は回転すると共に上下動する
ように構成されている。加熱炉2の外周には炭素
部材で構成された保温材11が設けられている。
Recently, it has become possible to obtain high-quality single crystals of compound semiconductors from the group compound semiconductors, and they have come to be widely used as materials for high-speed integrated circuits, opto-electronic integrated circuits, and electronic devices. Among − group compound semiconductors, gallium arsenide (GaAs) has much faster electron mobility than silicon and has a lower resistivity.
It is attracting attention because high-quality large wafers of 10 7 Ωcm or more can be easily obtained. Currently, such GaAs single crystals are mainly produced using the liquid confinement pulling method (LEC method), which directly synthesizes a crystal raw material melt.
Manufactured by. One embodiment of this single crystal manufacturing apparatus will be described with reference to the schematic diagram in FIG. 1. Reference numeral 1 is a high-pressure container, and the outer periphery of the high-pressure container 1 is housed and held in a crucible support jig 4 made of carbon material or the like. A crucible 3 is provided, and this crucible 3 is supported by a rotation support shaft 9 so as to be rotatable and movable up and down,
A heating furnace 2 is provided around the crucible 3 to heat and maintain the crucible at a predetermined temperature. A pulling shaft 8 with a seed crystal 7 attached to the lower end is provided in the upper part of the crucible 3, and this pulling shaft is configured to rotate and move up and down. A heat insulating material 11 made of a carbon material is provided around the outer periphery of the heating furnace 2 .

上記の如き構成の単結晶製造装置において、ル
ツボ3には結晶原料及び液体封止剤原料を所定量
入れ、アルゴン、窒素等の不活性ガスを高圧容器
1内に圧入して加圧し、加熱炉2により結晶原料
の溶融温度以上の温度で加熱してルツボ内の結晶
原料及び液体封止剤を溶融させる。
In the single crystal manufacturing apparatus configured as described above, a predetermined amount of crystal raw material and liquid sealant raw material are put into the crucible 3, an inert gas such as argon or nitrogen is pressurized into the high pressure container 1, and the heating furnace is heated. 2, the crystal raw material and liquid sealant in the crucible are heated at a temperature higher than the melting temperature of the crystal raw material and melted.

ルツボ3内の原料が完全に溶融し、上部に液体
封止剤層6が、下部に結晶原料融液層5が形成し
たら、引き上げ軸8を下降させ、種結晶7を結晶
原料融液層5と接触させ、種結晶7を所定の速度
で回転させながら引き上げて結晶10を成長させ
る。
When the raw material in the crucible 3 is completely melted and a liquid sealant layer 6 is formed on the upper part and a crystal raw material melt layer 5 is formed on the lower part, the pulling shaft 8 is lowered and the seed crystal 7 is transferred to the crystal raw material melt layer 5. The crystal 10 is grown by bringing the seed crystal 7 into contact with the seed crystal 7 and pulling it up while rotating it at a predetermined speed.

ところで、高圧容器の上部は空間スペースが大
きく、且つ外部より強制的に冷却されているた
め、高圧ガスによる熱対流が激しく、成長した結
晶10表面を急激に冷却し、また結晶10と結晶
原料融液5の界面で半径方向及び界面より上部方
向に大きな温度差を形成し易く、その結果、成
長、形成した結晶内に熱応力が生じ、これが結晶
欠陥の一種である転位の発生の原因となり、転位
密度分布が結晶の中央部と周縁部に高いW字型と
なる。
By the way, since the upper part of the high-pressure container has a large space and is forcibly cooled from the outside, the heat convection caused by the high-pressure gas is intense, rapidly cooling the surface of the grown crystal 10, and causing the crystal 10 and crystal raw material to melt. A large temperature difference is likely to form at the interface of the liquid 5 in the radial direction and above the interface, and as a result, thermal stress is generated within the grown and formed crystal, which causes the generation of dislocations, which are a type of crystal defect. The dislocation density distribution becomes W-shaped, with high distribution at the center and periphery of the crystal.

この発明の目的は上述の転位の発生を抑制し、
高蒸気材料の抜けを防止して高品質の化合物半導
体単結晶を再現性良く製造することのできる化合
物半導体単結晶の製造装置を提供することにあ
る。
The purpose of this invention is to suppress the occurrence of the above-mentioned dislocations,
It is an object of the present invention to provide a compound semiconductor single crystal manufacturing apparatus capable of manufacturing high quality compound semiconductor single crystals with good reproducibility by preventing dropout of high vapor material.

従来シリコンなどの単体半導体単結晶、酸化物
結晶などの液体封止剤を使用しない結晶引き上げ
法(CZ法)において、結晶と結晶原料融液との
界面附近及びルツボ上部の温度勾配を小さくする
目的でルツボの上部空間にアルミナ、炭素などの
円筒を設け、結晶の転位の発生の抑制に著しい効
果があることは知られていた。液体封止剤を用い
た化合物半導体単結晶の製造(LEC法)におい
ても、第1図に示すようにルツボ上部空間にアル
ミナ、炭素などの円筒12を設け、円筒内で結晶
成長を行うことにより転位の発生は円筒を設けな
い場合に較べ約半分となり、或る程度の効果は認
められたが、液体封止剤を使用しない引き上げ法
(CZ法)に較べその効果ははるかに小さかつた。
The purpose of reducing the temperature gradient near the interface between the crystal and the crystal raw material melt and at the top of the crucible in the conventional crystal pulling method (CZ method) that does not use a liquid sealant for single semiconductor single crystals such as silicon, oxide crystals, etc. It was known that installing a cylinder made of alumina, carbon, etc. in the upper space of the crucible had a remarkable effect on suppressing the occurrence of crystal dislocations. In the production of compound semiconductor single crystals using a liquid encapsulant (LEC method), as shown in Figure 1, a cylinder 12 of alumina, carbon, etc. is provided in the upper space of the crucible, and crystal growth is performed within the cylinder. The occurrence of dislocations was about half that of the case without a cylinder, and although some effect was recognized, the effect was much smaller than that of the pulling method (CZ method) that does not use a liquid sealant.

このようにLEC法において円筒設置の効果が
CZ法に較べて小さい理由について検討した結果、
結晶内に発生する転位密度は引き上げた結晶がそ
の物質に特有な或る温度(例えばGaAsでは約
800℃)に冷却するまでに受けた最大温度勾配の
大きさによつて決まることが判つた。即ち、CZ
法による結晶引き上げにおけるルツボ内の温度勾
配は第2図aに示すように結晶と結晶原料融液の
固液界面附近の温度勾配が最大温度勾配であり、
他の位置での温度勾配はほぼ一定である。この
CZ法による結晶成長において、上述の如くルツ
ボ上部の空間に円筒を設置すると、ルツボ内の温
度勾配は第2図bに示すように、最大温度勾配は
固液界面附近に存在するがその大きさは著しく低
下し、その結果、形成した結晶にも転位の発生が
激減する。一方、LEC法においては円筒を設け
ないときの温度勾配は第3図aに示すように、固
液界面より上方に向つて次第に大きくなり、液体
封止剤と空間との境界附近が最大となり、液体封
止剤より上方の空間の温度勾配はほぼ一定であ
る。しかるに円筒を設けると第3図bに示すよう
に固液界面附近の温度勾配は若干低下するが、最
大温度勾配を示す液体封止剤と空間との境界附近
の温度勾配、即ち、最大温度勾配は殆ど変らず、
従つて成長した結晶について転位の発生の抑制の
効果はあまり起らなかつたものと考えられる。こ
のように液体封止剤と空間との境界近傍に大きな
温度勾配が生じるのは液体封止剤の熱伝導率が結
晶原料融液よりはるかに低くしかも空間の雰囲気
ガスの熱伝導率よりもはるかに高いためであり、
液体封止剤を用いる結晶引き上げ法においては宿
命的なものであつて、結晶中の転位の発生を或る
程度より以下に減少させることは難かしかつた。
In this way, the effect of cylinder installation in the LEC method is
As a result of considering the reason why it is smaller than the CZ method, we found that
The dislocation density generated within a crystal increases when the pulled crystal reaches a certain temperature (for example, in GaAs, about
It was found that this was determined by the magnitude of the maximum temperature gradient experienced until cooling to 800°C. That is, C.Z.
The temperature gradient inside the crucible during crystal pulling by the method is the maximum temperature gradient near the solid-liquid interface between the crystal and the crystal raw material melt, as shown in Figure 2a.
The temperature gradient at other locations is approximately constant. this
In crystal growth by the CZ method, when a cylinder is installed in the space above the crucible as described above, the temperature gradient inside the crucible is as shown in Figure 2b, and the maximum temperature gradient exists near the solid-liquid interface, but its size is is significantly reduced, and as a result, the number of dislocations in the formed crystal is also drastically reduced. On the other hand, in the LEC method, when no cylinder is provided, the temperature gradient gradually increases upward from the solid-liquid interface, reaching its maximum near the boundary between the liquid sealant and the space, as shown in Figure 3a. The temperature gradient in the space above the liquid sealant is approximately constant. However, when a cylinder is provided, as shown in Figure 3b, the temperature gradient near the solid-liquid interface decreases slightly, but the temperature gradient near the boundary between the liquid sealant and the space exhibiting the maximum temperature gradient, that is, the maximum temperature gradient. remains almost unchanged,
Therefore, it is considered that the effect of suppressing the generation of dislocations in the grown crystal was not so great. The reason why such a large temperature gradient occurs near the boundary between the liquid sealant and the space is because the thermal conductivity of the liquid sealant is much lower than that of the crystal raw material melt, and is also much higher than the thermal conductivity of the atmospheric gas in the space. This is due to the high
In the crystal pulling method using a liquid sealant, it is inevitable that it is difficult to reduce the occurrence of dislocations in the crystal below a certain level.

そこで、更にルツボの液体封止剤と空間との境
界近傍の温度勾配を小さくするため検討を重ねた
結果、炭素材で構成される円筒状の保温筒をその
下端部が液体封止剤に浸るように設置し、保温筒
内にて結晶成長を行うことにより、液体封止剤上
面近傍の温度勾配が著しく小さくなること見出し
た。
Therefore, as a result of further studies to reduce the temperature gradient near the boundary between the liquid sealant in the crucible and the space, we decided to use a cylindrical heat-insulating cylinder made of carbon material with its lower end immersed in the liquid sealant. It was discovered that by installing the liquid sealant in this manner and performing crystal growth inside the heat-insulating cylinder, the temperature gradient near the top surface of the liquid sealant was significantly reduced.

この発明は上記知見に基づいて完成したもの
で、その要旨は上述のように上部に液体封止剤層
を、その下部に結晶原料融液層を形成し、且つ下
部の結晶原料融液層には種結晶を接触させて結晶
の引き上げ成長を行なわせる化合物半導体単結晶
製造装置において、引き上げる結晶直径より大き
な内径を有する円筒状保温筒を炭素材で構成する
とともに、該円筒状保温筒をルツボの中心と同心
状に、且つその下端部をルツボ内の液体封止剤層
にのみに接触させ、結晶成長中その状態を維持す
るように設けたことにある。
This invention was completed based on the above knowledge, and its gist is to form a liquid sealant layer on the upper part and a crystal raw material melt layer on the lower part, and to form a crystal raw material melt layer on the lower part. In a compound semiconductor single crystal manufacturing device that pulls and grows a crystal by bringing a seed crystal into contact with it, a cylindrical heat-insulating cylinder having an inner diameter larger than the diameter of the crystal to be pulled is made of carbon material, and the cylindrical heat-insulating cylinder is attached to a crucible. The reason is that it is provided concentrically with the center and its lower end is brought into contact only with the liquid sealant layer in the crucible, and this state is maintained during crystal growth.

第4図はこの発明による化合物半導体単結晶装
置の一実施例を示し、ルツボ3内の結晶原料及び
液体封止剤原料が完全に溶融し、上部に液体封止
剤6が形成し、下部に結晶原料融液5が形成した
ら、成長する結晶の径よりも大きな内径を有する
円筒状の保温筒13をその下端部が液体封止剤6
にのみ浸るようにしてルツボ3の中心と同心状に
設置する。具体的にその一例を述べると、円筒状
保温筒13の外周面の適当な位置に鍔13′を突
設し、一方ヒーター保温材11上には適当な高さ
を有する環状の炭素製台14を設置する。このよ
うな状態でルツボ内に所定量の結晶原料と液体封
止剤を入れた後にルツボの位置を下降させ、次い
で保温筒13をその鍔13′を環状台14に引掛
けてその下端部がルツボの中に挿入されるように
し、且つその中心がルツボの中心と一致するよう
に設置する。このとき、ルツボの位置は下降して
おり、ルツボ内の原料は保温筒の下端部と接触し
ない。このような状態でルツボを加熱し、原料が
完全に溶融したら、ルツボを液体封止剤が保温筒
の下端部に接触する位置まで上昇させる。勿論予
め保温筒をルツボに対して所定位置に設置した後
にルツボへ原料を入れ、加熱溶融させるようにし
てもよい。
FIG. 4 shows an embodiment of a compound semiconductor single crystal device according to the present invention, in which the crystal raw material and liquid sealant raw material in the crucible 3 are completely melted, a liquid sealant 6 is formed in the upper part, and a liquid sealant 6 is formed in the lower part. Once the crystal raw material melt 5 is formed, a cylindrical heat-insulating cylinder 13 having an inner diameter larger than the diameter of the crystal to be grown is inserted into the liquid sealant 6 at its lower end.
Place it concentrically with the center of crucible 3 so that it is immersed only in the water. To give a specific example, a flange 13' is protruded at an appropriate position on the outer peripheral surface of the cylindrical heat insulating tube 13, and an annular carbon base 14 having an appropriate height is placed on the heater heat insulating material 11. Set up. In this state, after putting a predetermined amount of crystal raw material and liquid sealant into the crucible, the position of the crucible is lowered, and then the heat insulating cylinder 13 is hooked with its collar 13' on the annular stand 14 so that its lower end is It is inserted into the crucible and placed so that its center coincides with the center of the crucible. At this time, the position of the crucible is lowered, and the raw material in the crucible does not come into contact with the lower end of the heat-insulating cylinder. The crucible is heated in this state, and when the raw material is completely melted, the crucible is raised to a position where the liquid sealant contacts the lower end of the heat insulating cylinder. Of course, the heat insulating cylinder may be placed in a predetermined position relative to the crucible in advance, and then the raw material may be put into the crucible and heated and melted.

この保温筒13の内径は引き上げる結晶径の
1.3〜1.6倍程度の範囲が適当であつて、余り径が
小さいと、結晶径が所定の値より少しでも大きく
なつたとき結晶が保温筒に接触し、落下したり、
振動したりして、低転位化が妨げられ、多結晶、
双晶の発生などにつながる。逆に保温筒の径が上
記範囲より大き過ぎると、ルツボの回転や上下動
に支障を生じ、空間が大き過ぎて充分な効果が得
られない。
The inner diameter of this heat-insulating cylinder 13 corresponds to the diameter of the crystal to be pulled.
A range of 1.3 to 1.6 times is appropriate; if the diameter is too small, when the crystal diameter becomes even slightly larger than the specified value, the crystal may come into contact with the heat-insulating cylinder and fall.
Vibration prevents low dislocation, resulting in polycrystalline,
This leads to the occurrence of twin crystals. On the other hand, if the diameter of the heat-insulating tube is too large than the above range, rotation and vertical movement of the crucible will be hindered, and the space will be too large, making it impossible to obtain sufficient effects.

保温筒の長さは成長を完了した結晶を充分収納
し得る程度で充分である。また保温筒の肉厚は主
として材料の熱伝導度により決めるが、余り薄い
と高圧容器上部の高圧ガスによる熱対流の影響を
受けて保温筒内の気相の温度がすぐ変動し好まし
くない。
The length of the heat-insulating cylinder is sufficient to accommodate the crystals that have completed their growth. Further, the wall thickness of the heat-insulating cylinder is determined mainly by the thermal conductivity of the material, but if it is too thin, the temperature of the gas phase inside the heat-insulating cylinder will change quickly due to the influence of thermal convection caused by the high-pressure gas in the upper part of the high-pressure container, which is undesirable.

保温筒を構成する材料は耐熱性で熱伝導度が大
きく、B2O3に対して溶出しにくい物質であるこ
とが必要である。例えばこれらの要件を満たす物
質としては炭素、パイロリテイツクボロンナイト
ライド(PBN)などが考えられるが、PBNは
B2O3に接触させ、室温まで冷却すると、PBN自
体表面の剥離が生じ、数回使用すると使用不可能
になる場合がある。これに対して炭素はPBNと
異なり、室温まで冷却しても剥離することなく何
回でも使用可能である。しかし、炭素は結晶原料
融液まで挿入すると、溶出して所定の熱伝導率の
結果が得られないなどの欠点がある。
The material constituting the heat retaining cylinder must be heat resistant, have high thermal conductivity, and be a substance that is difficult to dissolve into B 2 O 3 . For example, carbon and pyrolytic boron nitride (PBN) can be considered as substances that meet these requirements, but PBN is
When brought into contact with B 2 O 3 and cooled to room temperature, the surface of PBN itself may peel off, making it unusable after several uses. On the other hand, unlike PBN, carbon can be used many times without peeling off even when cooled to room temperature. However, if carbon is inserted into the crystal raw material melt, it will elute, making it impossible to obtain a desired thermal conductivity result.

そこで、この発明では円筒状保温筒を炭素材で
構成するとともに、円筒状保温筒の下端部をルツ
ボ内の液体封止剤層にのみ接触させるようにして
結晶成長を行なわせるようにしたものである。し
たがつて、この発明においては転位密度分布が均
一で、しかも所定の熱伝導率を有する高品質の単
結晶が得られる。
Therefore, in this invention, the cylindrical heat insulating cylinder is made of carbon material, and the lower end of the cylindrical heat insulating cylinder is brought into contact only with the liquid sealant layer in the crucible to allow crystal growth. be. Therefore, in the present invention, a high quality single crystal having a uniform dislocation density distribution and a predetermined thermal conductivity can be obtained.

上述の如く、保温筒13をその下端がルツボ3
内の液体封止剤6にのみに接触し、その中心が引
き上げ軸8と一致するように設置し、保温筒の上
端面より内部に向つて下端に種結晶7を取付けた
引き上げ軸8を種結晶が結晶原料融液5に接触す
るまで下降する。種結晶が結晶原料融液に接触し
たら、引き上げ軸は所定速度で回転しながら引き
上げる。またルツボは必要に応じて引き上げ軸と
は反対方向に回転させ、結晶の成長を開始する。
結晶の成長に伴つてルツボ内の封止剤液面が下が
つたら、ルツボをその分だけ上昇させ、結晶成長
中、保温筒の下端部は常に液体封止剤のみに挿入
されている状態とする。
As mentioned above, the lower end of the heat insulating cylinder 13 is connected to the crucible 3.
The pulling shaft 8 with the seed crystal 7 attached to the lower end is placed so that it contacts only the liquid sealant 6 inside the cylinder and its center coincides with the pulling shaft 8. The crystal descends until it comes into contact with the crystal raw material melt 5. When the seed crystal comes into contact with the crystal raw material melt, the pulling shaft is pulled up while rotating at a predetermined speed. Further, the crucible is rotated in the opposite direction to the pulling axis as necessary to start crystal growth.
When the sealant liquid level in the crucible drops as the crystal grows, the crucible is raised by that amount, so that the lower end of the heat-insulating tube is always inserted only into the liquid sealant during crystal growth. shall be.

このように保温筒で囲んだ状態で結晶成長を行
うと、結晶原料融液と結晶の固液界面から液体封
止剤と空間との境界近傍までの温度勾配は第5図
に示すように著しく小さくなり、最大温度勾配は
未だ液体封止剤上部附近に位置するが、その大き
さは著しく低下し、その結果、形成した結晶の転
位の発生は従来の1/10以上に激減し、結晶ウエハ
ー内の転位密度分布が周縁部のみ比較的高いU字
型となり、更に結晶表面からのAs、Pなどの高
蒸気圧材料の抜けが抑制される。
When crystal growth is performed in a state surrounded by a heat-insulating cylinder in this way, the temperature gradient from the solid-liquid interface between the crystal raw material melt and the crystal to the vicinity of the boundary between the liquid sealant and the space becomes significant as shown in Figure 5. Although the maximum temperature gradient is still located near the top of the liquid encapsulant, its size has decreased significantly, and as a result, the occurrence of dislocations in the formed crystal has been drastically reduced to more than 1/10 of the conventional level, and the crystal wafer The dislocation density distribution within the crystal becomes U-shaped with relatively high density only at the periphery, and furthermore, the escape of high vapor pressure materials such as As and P from the crystal surface is suppressed.

このように高品質な単結晶が形成するのは保温
筒により液体封止剤中の温度勾配及び液体封止剤
と空間の境界近傍の温度勾配が改善(低下)さ
れ、更に冷却中の結晶周囲の空間の体積が保温筒
により仕切られているため、As、Pなどの高蒸
気材料の気相拡散できる空間体積が減少し、結晶
からの抜けが抑制されるものと考えられる。また
結晶を結晶原料融液より切離して冷却するときも
結晶は或を温度までは保温筒内にあるため急冷に
避けられ、冷却中での結晶へのクラツクなどの欠
陥の導入も阻止される。
High-quality single crystals are formed in this way by improving (reducing) the temperature gradient in the liquid encapsulant and near the boundary between the liquid encapsulant and the space, and by improving (reducing) the temperature gradient around the crystal during cooling. It is thought that because the volume of the space is partitioned by the heat-insulating tube, the space volume in which high-vapor materials such as As and P can diffuse in the vapor phase is reduced, and their escape from the crystal is suppressed. Furthermore, even when the crystal is separated from the crystal raw material melt and cooled, the crystal remains in the heat insulating cylinder until it reaches a certain temperature, so rapid cooling is avoided, and the introduction of defects such as cracks into the crystal during cooling is also prevented.

この発明は上記の説明で明らかなように保温筒
を用いて最大温度勾配の液体封止剤上面近傍の温
度勾配を小さくして結晶の引き上げを行うのであ
つて、GaAs、InPなどの−族化合物半導体
単結晶の製造ばかりでなく、液体封止剤を用いる
すべての単結晶の製造に適用することにより転位
の発生が抑制され、転位密度分布が均一な高品質
の単結晶が得られることになり、高速集積回路、
光−電子集積回路の製造に大いに貢献することと
なる。
As is clear from the above explanation, this invention uses a heat insulating tube to reduce the temperature gradient near the top surface of the liquid sealant, where the temperature gradient is the largest, and pulls the crystal. By applying this method not only to the production of semiconductor single crystals but also to the production of all single crystals using liquid encapsulants, the generation of dislocations can be suppressed and high quality single crystals with uniform dislocation density distribution can be obtained. , high-speed integrated circuits,
This will greatly contribute to the production of opto-electronic integrated circuits.

次にこの発明の実施例を述べる。 Next, embodiments of this invention will be described.

内径100mm、深さ100mmのパイロリテツクボロン
ナイトライド製ルツボにGa500g、As500g、そ
の上に円板状の酸化ボロン(B2O3)300gを液体
封止剤として入れたら、ルツボの位置を下げ、内
径75mm、長さ120mm、肉厚5mmの炭素製保温筒を
ヒーター保温材の上に設けた環状台を用いて所定
の位置に設置し、次いでアルゴンガスで20気圧に
加圧しルツボを1300℃で加熱して結晶原料、液体
封止剤共に完全に溶融したら、保温筒の下端部が
10mm程度液体封止剤に浸るような位置までルツボ
を上昇させた。加熱温度を1240℃に下げ、種結晶
を下降させて結晶原料融液に接触させ、ルツボを
1分間20回、種結晶を反対方向に6回それぞれ回
転させながら、1時間に10mmの速度で8時間種結
晶を引き上げて直径約50mm、長さ約90mmのGaAs
単結晶が得られた。結晶引き上げ操作中はルツボ
を1時間1.6mmの速度で上昇させ、保温筒の下端
部は常に液体封止剤と接触した状態を保つよう調
整した。
After putting 500 g of Ga, 500 g of As, and 300 g of disk-shaped boron oxide (B 2 O 3 ) as a liquid sealant into a pyrolithic boron nitride crucible with an inner diameter of 100 mm and a depth of 100 mm, lower the position of the crucible. A carbon heat-insulating tube with an inner diameter of 75 mm, a length of 120 mm, and a wall thickness of 5 mm was placed in a predetermined position using an annular stand placed on top of the heater heat-insulating material.Then, the crucible was pressurized to 20 atm with argon gas and heated to 1300℃. When the crystal raw material and liquid sealant are completely melted, the lower end of the heat insulating cylinder
The crucible was raised to a position where it was immersed in the liquid sealant by about 10 mm. The heating temperature was lowered to 1240°C, the seed crystal was lowered to contact the crystal raw material melt, and the crucible was rotated 20 times per minute and the seed crystal was rotated 6 times in the opposite direction at a rate of 10 mm per hour. GaAs of approximately 50 mm in diameter and approximately 90 mm in length by pulling up a time seed crystal.
A single crystal was obtained. During the crystal pulling operation, the crucible was raised at a speed of 1.6 mm for 1 hour, and the lower end of the heat-insulating cylinder was adjusted to remain in contact with the liquid sealant at all times.

得られたGaAs単結晶よりの(100)円形ウエ
ハーの転位密度分布を測定した結果、第6図の曲
線aの如くであつた。即ち、転位密度は周縁部で
は約5×104cm-2であつたが、半径約20mm以上で
は約6×103cm-2と従来の1/10以下に減り、U字
型を示していた。
The dislocation density distribution of the (100) circular wafer made of the obtained GaAs single crystal was measured, and the result was as shown by curve a in FIG. In other words, the dislocation density was approximately 5 × 10 4 cm -2 at the periphery, but it decreased to approximately 6 × 10 3 cm -2 at a radius of about 20 mm or more, less than 1/10 of the conventional value, showing a U-shape. Ta.

比較のために保温筒の設置を除いた以外は上記
と全く同じ条件でGaAs単結晶を製造し、ウエハ
ーにして転位密度分布を測定した結果、第6図の
曲線bに示す如く、ウエハーの中央部と周縁部が
約105cm-2であつて、W字型を示した。
For comparison, a GaAs single crystal was manufactured under the same conditions as above except for the installation of a heat insulating cylinder, and the dislocation density distribution was measured on a wafer.As shown in curve b in Figure 6, the center of the wafer The area and the periphery were approximately 10 5 cm -2 and exhibited a W-shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液体封止剤を用いた化合物半導
体単結晶製造装置の一実施例を示す概略断面図、
第2図はCZ法による固液界面よりその上部にお
ける温度勾配を示すグラフ、第3図はLEC法に
よる固液界面より液体封止剤上面近傍における温
度勾配を示すグラフ、第4図はこの発明による単
結晶製造装置の一実施例を示す要部断面図、第5
図はこの発明による固液界面より液体封止剤上面
近傍における温度勾配を示すグラフ、第6図は本
発明の装置により製造したGaAs単結晶の転位密
度分布を示すグラフである。 1……高圧容器、2……加熱炉、3……ルツ
ボ、5……結晶原料融液、6……液体封止剤、7
……種結晶、8……引き上げ軸、10……成長結
晶、13……保温筒、14……環状台。
FIG. 1 is a schematic cross-sectional view showing an example of a compound semiconductor single crystal manufacturing apparatus using a conventional liquid encapsulant;
Fig. 2 is a graph showing the temperature gradient above the solid-liquid interface by the CZ method, Fig. 3 is a graph showing the temperature gradient near the top of the liquid sealant from the solid-liquid interface by the LEC method, and Fig. 4 is a graph showing the invention. 5th sectional view of essential parts showing an embodiment of a single crystal manufacturing apparatus according to
The figure is a graph showing the temperature gradient in the vicinity of the upper surface of the liquid sealant from the solid-liquid interface according to the present invention, and FIG. 6 is a graph showing the dislocation density distribution of a GaAs single crystal produced by the apparatus of the present invention. 1... High pressure container, 2... Heating furnace, 3... Crucible, 5... Crystal raw material melt, 6... Liquid sealant, 7
... Seed crystal, 8 ... Pulling shaft, 10 ... Growing crystal, 13 ... Heat insulation tube, 14 ... Annular stand.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧容器内のルツボ内の上部に液体封止剤層
を、その下部に結晶原料融液層を形成するととも
に、該結晶原料融液層には種結晶を接触させ、該
種結晶を引き上げて結晶の成長を行う化合物半導
体単結晶製造装置において、引き上げる結晶直径
より大きな内径を有する円筒状保温筒を炭素材で
構成するとともに、該円筒状保温筒をルツボの中
心と同心状に、且つその下端部をルツボ内の液体
封止剤層にのみに接触させ、結晶成長中その状態
を維持するように設けたことを特徴とする化合物
半導体単結晶製造装置。
1. A liquid sealant layer is formed in the upper part of a crucible in a high-pressure container, and a crystal raw material melt layer is formed in the lower part thereof, and a seed crystal is brought into contact with the crystal raw material melt layer, and the seed crystal is pulled up. In a compound semiconductor single crystal production device for growing crystals, a cylindrical heat-insulating cylinder having an inner diameter larger than the diameter of the crystal to be pulled is constructed of carbon material, and the cylindrical heat-insulating cylinder is arranged concentrically with the center of the crucible and at its lower end. 1. An apparatus for manufacturing a compound semiconductor single crystal, characterized in that a part is provided in contact only with a liquid sealant layer in a crucible, and this state is maintained during crystal growth.
JP14500483A 1983-08-10 1983-08-10 Apparatus for producing compound semiconductor single crystal Granted JPS6036400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14500483A JPS6036400A (en) 1983-08-10 1983-08-10 Apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14500483A JPS6036400A (en) 1983-08-10 1983-08-10 Apparatus for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS6036400A JPS6036400A (en) 1985-02-25
JPH0371396B2 true JPH0371396B2 (en) 1991-11-13

Family

ID=15375222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14500483A Granted JPS6036400A (en) 1983-08-10 1983-08-10 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6036400A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264995A (en) * 1988-04-13 1989-10-23 Hitachi Cable Ltd Production of compound semiconductor single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520221A (en) * 1978-07-28 1980-02-13 Toshiba Corp Production of compound semiconductor single crystal body
JPS58194794A (en) * 1982-05-04 1983-11-12 Nec Corp Pulling of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520221A (en) * 1978-07-28 1980-02-13 Toshiba Corp Production of compound semiconductor single crystal body
JPS58194794A (en) * 1982-05-04 1983-11-12 Nec Corp Pulling of single crystal

Also Published As

Publication number Publication date
JPS6036400A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
KR100687511B1 (en) Heat shield assembly for crystal puller
US4645560A (en) Liquid encapsulation method for growing single semiconductor crystals
US6482263B1 (en) Heat shield assembly for crystal pulling apparatus
US3798007A (en) Method and apparatus for producing large diameter monocrystals
JPH0371396B2 (en)
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2690419B2 (en) Single crystal growing method and apparatus
JPH09255475A (en) Device for growing single crystal
JP3900816B2 (en) Silicon wafer manufacturing method
JPS6251238B2 (en)
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6339558B2 (en)
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JPH08333189A (en) Apparatus for pulling up crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JPH0524964A (en) Production of compound semiconductor single crystal
JP2714088B2 (en) Group III-V group compound semiconductor single crystal manufacturing equipment
KR19990006721A (en) Silicon crystal, its manufacturing apparatus, manufacturing method
JPH0834696A (en) Crystal growth device
JP2005200228A (en) Growth method for compound semiconductor single crystal
JPH09255472A (en) Device for growing single crystal