JPH0368124A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0368124A
JPH0368124A JP20423589A JP20423589A JPH0368124A JP H0368124 A JPH0368124 A JP H0368124A JP 20423589 A JP20423589 A JP 20423589A JP 20423589 A JP20423589 A JP 20423589A JP H0368124 A JPH0368124 A JP H0368124A
Authority
JP
Japan
Prior art keywords
washer
lead
anode lead
capacitor element
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20423589A
Other languages
Japanese (ja)
Inventor
Shozo Hara
省三 原
Yasuyo Nishijima
西嶋 泰世
Yuuya Takaku
侑也 高久
Noriaki Suzuki
紀明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP20423589A priority Critical patent/JPH0368124A/en
Publication of JPH0368124A publication Critical patent/JPH0368124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To firmly protect an anode lead connecting part in a series of production processes by a method wherein a washer comprising a thermo-plastic high thermal resistant washer is heated and fused, and simultaneously shrunk so as to tightly adhere to the lead-through part of the anode lead. CONSTITUTION:A washer 5 comprising a thermo-plastic high thermal resistant resin made-film or sheet having thermal shrinkage property is cut in the size near the minimum stamping diameter and then an anode lead 2 in which the washer 5 is inserted is welded into a suitable hoop member 6. The washer 5, when carrier to the next process, is positioned as it is applied to the lead- through part of the lead 2. Finally, the washer 5 is fused and shrunk by blowing high temperature gas so as to tightly adhere to the lead-through part of the lead 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解コンデンサの製造方法に関し、さら
に詳しく言えば、その陽極リードの保護手段に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more specifically, to a means for protecting an anode lead thereof.

〔従来の技術〕[Conventional technology]

第2図(a)には固体電解コンデンサの中核をなす典型
的な従来例としてのコンデンサ素子1が示されている。
FIG. 2(a) shows a capacitor element 1 as a typical conventional example which forms the core of a solid electrolytic capacitor.

すなわち、このコンデンサ素子】は。In other words, this capacitor element] is.

例えばTaやNbなどの弁作用を有する金属粉末の焼結
体からなり、その一端部には陽極リード2が植設されて
いる。陽極リード2は焼結前にその一端が埋設されるか
、もしくは焼結後に例えば溶接により取付けられる。コ
ンデンサ素子1の表面には電解酸化により酸化皮膜が形
成され、次いでその上に半導体電解質(固体電解質)が
生成される。例えば硝酸マンガンの含浸・熱分解を複数
回繰り返すことにより、半導体電解質としてのMnO2
層が形成されるが、その際、MnO□が陽極リード2に
這いEがるという現象が生ずる。
It is made of a sintered body of metal powder having a valve action, such as Ta or Nb, and has an anode lead 2 implanted at one end thereof. One end of the anode lead 2 is buried before sintering, or it is attached after sintering, for example by welding. An oxide film is formed on the surface of the capacitor element 1 by electrolytic oxidation, and then a semiconductor electrolyte (solid electrolyte) is produced thereon. For example, by repeating impregnation and thermal decomposition of manganese nitrate multiple times, MnO2 as a semiconductor electrolyte can be used.
A layer is formed, but at that time, a phenomenon occurs in which MnO□ creeps onto the anode lead 2.

これを防止するため、従来では第2図(b)に示されて
いるように陽極リード2の導出部に例えば弗素樹脂板3
を被せたり、同図(c)に示されているように陽極リー
ド2の導出部に例えばシリコン系樹脂または弗素系樹脂
4を塗布するようにしている。
In order to prevent this, conventionally, as shown in FIG.
For example, a silicon resin or a fluorine resin 4 is applied to the lead-out portion of the anode lead 2 as shown in FIG. 2(c).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第2図(b)に示す方法では、陽極リー
ド2との嵌合が緩い場合には樹脂板3が浮き上がり、N
nO2の這い上がり防止効果がないばかりか、陽極リー
ド2に外部リード線を溶接する場合に不具合を生ずる。
However, in the method shown in FIG. 2(b), if the fitting with the anode lead 2 is loose, the resin plate 3 will lift up and the N
Not only is there no effect of preventing nO2 from creeping up, but a problem occurs when an external lead wire is welded to the anode lead 2.

すなわち、焼結体と陽極リードとの接続部は何ら保護さ
れないため、陽極リード2に外部リード線を溶接する際
の機械的ストレスもしくは外装樹脂の熱収縮ストレスな
どの影響をうけやすく、特性劣化特に漏れ電流の増加に
つながる。
In other words, since the connection between the sintered body and the anode lead is not protected in any way, it is easily affected by mechanical stress when welding the external lead wire to the anode lead 2 or thermal shrinkage stress of the exterior resin, resulting in characteristic deterioration, especially This leads to an increase in leakage current.

また、コンデンサ素子1の厚みもしくは寸法が例えば0
.6am以下のように超小型素子の場合、樹脂板3をそ
れに合せて小さくすることは、そもそもポンチなどで打
ち抜くことが困難であるとともに、陽極リード2に対す
る挿通作業性の低下を招くことになる。そうかと言って
、小型化の制約上、第2図(b)の鎖線図示のような素
子寸法よりも大きな樹脂板3aを用いることもできない
Further, the thickness or dimensions of the capacitor element 1 may be, for example, 0.
.. In the case of an ultra-small element such as 6 am or less, reducing the size of the resin plate 3 to match the size makes it difficult to punch out with a punch or the like, and also reduces the workability of inserting into the anode lead 2. However, due to restrictions on miniaturization, it is not possible to use a resin plate 3a larger than the element size as shown by the chain line in FIG. 2(b).

他方、同図(c)に示されている樹脂4の塗布による場
合には、焼結体と陽極リードとの接続部はそれによって
保護されるが、樹脂の滴下位置あるいは滴下量などの作
業性に難があり、特に超小型素子の場合、それが顕著な
欠点として現われる。
On the other hand, in the case of applying resin 4 as shown in FIG. This is especially true for ultra-small devices, and this appears as a significant drawback.

この発明は上記した従来の欠点を解決するためになされ
たもので、その目的は、生産性を損なうことなくコンデ
ンサ素子と陽極リードの接続部を効果的に保護し得るよ
うにした固体電解コンデンサの製造方法を提供すること
にある。
This invention was made to solve the above-mentioned conventional drawbacks, and the purpose is to provide a solid electrolytic capacitor that can effectively protect the connection between the capacitor element and the anode lead without impairing productivity. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明においては、Ta 
、 Nbなどの弁作用を有する金属粉末の焼結体からな
り、その一端部に陽極リードが植設されたコンデンサ素
子の陽極リード導出部に、熱収縮性を有する熱可塑性高
耐熱樹脂からなるワッシャーを挿通したのち、同ワッシ
ャーを加熱溶融と同時に収縮させて陽極リード導出部に
密着させるようにしている。
In order to achieve the above object, in this invention, Ta
A washer made of a heat-shrinkable thermoplastic high heat-resistant resin is attached to the anode lead lead-out part of the capacitor element, which is made of a sintered body of metal powder having a valve action such as Nb, and has an anode lead implanted at one end. After the washer is inserted, the washer is heated, melted, and simultaneously shrunk to bring it into close contact with the anode lead lead-out portion.

ワッシャーのうち、比較的に融点の高いワッシャーを加
熱溶融するにあたっては、コンデンサ素子が例えばTa
粉末で形成されている場合、常圧で高温に保持するとそ
の金属表面が酸化し、遂には燃焼する危険がある。そこ
で、上記ワッシャーの加熱溶融は、加熱されたN2もし
くはArなどの不活性ガスを吹き付けるか、その不活性
ガス雰囲気中で溶融させることが好ましい。
When heating and melting a washer with a relatively high melting point among washers, the capacitor element is made of Ta, for example.
If it is made of powder, if it is kept at normal pressure and high temperature, the metal surface will oxidize and there is a danger that it will eventually burn. Therefore, it is preferable to heat and melt the washer by blowing heated inert gas such as N2 or Ar, or by melting the washer in an atmosphere of the inert gas.

また、ワッシャーの加熱溶融は、■コンデンサ素子の電
解酸化による酸化皮膜の形成前に行う。
The washer is heated and melted before (1) the formation of an oxide film by electrolytic oxidation of the capacitor element.

■コンデンサ素子の表面に電解酸化にて酸化皮膜を形成
したのちに行い、しかるのちさらに酸化皮膜の修復を行
う、■コンデンサ素子上に固体電解質を形成するのと同
時に行う、のが好ましい。
(2) It is preferable to carry out the process after forming an oxide film on the surface of the capacitor element by electrolytic oxidation, and then further repairing the oxide film, and (2) to carry out the process at the same time as forming the solid electrolyte on the capacitor element.

熱収縮性を有する熱可塑性高耐熱樹脂としては弗素系樹
脂、例えば PEEK(ポリエーテルエーテルケトン;融点340℃
)、 PE5(ポリエーテルスルフォン;非晶質のため融点な
し)、 E T F E (4−弗化エチレンとエチレンとの共
重合体:融点260℃)、 TPI(熱可塑性ポリイミド;融点382℃)。
Fluorine-based resins such as PEEK (polyetheretherketone; melting point 340°C) are used as thermoplastic highly heat-resistant resins having heat shrinkability.
), PE5 (polyether sulfone; no melting point because it is amorphous), ETFE (copolymer of 4-fluorinated ethylene and ethylene: melting point 260°C), TPI (thermoplastic polyimide; melting point 382°C) .

PCTFE(ポリクロロトリフルオロエチレン;融点2
10℃) などが好ましいが、その他の樹脂としてはPP5(ポリ
フェニレンサルファイド;融点285℃)、弗素系共重
合体樹脂、例えばPFA(4−弗化エチレンとパーフロ
ロアルコキシエチレンとの共重合体:融点310℃)、
FEP(4−弗化エチレンと6弗化プロピレンとの共重
合体:融点280℃)、ETFE(4−弗化エチレンと
エチレンとの共重合体:融点260℃)などが例示され
る。
PCTFE (polychlorotrifluoroethylene; melting point 2
10℃), but other resins include PP5 (polyphenylene sulfide; melting point: 285℃), fluorine-based copolymer resins, such as PFA (copolymer of 4-fluoroethylene and perfluoroalkoxyethylene: melting point 310℃),
Examples include FEP (copolymer of 4-fluorinated ethylene and hexafluorinated propylene: melting point 280°C) and ETFE (copolymer of 4-fluorinated ethylene and ethylene: melting point 260°C).

ここで、第1図を参照してこの発明による固体電解コン
デンサの製造方法をより具体的に説明する。まず、同図
(a)に示されているように、熱収縮性を有する熱可塑
性高耐熱樹脂のフィルムもしくはシートからなるワッシ
ャー5を型打ち抜き最小径に近い例えば0.7φの大き
さにカットし、これを陽極リード2に挿通したのち、同
陽極リード2を適当なフープ材6に溶接する。このフー
プ材6に取付けられた状態で次工程に搬送される際、ワ
ッシャー5は図示しないガイド部材にて同図(b)に示
されているように、陽極リード2の導出部に当てかわれ
るように位置決めされる。次に、図示しないドライヤー
などにて高温の例えばN2ガスが吹き付けられる。これ
により、ワッシャー5は同図(c)に示されているよう
に溶融収縮して陽極リード2の導出部に密着する。参照
符号5aはその密着したものを示している。
Here, the method for manufacturing a solid electrolytic capacitor according to the present invention will be explained in more detail with reference to FIG. First, as shown in Figure (a), a washer 5 made of a film or sheet of thermoplastic highly heat-resistant resin having heat-shrinkability is punched and cut into a size close to the minimum diameter, for example, 0.7φ. After this is inserted into the anode lead 2, the anode lead 2 is welded to a suitable hoop material 6. When the washer 5 is transported to the next process while attached to the hoop material 6, the washer 5 is applied to the lead-out portion of the anode lead 2 by a guide member (not shown) as shown in FIG. It is positioned as follows. Next, high-temperature N2 gas, for example, is sprayed using a dryer (not shown) or the like. As a result, the washer 5 is melted and shrunk as shown in FIG. 3(c), and is brought into close contact with the lead-out portion of the anode lead 2. Reference numeral 5a indicates the one in close contact.

〔作   用〕[For production]

上記の加熱溶融は一連の流れ工程において行うことがで
きるため、生産能力を下げることなく、陽極リード接続
部を強固に保護することができる。
Since the above heating and melting can be performed in a series of flow steps, the anode lead connection portion can be strongly protected without reducing production capacity.

この場合において、ワッシャー5の当初寸法はコンデン
サ素子1よりも大きくてよいため、陽極リード2への挿
通作業を容易に行うことができる。
In this case, since the initial dimensions of the washer 5 may be larger than the capacitor element 1, the operation of inserting the washer 5 into the anode lead 2 can be easily performed.

(実施例1) 外形寸法0,43X 1.OX 1.Omのタンタルコ
ンデンサ素子の陽極リードに、ポリケトン系フィルム・
PEEKrステイバーに200J (商品名;アイ・シ
ー・アイ・ジャパン■製)からなる厚さ0.1+*+m
のワッシャーを挿通し、ヒートガン(白光メタル社製)
にてN2ガスを供給しながら同ワッシャーを溶融させた
。次いで、電解酸化によりコンデンサ素子の表面に酸化
皮膜を施し、MnO□層、カーボン層、銀層を順次形成
し、外部端子を接続したのち、外装樹脂(エポキシ)で
被覆し、定格電圧16■、静電容i0.68μFの固体
電解コンデンサを製作した。
(Example 1) External dimensions 0.43X 1. OX1. Polyketone film/
PEEKr stay bar made of 200J (product name: manufactured by ICI Japan), thickness 0.1 + * + m
Insert the washer into the heat gun (manufactured by Hakko Metal Co., Ltd.).
The washer was melted while supplying N2 gas. Next, an oxide film is applied to the surface of the capacitor element by electrolytic oxidation, and a MnO□ layer, a carbon layer, and a silver layer are sequentially formed. After connecting external terminals, it is covered with an exterior resin (epoxy), and the rated voltage is 16 cm. A solid electrolytic capacitor with a capacitance i of 0.68 μF was manufactured.

(実施例2) 実施例1と同じコンデンサ素子の陽極リードに、ポリケ
トン系フィルム・PEEに「スティバーXK300J(
商品名;アイ・シー・アイ・ジャパン曲製)からなる厚
さ0.0751鵬のワッシャーを挿通し、次いで電解酸
化を行ってコンデンサ素子の表面に酸化皮膜を施した(
第1化或)。しかるのち、電気炉内で加熱して同ワッシ
ャーを溶融収縮させた。さらに、第2化或を行い所望の
酸化皮膜を形成した。そして、上記実施例1と同じく、
MnO2層、カーボン層、銀層を順次形成し、外部端子
を接続したのち、外装樹脂(エポキシ)で被覆し、定格
電圧16V、静電容量0.68μFの固体電解コンデン
サを製作した。
(Example 2) The anode lead of the same capacitor element as in Example 1 was coated with polyketone film/PEE.
A washer with a thickness of 0.0751 mm made of ICC (product name: ICI Japan) was inserted, and then electrolytic oxidation was performed to form an oxide film on the surface of the capacitor element (
First version). Thereafter, the washer was heated in an electric furnace to melt and shrink. Furthermore, a desired oxide film was formed by performing second conversion. And, as in Example 1 above,
After sequentially forming an MnO2 layer, a carbon layer, and a silver layer, and connecting external terminals, the capacitor was covered with an exterior resin (epoxy) to produce a solid electrolytic capacitor with a rated voltage of 16 V and a capacitance of 0.68 μF.

(実施例3) 実施例1と同じコンデンサ素子の陽極リードに、ポリイ
ミド系フィルムrNEV−TPIJ (商品名:三井東
圧■製)からなる厚さ0.1mmのワッシャーを挿通し
、実施例1と同じくヒートガン(白光メタル社製)にて
N2ガスを供給しながら同ワッシャーを溶融させた1次
いで、電解酸化によりコンデンサ素子の表面に酸化皮膜
を施し、MnO2層、カーボン層、銀層を順次形威し、
外部端子を接続したのち、外装樹脂(エポキシ)で被覆
し、定格電圧16V、静電容量0.68μFの固体電解
コンデンサを製作した。
(Example 3) A 0.1 mm thick washer made of polyimide film rNEV-TPIJ (product name: Mitsui Toatsu ■) was inserted into the anode lead of the same capacitor element as in Example 1. The same washer was melted while supplying N2 gas using a heat gun (manufactured by Hakuko Metal Co., Ltd.). Next, an oxide film was applied to the surface of the capacitor element by electrolytic oxidation, and a MnO2 layer, a carbon layer, and a silver layer were sequentially formed. death,
After connecting external terminals, it was covered with an exterior resin (epoxy) to produce a solid electrolytic capacitor with a rated voltage of 16 V and a capacitance of 0.68 μF.

〔比較例1〕 実施例1と同じコンデンサ素子に、電解酸化を行ってそ
の表面に酸化皮膜を施し5次いでMnO2層、カーボン
層、銀層を順次形成し、外部端子を接続したのち、外装
樹脂(エポキシ)で被覆し、定格電圧16V、静電容量
0.68μFの固体電解コンデンサを製作した。
[Comparative Example 1] The same capacitor element as in Example 1 was subjected to electrolytic oxidation to form an oxide film on its surface, and then an MnO2 layer, a carbon layer, and a silver layer were sequentially formed, external terminals were connected, and then an exterior resin was applied. A solid electrolytic capacitor coated with (epoxy) and having a rated voltage of 16 V and a capacitance of 0.68 μF was manufactured.

(実施例4) 実施例1と同じコンデンサ素子の陽極リードに、非晶質
系フィルム・PESrステイバ−51,0OJ(商品名
;アイ・シー・アイ・ジャパン■製)からなる厚さ0.
1Hのワッシャーを挿通し、電解酸化によりコンデンサ
素子の表面に酸化皮膜を形成した。次いで、硝酸マンガ
ン(比重1.3)水溶液を含浸させ、熱分解炉内におい
て高温(300−350℃)で分解し、阿no2生戒と
同時にワッシャーを溶融した。しかるのち、カーボン層
、銀層を順次形威し、外部端子を接続したのち、外装樹
脂(エポキシ)で被覆し、定格電圧4V、静電容量2.
2μFの固体電解コンデンサを製作した。
(Example 4) The anode lead of the same capacitor element as in Example 1 was made of amorphous film PESr stay bar 51.0OJ (trade name; manufactured by ICI Japan ■) with a thickness of 0.
A 1H washer was inserted, and an oxide film was formed on the surface of the capacitor element by electrolytic oxidation. Next, the washer was impregnated with an aqueous solution of manganese nitrate (specific gravity 1.3) and decomposed at a high temperature (300-350°C) in a pyrolysis furnace to melt the washer at the same time as the Ano2 life cycle. After that, a carbon layer and a silver layer are sequentially shaped, external terminals are connected, and then covered with an exterior resin (epoxy), with a rated voltage of 4V and a capacitance of 2.
A 2μF solid electrolytic capacitor was manufactured.

〔比較例2〕 従来例1と同様にして定格電圧4V、静電容量2.2μ
Fの固体電解コンデンサを製作した。
[Comparative example 2] Same as conventional example 1, rated voltage 4V, capacitance 2.2μ
A F solid electrolytic capacitor was manufactured.

上記各実施例と比較例をそれぞれ10,000個用意し
、その静電容1Lcap(μF)、損失角の正接tan
δ、漏れ電流t、C(μA)、製品としての特性不良率
(%)、MnO□這い上がり率(%)を測定した結果(
平均値)を次式に示す。
10,000 pieces of each of the above examples and comparative examples were prepared, and their capacitance was 1 Lcap (μF), tangent of loss angle was
Results of measuring δ, leakage current t, C (μA), product characteristic defect rate (%), MnO□ creep-up rate (%) (
The average value) is shown in the following formula.

(表) この表から明らかなように、各実施例は特性不良率が従
来例の175〜1/IQと改善されている。また、Mn
O2這い上がり率は各実施例ともに0%を記録している
。さらに、漏れ電流の値からして陽極外部端子溶接時の
ストレス、外装樹脂のストレスに対して顕著な緩和作用
が認められる。
(Table) As is clear from this table, the characteristic defect rate of each example is improved to 175 to 1/IQ of the conventional example. Also, Mn
The O2 creep rate was recorded as 0% in each example. Furthermore, judging from the value of leakage current, a remarkable effect of alleviating the stress during welding of the anode external terminal and the stress of the exterior resin is recognized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、コンデンサ素
子の陽極リード導出部に熱収縮性を有する熱可塑性高耐
熱樹脂からなるワッシャーを挿通して、同ワッシャーを
加熱溶融と同時に収縮させて陽極リード導出部に密着さ
せるようにしたことにより、一連の流れ工程において、
生産能力を下げることなく陽極リード接続部を強固に保
護することができる。また、この発明によれば、ワッシ
ャーの当初寸法はコンデンサ素子よりも大きくてよいた
め、陽極リードへの挿通作業を容易に行うことができる
As explained above, according to the present invention, a washer made of a heat-shrinkable thermoplastic highly heat-resistant resin is inserted into the anode lead lead-out portion of a capacitor element, and the washer is heated and melted and simultaneously shrinks to lead the anode lead. By placing it in close contact with the lead-out part, in a series of flow processes,
The anode lead connection can be strongly protected without reducing production capacity. Further, according to the present invention, since the initial size of the washer may be larger than the capacitor element, the operation of inserting the washer into the anode lead can be easily performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)はこの発明による固体電解コンデ
ンサの製造過程を示した説明図、第2図(a)〜(c)
はそれぞれ従来例を示した説明図である。 図中、1はコンデンサ素子、2は陽極リード、5は熱可
塑性高耐熱樹脂からなるワッシャー、6はフープ材であ
る。 第1図
FIGS. 1(a) to (c) are explanatory diagrams showing the manufacturing process of a solid electrolytic capacitor according to the present invention, and FIGS. 2(a) to (c)
are explanatory diagrams showing conventional examples, respectively. In the figure, 1 is a capacitor element, 2 is an anode lead, 5 is a washer made of a thermoplastic highly heat-resistant resin, and 6 is a hoop material. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1) Ta、Nbなどの弁作用を有する金属粉末の焼
結体からなり、その一端部に陽極リードが植設されたコ
ンデンサ素子の上記陽極リード導出部に、熱収縮性を有
する熱可塑性高耐熱樹脂からなるワッシャーを挿通した
のち、同ワッシヤーを加熱溶融と同時に収縮させて上記
陽極リード導出部に密着させることを特徴とする固体電
解コンデンサの製造方法。
(1) The anode lead lead-out part of the capacitor element is made of a sintered body of metal powder having a valve action such as Ta or Nb, and an anode lead is implanted at one end of the capacitor element. A method for manufacturing a solid electrolytic capacitor, which comprises inserting a washer made of a heat-resistant resin, and then heat-melting and shrinking the washer to bring it into close contact with the anode lead lead-out portion.
(2) 上記ワッシャーの加熱溶融は、高温の不活性ガ
スにて行われる請求項1に記載の固体電解コンデンサの
製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the washer is heated and melted using a high-temperature inert gas.
(3) 上記ワッシャーの加熱溶融は、上記コンデンサ
素子の表面に電解酸化にて酸化皮膜を形成する化成工程
の途中で行われる請求項1に記載の固体電解コンデンサ
の製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the heating and melting of the washer is performed during a chemical conversion step in which an oxide film is formed on the surface of the capacitor element by electrolytic oxidation.
(4) 上記ワッシャーの加熱溶融は、上記コンデンサ
素子上に固体電解質を形成するのと同時に行われる請求
項1に記載の固体電解コンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein heating and melting the washer is performed simultaneously with forming the solid electrolyte on the capacitor element.
JP20423589A 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor Pending JPH0368124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20423589A JPH0368124A (en) 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20423589A JPH0368124A (en) 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0368124A true JPH0368124A (en) 1991-03-25

Family

ID=16487087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20423589A Pending JPH0368124A (en) 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0368124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076856C (en) * 1994-08-25 2001-12-26 罗姆股份有限公司 Process for making capacitor element for solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913302A (en) * 1972-03-27 1974-02-05
JPH02285625A (en) * 1989-04-26 1990-11-22 Elna Co Ltd Manufacture of solid electrolytic condenser
JPH0362914A (en) * 1989-07-31 1991-03-19 Elna Co Ltd Manufacture of solid-state electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913302A (en) * 1972-03-27 1974-02-05
JPH02285625A (en) * 1989-04-26 1990-11-22 Elna Co Ltd Manufacture of solid electrolytic condenser
JPH0362914A (en) * 1989-07-31 1991-03-19 Elna Co Ltd Manufacture of solid-state electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076856C (en) * 1994-08-25 2001-12-26 罗姆股份有限公司 Process for making capacitor element for solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPH07211596A (en) Electronic component and its manufacture
JPH0368124A (en) Manufacture of solid electrolytic capacitor
JP2711564B2 (en) Method for manufacturing solid electrolytic capacitor
CN1174451C (en) Method for coating wire of temp. fuse with insulating sleeve and the temp. fuse
JPH05234828A (en) Manufacture of solid electrolytic capacitor
JP3116960B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03255607A (en) Manufacture of solid electrolytic capacitor
JP2953478B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH02309618A (en) Manufacture of solid electrolytic capacitor
JPH04264710A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH0760778B2 (en) Method for manufacturing solid electrolytic capacitor
JP2697373B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0368123A (en) Manufacture of solid electrolytic capacitor
JPH06187975A (en) Manufacture of thin battery
KR0163860B1 (en) Carbon and argentum pasting method in tantalum electrolytic condenser
JPH07106204A (en) Solid electrolytic capacitor
KR960009064Y1 (en) Ceramic coating tantalium electrolytic capacitor
JP4023592B2 (en) Capacitor element in solid electrolytic capacitor and manufacturing method thereof
JPH03215924A (en) Manufacture of solid electrolytic capacitor
JPS62213228A (en) Manufacture of film capacitor
JP2004047640A (en) Capacitor element of solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element
JPS6167216A (en) Solid electrolytic condenser
JPH04299512A (en) Chip type bipolar solid electrolytic capacitor
JPH03231417A (en) Manufacture of solid electrolytic capacitor
JPH05251285A (en) Resin-molded solid electrolytic capacitor