JPH01264995A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH01264995A
JPH01264995A JP9110288A JP9110288A JPH01264995A JP H01264995 A JPH01264995 A JP H01264995A JP 9110288 A JP9110288 A JP 9110288A JP 9110288 A JP9110288 A JP 9110288A JP H01264995 A JPH01264995 A JP H01264995A
Authority
JP
Japan
Prior art keywords
single crystal
sealing layer
crystal
heater
liquid sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9110288A
Other languages
Japanese (ja)
Inventor
Minoru Seki
実 関
Shuichi Tawarasako
田原迫 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9110288A priority Critical patent/JPH01264995A/en
Publication of JPH01264995A publication Critical patent/JPH01264995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To suppress the polycrystallization during the growth of the single crystal and to decrease the concn. of carbon in the crystal by adopting the constitution consisting in inserting the bottom end of a specific cylindrical body into a liquid sealing layer without directly inserting a sub-heater for local heating in order to suppress the polycrystallization into the liquid sealing layer at the time of pulling up the compound semiconductor single crystal by an LEC method. CONSTITUTION:A crystal raw material melt 4 housed in a crucible 3 heated by a heater 1 is covered by the liquid sealing layer 5 and the single crystal 6 grown by pulling up the same from the melt 4 is pulled up while heating the crystal 6 by the cylindrical sub-heater 7 provided on the outside circumference of the single crystal 6. The under-mentioned constitution is added in this method: At least either of the inside or outside surface of the sub-heater 7 is covered by the cylindrical body 8 which is made of pyrolytic boron nitride and projects downward from the bottom end of the sub-heater 7. The bottom end of the above-mentioned cylindrical body 8 is inserted into the liquid sealing layer 5 without bringing the sub-heater into contact with the liquid sealing layer 5.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は、液体封止層で被覆された結晶原料融液から単
結晶を引き上げる化合物半導体単結晶の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a compound semiconductor single crystal, which involves pulling a single crystal from a crystal raw material melt coated with a liquid sealing layer.

[従来の技術] GaAs、I nPなどのm−v族化合物半導体単結晶
の成長方法として液体封止引上法(LEC法)が一般に
知られている。この方法は、るつぼの中に例えばGaA
sの結晶原料融液を入れ、その上面にB2 o3の液体
封止層をかぶせて、As元素の蒸発を防ぎ、この液体封
止層を通して上から所定の結晶方位をもった種結晶を結
晶原料融液に接触させた後、種結晶を引き上げ種結晶と
同一方位をもった単結晶を成長させるものであるが、結
晶の成長途中で多結晶が発生し多大なロスを生じている
。この多結晶の発生は結晶発生中の固液の界面形状と関
連性があることが知られており、界面周縁部が下に凹面
の形状では結晶欠陥の一つである転位が伝播し、凹面部
に集積されて多結晶が発生する。また、凹面部自体も応
力集中を受けて転位が発生し、多結晶発生の原因となっ
ている。
[Prior Art] The liquid confinement drawing method (LEC method) is generally known as a method for growing single crystals of m-v group compound semiconductors such as GaAs and InP. This method uses, for example, GaA in a crucible.
A crystal raw material melt of s is poured in, a liquid sealing layer of B2 o3 is placed on the top surface to prevent the evaporation of the As element, and a seed crystal with a predetermined crystal orientation is poured from above through this liquid sealing layer. After contacting the melt, the seed crystal is pulled up to grow a single crystal with the same orientation as the seed crystal, but polycrystals are generated during crystal growth, resulting in a large amount of loss. It is known that the generation of polycrystals is related to the shape of the solid-liquid interface during crystal formation.If the interface periphery is concave downward, dislocations, which are one type of crystal defect, will propagate and the concave surface Polycrystals are generated when the particles are accumulated in some areas. In addition, the concave surface itself is also subjected to stress concentration and dislocations occur, causing polycrystalline formation.

これに対して、界面周縁部の形状が下に凸面のときは、
伝播された転位は結晶側面へ分散消滅し、応力の集中を
受けることも少なくなり多結晶化し難い。そのため、固
液界面周縁部を下に凸面化することが多結晶化抑制のた
め有力な手段であり、従来技術でも数々の検討が試みら
れている。その一つに、B203の液体封止層に単結晶
の局部加熱用のサブヒータを挿入し、結晶側面を加熱し
て固液界面周縁部の凹面化を抑制する方法がある。
On the other hand, when the shape of the interface periphery is downwardly convex,
The propagated dislocations are dispersed and annihilated to the side surfaces of the crystal, and are less subject to stress concentration, making it difficult to form polycrystals. Therefore, making the periphery of the solid-liquid interface downwardly convex is an effective means for suppressing polycrystallization, and many studies have been attempted in the prior art. One of the methods is to insert a sub-heater for local heating of the single crystal into the liquid sealing layer of B203, and heat the side surface of the crystal to suppress concavity of the periphery of the solid-liquid interface.

しかし、このサブヒータの材質が汎用性の高いカーボン
製の場合、液体封止層を介して結晶中へのカーボンの混
入が顕著となり、特性不良の原因となる。また、電気的
中性であるボロンナイトライド(BN)等により被覆し
たカーボン製のサブヒータを使用しても被覆層の劣化に
よるカーボンの溶出を完全に防ぐことはできない。
However, if the material of this subheater is carbon, which is highly versatile, the mixing of carbon into the crystal through the liquid sealing layer becomes noticeable, causing poor characteristics. Further, even if a carbon subheater coated with electrically neutral boron nitride (BN) or the like is used, elution of carbon due to deterioration of the coating layer cannot be completely prevented.

一方、カーボン製のサブヒータの代りに高周波コイルを
用いる方法も検討されているが、コイル材が銅製のため
結晶中への銅の混入が問題となる。
On the other hand, a method of using a high-frequency coil instead of a carbon sub-heater is also being considered, but since the coil material is made of copper, there is a problem of copper being mixed into the crystal.

[発明が解決しようとする課題] 上記の如く、従来技術では液体封止層に単結晶の局部加
熱用のサブヒータを挿入しているが、ヒータがカーボン
製のためこれからカーボンが混入して単結晶の特性不良
の原因となっている。
[Problems to be Solved by the Invention] As mentioned above, in the conventional technology, a sub-heater for local heating of the single crystal is inserted into the liquid sealing layer, but since the heater is made of carbon, carbon gets mixed in and causes the single crystal to heat up. This causes poor characteristics.

本発明は、従来技術の問題点を解消し、単結晶成長の過
程において発生する多結晶化を押え、単結晶のカーボン
濃度を低減できる化合物半導体単結晶製造方法を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a compound semiconductor single crystal, which can solve the problems of the prior art, suppress polycrystallization that occurs during the single crystal growth process, and reduce the carbon concentration of the single crystal. It is.

[課題を解決するための手段] すなわち、本発明の要旨は単結晶の周りに位置するサブ
ヒータを該サブヒータの下端よりも下に突き出す長さの
パイロリティックボロンナイトライド製の円筒体で覆い
、サブヒータを液体封止層に接触させることなく、円筒
体の下端を液体封止層に挿入するようにしたことにある
[Means for Solving the Problems] That is, the gist of the present invention is to cover a subheater located around a single crystal with a cylindrical body made of pyrolytic boron nitride and having a length that protrudes below the lower end of the subheater. The lower end of the cylindrical body is inserted into the liquid sealing layer without contacting the liquid sealing layer.

[作用] 本発明では、多結晶を抑制するための局部加熱用のサブ
ヒータを直接液体封止層に挿入しないようにし、サブヒ
ータの外周にこのサブヒータの下端よりも下に突き出し
たパイロリティックボロンナイトライド製円筒体の下端
を液体封止層に挿入するようにしたので、サブヒータの
熱は円筒体内を伝播して液体封止層して、固液界面を加
熱することができ、単結晶成長において特性上問題とな
る不純物の混入を抑え、単結晶のカーボン濃度を低減で
きる。
[Function] In the present invention, the subheater for local heating for suppressing polycrystals is not inserted directly into the liquid sealing layer, and the pyrolytic boron nitride protruding below the lower end of the subheater is provided on the outer periphery of the subheater. Since the lower end of the cylindrical body is inserted into the liquid sealing layer, the heat from the sub-heater can propagate inside the cylinder, form the liquid sealing layer, and heat the solid-liquid interface, which improves the characteristics of single crystal growth. It is possible to suppress the contamination of impurities that cause problems above, and reduce the carbon concentration of the single crystal.

[実施例] 以下、図面を参照して本発明の一実施例について説明す
る。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本実施例による化合物半導体単結晶の製造装置
の縦断面図である。
FIG. 1 is a longitudinal sectional view of a compound semiconductor single crystal manufacturing apparatus according to this embodiment.

図において、1は加熱ヒータ、2はサセプタで、この中
にるつぼ3が装着されている。るつぼ3は石英またはP
BN (パイロリティックボロンナイトライド)製であ
る。4は結晶原料融液、5は8203等の液体封止層で
、これは結晶原料融液4を被い蒸気圧の高いV族元素の
喪失を防止している。
In the figure, 1 is a heater, 2 is a susceptor, and a crucible 3 is installed in these. Crucible 3 is quartz or P
Made of BN (pyrolytic boron nitride). 4 is a crystal raw material melt, and 5 is a liquid sealing layer such as 8203, which covers the crystal raw material melt 4 and prevents loss of group V elements having high vapor pressure.

種結晶(図示せず)を上方から結晶原料融液4に接触さ
せて引き上げてゆくことにより結晶原料融液4から単結
晶6を引き上げるが、7はこの引き上げの過程において
多結晶化を抑えるために設けられた単結晶6の局部加熱
用のサブヒータで、本実施例は一端に局部加熱用のサブ
ヒータ7を装管したPBN製の円筒体8を設け、この円
筒体8の先端を上記液体封止層5に挿入するようにした
もので、先端の挿入位置は結晶成長界面近傍の単結晶5
側面とする。これにより、局部加熱用のサブヒータ7か
らの熱は円筒体8を介して単結晶6側面に伝達され、固
液界面周縁部の下方への凹面化を抑制し多結晶化を阻止
することができる。
A single crystal 6 is pulled from the crystal raw material melt 4 by bringing a seed crystal (not shown) into contact with the crystal raw material melt 4 from above and pulling it up. In this embodiment, a cylindrical body 8 made of PBN is provided with a sub-heater 7 for local heating installed at one end, and the tip of this cylindrical body 8 is sealed with the liquid. It is inserted into the stop layer 5, and the insertion position of the tip is in the single crystal 5 near the crystal growth interface.
Make it a side. As a result, the heat from the sub-heater 7 for local heating is transmitted to the side surface of the single crystal 6 via the cylinder 8, suppressing downward concavity of the periphery of the solid-liquid interface and preventing polycrystallization. .

また、本実施例では上記により局部加熱用のサブヒータ
7を直接液体封止層5に浸漬しないようにしたので、単
結晶6の特性上問題となる不純物が混入するのを抑え、
単結晶6のカーボン濃度を低減することができる。
Furthermore, in this embodiment, the sub-heater 7 for local heating is not directly immersed in the liquid sealing layer 5 as described above, so that the incorporation of impurities that may cause problems with the characteristics of the single crystal 6 is suppressed.
The carbon concentration of the single crystal 6 can be reduced.

第1表はその実験結果を示すものである。Table 1 shows the experimental results.

第1表 カーボン濃度低減効果 多結晶の発生を抑制する効果については、局部加熱用の
サブヒータ7を直接液体封止層5に浸漬する従来型と本
実施例で同等の結果を得ることができた。
Table 1 Effect of reducing carbon concentration Regarding the effect of suppressing the generation of polycrystals, we were able to obtain the same results with this example as with the conventional type in which the sub-heater 7 for local heating is directly immersed in the liquid sealing layer 5. .

所で、円筒体8をPBN製としているが、その理由は下
記のとおりである。
Incidentally, the cylindrical body 8 is made of PBN for the following reasons.

(1)  構成元素であるボロン(B)、および窒素(
N)が電気的に中性であり、たとえ単結晶6への混入が
あっても特性に影響を与えない。
(1) The constituent elements boron (B) and nitrogen (
N) is electrically neutral, and even if it is mixed into the single crystal 6, it will not affect the characteristics.

(2)熱伝導率において異方性を示し、PBNの熱伝導
率方向依存性を示す第2図の如くPBH9のC方向(第
1図における横方向)の熱伝導率は第2表に示す通りC
方向に比↑′りして極めて低い。
(2) Shows anisotropy in thermal conductivity, as shown in Figure 2, which shows the thermal conductivity direction dependence of PBN. The thermal conductivity of PBH9 in the C direction (horizontal direction in Figure 1) is shown in Table 2. Street C
It is extremely low compared to the direction ↑′.

そのため、単結晶6側面が円筒体8を介して局部加熱用
のサブビータ7により過度に加熱され特性に悪影響を与
えることを防止できる。
Therefore, it is possible to prevent the side surface of the single crystal 6 from being excessively heated by the sub-beater 7 for local heating via the cylindrical body 8, thereby preventing the characteristics from being adversely affected.

第2表 PBNの熱伝導率方向性依存性[発明の効果] 本発明によれば、従来技術の問題点を解消し、単結晶成
長の過程において発生する多結晶化を抑え、単結晶のカ
ーボン濃度を低減することができるという顕著な効果を
奏する。
Table 2 Directional dependence of thermal conductivity of PBN [Effects of the invention] According to the present invention, the problems of the prior art are solved, polycrystalization that occurs in the process of single crystal growth is suppressed, and single crystal carbon This has the remarkable effect of reducing the concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す化合物半導体単結晶の
製造装置の縦断面図、第2図はPBHの熱伝動率方向依
存性を示す説明図である。 2:サセプタ、 3:るつぼ、 4:結晶原料融液、 5:液体封止層、 6:単結晶、 7:局部加熱用のサブヒータ、 8 : PBN製円筒体。 一駆 孝 1 N 乙 / λ −−−″7C7O7
FIG. 1 is a longitudinal cross-sectional view of a compound semiconductor single crystal manufacturing apparatus showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the directional dependence of thermal conductivity of PBH. 2: Susceptor, 3: Crucible, 4: Crystal raw material melt, 5: Liquid sealing layer, 6: Single crystal, 7: Sub-heater for local heating, 8: Cylindrical body made of PBN. Ikki Takashi 1 N Otsu/λ ---''7C7O7

Claims (1)

【特許請求の範囲】[Claims] 1、ヒータで加熱されるるつぼの中に収容された結晶原
料融液を液体封止層で覆い、上記結晶原料融液から引き
上げ成長させた単結晶を該単結晶の外周に設けた円筒状
のサブヒータにより加熱しながら上記単結晶を引き上げ
る化合物半導体単結晶の製造方法において、上記サブヒ
ータの内面または外面の少なくとも一方を該サブヒータ
の下端よりも下に突き出すパイロリティックボロンナイ
トライド製の円筒体で覆い、上記サブヒータは上記液体
封止層に接触させることなく上記パイロリティックボロ
ンナイトライド製の円筒体の下端を上記液体封止層に挿
入することを特徴とする化合物半導体単結晶の製造装置
1. A crystal raw material melt housed in a crucible heated by a heater is covered with a liquid sealing layer, and a single crystal pulled and grown from the crystal raw material melt is placed around the outer periphery of the cylindrical crystal. In a method for producing a compound semiconductor single crystal in which the single crystal is pulled up while being heated by a subheater, at least one of the inner surface or the outer surface of the subheater is covered with a cylindrical body made of pyrolytic boron nitride that protrudes below a lower end of the subheater; An apparatus for manufacturing a compound semiconductor single crystal, wherein the subheater inserts the lower end of the cylindrical body made of pyrolytic boron nitride into the liquid sealing layer without contacting the liquid sealing layer.
JP9110288A 1988-04-13 1988-04-13 Production of compound semiconductor single crystal Pending JPH01264995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9110288A JPH01264995A (en) 1988-04-13 1988-04-13 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9110288A JPH01264995A (en) 1988-04-13 1988-04-13 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH01264995A true JPH01264995A (en) 1989-10-23

Family

ID=14017161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9110288A Pending JPH01264995A (en) 1988-04-13 1988-04-13 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH01264995A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036400A (en) * 1983-08-10 1985-02-25 Agency Of Ind Science & Technol Apparatus for producing compound semiconductor single crystal
JPS61183197A (en) * 1985-02-07 1986-08-15 Nec Corp Apparatus for growing crystal of compound semiconductor
JPS62171984A (en) * 1986-01-24 1987-07-28 Nippon Telegr & Teleph Corp <Ntt> Apparatus for production of crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036400A (en) * 1983-08-10 1985-02-25 Agency Of Ind Science & Technol Apparatus for producing compound semiconductor single crystal
JPS61183197A (en) * 1985-02-07 1986-08-15 Nec Corp Apparatus for growing crystal of compound semiconductor
JPS62171984A (en) * 1986-01-24 1987-07-28 Nippon Telegr & Teleph Corp <Ntt> Apparatus for production of crystal

Similar Documents

Publication Publication Date Title
JPH01264995A (en) Production of compound semiconductor single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
GB2189166A (en) A single crystal of IIIb-Vb compound, particularly GaAs, and method for producing the same
JPH11302094A (en) Production of compound semiconductor single crystal
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JP2706272B2 (en) Compound semiconductor single crystal growth method
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JPH0338831Y2 (en)
JPS6321288A (en) Production of single crystal of compound semiconductor
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
JPS6153186A (en) Heater for resistance heating
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS5815095A (en) Production of single crystal
JPS6018637B2 (en) Method for manufacturing compound semiconductor single crystal
JPH09157083A (en) Use method of graphite heater
JPS6379792A (en) Device for growing single crystal
JP2751359B2 (en) Group III-V compound single crystal
JPS63170300A (en) Apparatus for producing single crystal for compound semiconductor
JPS6339558B2 (en)
JPS6042299A (en) Manufacture of single crystal
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPS63107887A (en) Crucible for pulling up single crystal
JPS62143898A (en) Production of iii-v compound semiconductor single crystal
Miskys et al. InP synthesis by the synthesis, solute diffusion (SSD) method using glassy-carbon crucibles