JPH02309618A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH02309618A
JPH02309618A JP13114889A JP13114889A JPH02309618A JP H02309618 A JPH02309618 A JP H02309618A JP 13114889 A JP13114889 A JP 13114889A JP 13114889 A JP13114889 A JP 13114889A JP H02309618 A JPH02309618 A JP H02309618A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode lead
capacitor element
suspension
anode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13114889A
Other languages
Japanese (ja)
Inventor
Yasuyo Nishijima
西嶋 泰世
Shozo Hara
省三 原
Ikuya Takaku
侑也 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP13114889A priority Critical patent/JPH02309618A/en
Publication of JPH02309618A publication Critical patent/JPH02309618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To securely protect a positive electrode lead connection part without lowering production capability in a series of flow passages by applying a suspension solution including thermoplastic, highly heat-resistant resin powder on a positive electrode lead part of a capacitor element, and heating and melting said resin and bringing the same into close contact with the positive electrode lead part. CONSTITUTION:A positive electrode lead part of a capacitor element 1, which part comprises a sintered product of metal powder with a valve action such as Al, Ta, and Nb, and on one end of which part a positive electrode lead 2 is provided, is provided. A suspension solution 6, which is yielded by finely grounding thermoplastic, highly heat-resistant and mixing it in water, is applied on the positive electrode lead part, and heated and melted, and further brought into close contact 5a with the positive electrode lead part. Hereby, dropping, application, and heating and melting of the suspension solution 5 can be performed in a number of flow processes, so that a positive electrode lead connection part can securely be protected even in the case of a fine capacitor without lowering production capability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解コンデンサの製造方法に関し、さら
に詳しく言えば、その陽極リードの保護手段に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more specifically, to a means for protecting an anode lead thereof.

〔従来の技術〕[Conventional technology]

第2図(a)には固体電解コンデンサの中核をなす典型
的な従来例としてのコンデンサ素子1が示されている。
FIG. 2(a) shows a capacitor element 1 as a typical conventional example which forms the core of a solid electrolytic capacitor.

すなわち、このコンデンサ素子1は、例えばAQ、Ta
やNbなどの弁作用を有する金属粉末の焼結体からなり
、その一端部には陽極リード2が植設されている。陽極
リード2は焼結前にその一端が埋設されるか、もしくは
焼結後に例えば溶接により取付けられる。コンデンサ素
子1の表面には電解酸化により酸化皮膜が形成され、次
いでその上に半導体電解質(固体電解質)が生成される
That is, this capacitor element 1 is made of, for example, AQ, Ta.
The anode lead 2 is made of a sintered body of metal powder having a valve action such as Nb or Nb, and an anode lead 2 is implanted at one end thereof. One end of the anode lead 2 is buried before sintering, or it is attached after sintering, for example by welding. An oxide film is formed on the surface of the capacitor element 1 by electrolytic oxidation, and then a semiconductor electrolyte (solid electrolyte) is produced thereon.

例えば硝酸マンガンの含浸・熱分解を複数回繰り返すこ
とにより、半導体電解質としてのMnO,層が形成され
るが、そのffi、 MnO,が陽極リード2に這い上
がるという現象が生ずる。
For example, by repeating impregnation and thermal decomposition of manganese nitrate several times, a MnO layer is formed as a semiconductor electrolyte, but a phenomenon occurs in which the ffi, MnO, creeps up to the anode lead 2.

これを防止するため、従来では第2図(b)に示されて
いるように陽極リード2の導出部に例えば弗素樹脂板3
を被せるようにしている。
In order to prevent this, conventionally, as shown in FIG.
I try to cover it with

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この方法では陽極リード2との嵌合が緩
い場合には樹脂板3が浮き上がり、MnO□の這い上が
り防止効果がないばかりか、陽極り一ド2に外部リード
線を溶接する場合に不具合を生ずる。すなわち、焼結体
と陽極リードとの接続部は何ら保護されないため、陽極
リード2に外部リード線を溶接する際の機械的ストレス
もしくは外装樹脂の熱収縮ストレスなどの影響をうけや
すく。
However, with this method, if the fitting with the anode lead 2 is loose, the resin plate 3 will rise, and not only will it not be effective in preventing MnO□ from creeping up, but it will also cause problems when welding the external lead wire to the anode lead 2. will occur. That is, since the connection portion between the sintered body and the anode lead is not protected in any way, it is easily affected by mechanical stress when welding the external lead wire to the anode lead 2 or thermal shrinkage stress of the exterior resin.

特性劣化、特に漏れ電流の増加につながる。また、例え
ば厚みが1■程度の微小型コンデンサの場合には、陽極
リード2に対するワッシャー3の挿入がきわめて困難で
あり、さらにそれよりも小型になると、ワッシャー3の
挿入が不可能となる。
This leads to characteristic deterioration, especially an increase in leakage current. Further, in the case of a microcapacitor having a thickness of, for example, about 1 square inch, it is extremely difficult to insert the washer 3 into the anode lead 2, and if the capacitor is smaller than that, it becomes impossible to insert the washer 3.

この発明は上記した従来の欠点を解決するためになされ
たもので、その目的は、生産性を損なうことなくコンデ
ンサ素子と陽極リードの接続部を効果的に保護し得るよ
うにした固体電解コンデンサの製造方法を提供すること
にある。
This invention was made to solve the above-mentioned conventional drawbacks, and the purpose is to provide a solid electrolytic capacitor that can effectively protect the connection between the capacitor element and the anode lead without impairing productivity. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明においては、AI2
.Ta、Nbなどの弁作用を有する金属粉末の焼結体か
らなり、その一端部に陽極リードが植設されたコンデン
サ素子の上記陽極リード導出部に、熱可塑性高耐熱樹脂
を微粉砕して水と混合した懸濁液を塗布したのち、加熱
溶融させて上記陽極リード導出部に密着させるようにし
ている。
In order to achieve the above object, in this invention, AI2
.. Finely pulverized thermoplastic high heat resistant resin is applied to the anode lead lead-out part of the capacitor element, which is made of a sintered body of metal powder having a valve action such as Ta or Nb, and has an anode lead implanted at one end. After applying the suspension mixed with the above, it is heated and melted so that it is brought into close contact with the anode lead lead-out portion.

上記懸濁液に含まれる樹脂のうち、比較的融点の高い樹
脂を加熱溶融するにあたっては、コンデンサ素子が例え
ばTa粉末で形成されている場合、常圧で高温に保持す
るとその金属表面が酸化し、遂龜は燃焼する危険がある
。そこで、このような樹脂の加熱溶融は、加熱されたN
2もしくはArなどの不活性ガスを吹き付けるか、その
不活性ガス雰囲気中で溶融させることが好ましい。
When heating and melting a resin with a relatively high melting point among the resins contained in the above suspension, if the capacitor element is made of Ta powder, for example, the metal surface will oxidize if kept at high temperature under normal pressure. , there is a danger of combustion. Therefore, heating and melting of such a resin requires heated N
It is preferable to spray an inert gas such as 2 or Ar, or to melt it in an inert gas atmosphere.

また、樹脂の加熱溶融は、■コンデンサ素子の電解酸化
による酸化皮膜の形成前に行う、■コンデンサ素子の表
面に電解酸化にて酸化皮膜を形成したのちに行うのが好
ましい。
Further, the heating and melting of the resin is preferably carried out (1) before the formation of an oxide film by electrolytic oxidation of the capacitor element, and (2) after the oxide film is formed on the surface of the capacitor element by electrolytic oxidation.

使用する熱可塑性高耐熱樹脂としては弗素系樹脂、例え
ば PFA(4−弗化エチレンとパーフロロアルコキシエチ
レンとの共重合体;融点310℃)。
The thermoplastic highly heat-resistant resin used is a fluorine-based resin, such as PFA (copolymer of 4-fluoroethylene and perfluoroalkoxyethylene; melting point: 310°C).

FEP(4−弗化エチレンと6弗化プロピレンとの共重
合体;融点280℃)。
FEP (copolymer of 4-fluorinated ethylene and hexafluorinated propylene; melting point 280°C).

ETFE(4−弗化エチレンとエチレンとの共重合体;
融点260℃)。
ETFE (copolymer of 4-fluorinated ethylene and ethylene;
melting point 260°C).

PVDE(ポリビニリデンフルオライド;融点170℃
)。
PVDE (polyvinylidene fluoride; melting point 170°C
).

PCTFE(ポリクロロトリフルオロエチレン;融点2
10℃) などが好ましいが、その他の樹脂としては例えばPP5
(ポリフェニレンサルファイド;融点285℃)などが
例示される。なお、PVDEとPCTFEを加熱溶融す
る場合には融点が低いため、特に不活性ガス雰囲気中で
あることを要しない。
PCTFE (polychlorotrifluoroethylene; melting point 2
10℃), but other resins include, for example, PP5.
(Polyphenylene sulfide; melting point: 285°C). Note that when PVDE and PCTFE are heated and melted, since their melting points are low, it is not necessary to use an inert gas atmosphere.

ここで、この発明による固体電解コンデンサの製造方法
をより具体的に説明する。まず、熱可塑性高耐熱樹脂の
例えばフィルムもしくはシートをミキサーなどにて微粉
砕し、それを水と混合して懸濁液をつくる。そして、第
1図(、)に示されているように、その懸濁液5を予め
前工程でフープ材6に取付けられているコンデンサ素子
1の陽極リード2側に図示しないディスペンサなどにて
滴下または塗布する0次に、図示しないドライヤーなど
にて高温の例えばN2ガスが吹き付けられる。
Here, the method for manufacturing a solid electrolytic capacitor according to the present invention will be explained in more detail. First, a film or sheet of a thermoplastic highly heat-resistant resin, for example, is pulverized using a mixer, and then mixed with water to form a suspension. Then, as shown in FIG. 1(, ), the suspension 5 is dripped onto the anode lead 2 side of the capacitor element 1, which has been attached to the hoop material 6 in the previous step, using a dispenser or the like (not shown). Alternatively, after coating, high temperature, for example, N2 gas is sprayed using a dryer (not shown) or the like.

これにより、懸濁液5内に含まれている樹脂は同図(b
)に示されているように溶融して陽極リード2の導出部
に密着する。参照符号5aはその密着したものを示して
いる。
As a result, the resin contained in the suspension 5 is
), it melts and adheres closely to the lead-out portion of the anode lead 2. Reference numeral 5a indicates the one in close contact.

〔作   用〕[For production]

上記の懸濁液の滴下・塗布および加熱溶融は一連の流れ
工程において行うことができるため、生産能力を下げる
ことなく、微小化されたコンデンサにおいても陽極リー
ド接続部を強固に保護することができる。
Since the above suspension can be dropped, applied, and heated and melted in a series of flow steps, it is possible to firmly protect the anode lead connection part even in miniaturized capacitors without reducing production capacity. .

(実施例1) 弗素系フィ、ルム・PFArネオフロン」(商品名;ダ
イキン工業■製)からなるシートをミキサーで微粉化し
、それを浄水と混合して粘度5000〜10000cp
sの懸濁液をつくり、同懸濁液を外形寸法0.5 X 
1.OX 1.ommのタンタルコンデンサ素子の陽極
リードにディスペンサーにて塗布したのち、ヒートガン
(白光メタル社製)にてN2ガスを供給しながら同懸濁
液に含まれている樹脂を溶融させた1次いで。
(Example 1) A sheet made of fluorine-based PFAr Neoflon (trade name; manufactured by Daikin Industries, Ltd.) was pulverized with a mixer, and mixed with purified water to obtain a viscosity of 5,000 to 10,000 cp.
Make a suspension of
1. OX1. After applying it to the anode lead of an OMM tantalum capacitor element with a dispenser, the resin contained in the suspension was melted while supplying N2 gas with a heat gun (manufactured by Hakko Metal Co., Ltd.).

電解酸化によりコンデンサ素子の表面に酸化皮膜を施し
、MnO,層、カーボン層、銀層を順次形成し、外部端
子を接続したのち、外装樹脂(エポキシ)で被覆し、定
格電圧4V、静電容量1μFの固体電解コンデンサを製
作した。
An oxide film is applied to the surface of the capacitor element by electrolytic oxidation, a MnO layer, a carbon layer, and a silver layer are sequentially formed. After connecting external terminals, the capacitor element is coated with an exterior resin (epoxy) and has a rated voltage of 4V and a capacitance. A 1μF solid electrolytic capacitor was manufactured.

(実施例2) 弗素系フィルム・FEPr トヨフロン」(商品名;東
し■製)からなるシートをミキサーで微粉化し、それを
浄水と混合して粘度5000〜10000cpsの懸濁
液をつくり、同懸濁液を実施例1と同じコンデンサ素子
の陽極リードにディスペンサーにて塗布したのち、ヒー
トガン(白光メタル社製)にてN、ガスを供給しながら
同懸濁液に含まれている樹脂を溶融させた。そして、上
記実施例1と同じく、MnO□層、カーボン層、銀層を
順次形成し、外部端子を接続したのち、外装樹脂(エポ
キシ)で被覆し、定格電圧4V、静電容量1μFの固体
電解コンデンサを製作した。
(Example 2) A sheet made of fluorine-based film FEPr Toyoflon (trade name; manufactured by Toshi ■) was pulverized using a mixer, and mixed with purified water to create a suspension with a viscosity of 5,000 to 10,000 cps. After applying the suspension to the anode lead of the same capacitor element as in Example 1 using a dispenser, the resin contained in the suspension was melted while supplying N and gas using a heat gun (manufactured by Hakko Metal Co., Ltd.). Ta. Then, as in Example 1 above, a MnO□ layer, a carbon layer, and a silver layer were sequentially formed, external terminals were connected, and then covered with an exterior resin (epoxy). I made a capacitor.

(実施例3) PPSフィルム「トレリナ」(商品名;東し■製)から
なるシートをミキサーで微粉化し、それを浄水と混合し
て粘度5000〜110000cpの懸濁液をつくり、
同懸濁液を実施例1と同じコンデンサ素子の陽極リード
にディスペンサーにて塗布したのち、ヒートガン(白光
メタル社製)にてN2ガスを供給しながら同懸濁液に含
まれている樹脂を溶融させた0次いで、電解酸化により
コンデンサ素子の表面に酸化皮膜を施し、MnO□層、
カーボン層、銀層を順次形成し、外部端子を接続したの
ち、外装樹脂(エポキシ)で被覆し、定格電圧4V、静
電容量1μFの固体電解コンデンサを製作した。
(Example 3) A sheet made of PPS film "Torelina" (trade name; manufactured by Toshi ■) was pulverized with a mixer, and mixed with purified water to create a suspension with a viscosity of 5,000 to 110,000 cp.
After applying the same suspension to the anode lead of the same capacitor element as in Example 1 using a dispenser, melt the resin contained in the suspension while supplying N2 gas with a heat gun (manufactured by Hakko Metal Co., Ltd.). Then, an oxide film is applied to the surface of the capacitor element by electrolytic oxidation, and an MnO□ layer,
After sequentially forming a carbon layer and a silver layer and connecting external terminals, the capacitor was covered with an exterior resin (epoxy) to produce a solid electrolytic capacitor with a rated voltage of 4 V and a capacitance of 1 μF.

〔比較例1〕 実施例1と同じコンデンサ素子の陽極リードにTFH(
テトラフロロエチレン)からなる厚さ0.2m■のワッ
シャーを挿通し、電解酸化を行ってその表面に酸化皮膜
を施し1次いでMnO,層、カーボン層、銀層を順次形
成し、外部端子を接続したのち、外装樹脂(エポキシ)
で被覆し、定格電圧4V、静電容量1μFの固体電解コ
ンデンサを製作した。
[Comparative Example 1] TFH (
A washer with a thickness of 0.2 m made of (tetrafluoroethylene) is inserted, electrolytic oxidation is performed to form an oxide film on the surface, and then an MnO layer, a carbon layer, and a silver layer are sequentially formed, and external terminals are connected. After that, exterior resin (epoxy)
A solid electrolytic capacitor with a rated voltage of 4 V and a capacitance of 1 μF was manufactured.

上記各実施例と比較例をそれぞれio、ooo個用意し
、その静電容量Cap(μF)、損失角の正接tanδ
、漏れ電流LC(μA)、製品としての特性不良率(%
)。
Prepare io and ooo pieces of each of the above examples and comparative examples, and calculate the capacitance Cap (μF) and the tangent tanδ of the loss angle.
, leakage current LC (μA), product characteristic defect rate (%
).

MnO□這い上がり率(%)を測定した結果(平均値)
を次頁の表に示す。
Results of measuring MnO□ creeping rate (%) (average value)
are shown in the table on the next page.

(表) この表から明らかなように、各実施例は特性不良率が大
幅に改善されている。また、MnO,這い上がり率は各
実施例ともに0%を記録している。さらに、漏れ電流の
値からして陽極外部端子溶接時のストレス、外装樹脂の
ストレスに対して顕著な緩和作用が認められる。
(Table) As is clear from this table, the characteristic defect rate was significantly improved in each example. Furthermore, the creeping rate of MnO was recorded as 0% in each example. Furthermore, judging from the value of leakage current, a remarkable effect of alleviating the stress during welding of the anode external terminal and the stress of the exterior resin is recognized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、コンデンサ素
子の陽極リード導出部に、熱可塑性高耐熱樹脂粉末を含
む懸濁液を塗布し、同樹脂を加熱溶融させて陽極リード
導出部に密着させるようにしたことにより、特に微小化
されたコンデンサにおいても、一連の流れ工程で生産能
力を下げることなく陽極リード接続部を強固に保護する
ことができる。
As explained above, according to the present invention, a suspension containing a thermoplastic highly heat-resistant resin powder is applied to the anode lead lead-out portion of a capacitor element, and the resin is heated and melted to adhere tightly to the anode lead lead-out portion. By doing so, even in particularly miniaturized capacitors, the anode lead connection portion can be strongly protected without reducing production capacity in a series of flow steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はこの発明による固体電解コンデ
ンサの製造過程を示した説明図、第2図(a)。 (b)はそれぞれ従来例を示した説明図である。 図中、1はコンデンサ素子、2は陽極リード、5は熱可
塑性高耐熱樹脂粉末を含む懸濁液、6はフープ材である
。 特許出願人  エルナー株式会社 代理人 弁理士   大 原  拓 也第1図 (a)    (b) 第2図 (G)    (b)
FIGS. 1(a) and 1(b) are explanatory diagrams showing the manufacturing process of a solid electrolytic capacitor according to the present invention, and FIG. 2(a). (b) is an explanatory diagram showing a conventional example. In the figure, 1 is a capacitor element, 2 is an anode lead, 5 is a suspension containing thermoplastic highly heat-resistant resin powder, and 6 is a hoop material. Patent Applicant Elnor Co., Ltd. Agent Patent Attorney Takuya Ohara Figure 1 (a) (b) Figure 2 (G) (b)

Claims (4)

【特許請求の範囲】[Claims] (1)Al,Ta,Nbなどの弁作用を有する金属粉末
の焼結体からなり、その一端部に陽極リードが植設され
たコンデンサ素子の上記陽極リード導出部に、熱可塑性
高耐熱樹脂粉末を含む懸濁液を塗布したのち、加熱溶融
させて上記陽極リード導出部に密着させたことを特徴と
する固体電解コンデンサの製造方法。
(1) The anode lead lead-out part of the capacitor element is made of a sintered body of metal powder having a valve action such as Al, Ta, Nb, etc., and an anode lead is implanted at one end of the capacitor element. 1. A method for manufacturing a solid electrolytic capacitor, comprising applying a suspension containing the above-mentioned anode lead, and heating and melting the suspension to make it adhere to the anode lead lead-out portion.
(2)上記懸濁液に含まれる樹脂の加熱溶融は、高温の
不活性ガスにて行われる請求項1に記載の固体電解コン
デンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the resin contained in the suspension is heated and melted using a high-temperature inert gas.
(3)上記懸濁液に含まれる樹脂の加熱溶融は、上記コ
ンデンサ素子の表面に電解酸化にて酸化皮膜を形成した
のちに行われる請求項1に記載の固体電解コンデンサの
製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the heating and melting of the resin contained in the suspension is performed after forming an oxide film on the surface of the capacitor element by electrolytic oxidation.
(4)上記懸濁液に含まれる樹脂の加熱溶融は、上記コ
ンデンサ素子上に固体電解質を形成するのと同時に行わ
れる請求項1に記載の固体電解コンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein heating and melting the resin contained in the suspension is performed at the same time as forming the solid electrolyte on the capacitor element.
JP13114889A 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor Pending JPH02309618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13114889A JPH02309618A (en) 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13114889A JPH02309618A (en) 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02309618A true JPH02309618A (en) 1990-12-25

Family

ID=15051124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13114889A Pending JPH02309618A (en) 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02309618A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913302A (en) * 1972-03-27 1974-02-05
JPS54134355A (en) * 1978-04-10 1979-10-18 Nippon Electric Co Method of producing electrolytic capacitor
JPS62238615A (en) * 1986-04-09 1987-10-19 日立コンデンサ株式会社 Manufacture of solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913302A (en) * 1972-03-27 1974-02-05
JPS54134355A (en) * 1978-04-10 1979-10-18 Nippon Electric Co Method of producing electrolytic capacitor
JPS62238615A (en) * 1986-04-09 1987-10-19 日立コンデンサ株式会社 Manufacture of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
EP2769394A1 (en) Sintered article and method of making sintered article
US3150300A (en) Capacitor
JPH02309618A (en) Manufacture of solid electrolytic capacitor
JP2711564B2 (en) Method for manufacturing solid electrolytic capacitor
JP2615712B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0760778B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0624178B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0368124A (en) Manufacture of solid electrolytic capacitor
JPH05234828A (en) Manufacture of solid electrolytic capacitor
JP3116960B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001068381A (en) Solid state electrolytic capacitor element
JPH0368123A (en) Manufacture of solid electrolytic capacitor
JPH04264710A (en) Solid-state electrolytic capacitor and manufacture thereof
JP2697373B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04264711A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH04245614A (en) Solid electrolytic capacitor and its manufacture
JPH0260208B2 (en)
KR970000691Y1 (en) Tantalium capacitor
JP2964628B2 (en) Metallized film for capacitor and capacitor provided with the same
JPH04291909A (en) Manufacture of solid electrolytic capacitor
JPH08153650A (en) Manufacture of solid-state electrolytic capacitor
KR200211021Y1 (en) Porous Tantalum Pellets of Tantalum Solid Electrolytic Capacitors
JPH03231415A (en) Solid electrolytic capacitor
JPH04188815A (en) Solid electrolytic capacitor