JPH0368123A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0368123A
JPH0368123A JP20423489A JP20423489A JPH0368123A JP H0368123 A JPH0368123 A JP H0368123A JP 20423489 A JP20423489 A JP 20423489A JP 20423489 A JP20423489 A JP 20423489A JP H0368123 A JPH0368123 A JP H0368123A
Authority
JP
Japan
Prior art keywords
washer
lead
anode lead
capacitor element
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20423489A
Other languages
Japanese (ja)
Inventor
Shozo Hara
省三 原
Yasuyo Nishijima
西嶋 泰世
Noriaki Suzuki
紀明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP20423489A priority Critical patent/JPH0368123A/en
Publication of JPH0368123A publication Critical patent/JPH0368123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To firmly protect an anode lead connecting part in a series of production processes by a method wherein a thermo-plastic high resistant resin made- washer is heated and fused so as to tightly adhere to the lead-through part of the anode lead. CONSTITUTION:A washer 5 comprising a thermo-plastic high thermal resistant film or sheet is cut in the size corresponding to a capacitor element 1 and then an anode lead 2 in which the washer 5 is inserted is welded into a suitable hoop member 6. When carried to the next process as it is fixed to the hoop member 6, the washer 5 is positioned as it is applied to the leading-out part of the lead 2. Next, after finishing the first formation process, the washer 5 is heated and fused further performing the second formation process to form an oxide film. Through these procedures, the washer 5 is fused and tightly adheres to the lead-through part of the lead 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解コンデンサの製造方法に関し、さら
に詳しく言えば、その陽極リードの保護手段に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more specifically, to a means for protecting an anode lead thereof.

〔従来の技術〕[Conventional technology]

第2図(、)には固体電解コンデンサの中核をなす典型
的な従来例としてのコンデンサ素子1が示されている。
FIG. 2(,) shows a capacitor element 1 as a typical conventional example which forms the core of a solid electrolytic capacitor.

すなわち、このコンデンサ素子1は、例えばTaやNb
などの弁作用を有する金属粉末の焼結体からなり、その
一端部には陽極リード2が植設されている。陽極リード
2は焼結前にその一端が埋設されるか、もしくは焼結後
に例えば溶接により取付けられる。コンデンサ素子1の
表面には電解酸化により酸化皮膜が形成され、次いでそ
の上に半導体電解質(固体電解質)が生成される0例え
ば硝酸マンガンの含浸・熱分解を複数回繰り返すことに
より、半導体電解質としてのMnO,層が形成されるが
、その際、MnO,が陽極リード2に這い上がるという
現象が生ずる。
That is, this capacitor element 1 is made of, for example, Ta or Nb.
It is made of a sintered body of metal powder having a valve action, and an anode lead 2 is implanted at one end thereof. One end of the anode lead 2 is buried before sintering, or it is attached after sintering, for example by welding. An oxide film is formed on the surface of the capacitor element 1 by electrolytic oxidation, and then a semiconductor electrolyte (solid electrolyte) is formed on the surface. Although a MnO layer is formed, a phenomenon occurs in which MnO creeps up onto the anode lead 2.

これを防止するため、従来では第2図(b)に示されて
いるように陽極リード2の導出部に例えば弗素樹脂板3
を被せたり、同図(c)に示されているように陽極リー
ド2の導出部に例えばシリコン系樹脂4を塗布するよう
にしている。
In order to prevent this, conventionally, as shown in FIG.
For example, a silicon resin 4 is applied to the lead-out portion of the anode lead 2 as shown in FIG. 2(c).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第2図(b)に示す方法では、陽極リー
ド2との嵌合が緩い場合には樹脂板3が浮き上がり、M
nO,の這い上がり防止効果がないばかりか、陽極リー
ド2に外部リード線を溶接する場合に不具合を生ずる。
However, in the method shown in FIG. 2(b), if the fitting with the anode lead 2 is loose, the resin plate 3 will rise and the M
Not only is there no effect of preventing nO from creeping up, but it also causes problems when welding the external lead wire to the anode lead 2.

すなわち、焼結体と陽極リードとの接続部は何ら保護さ
れないため、陽極リード2に外部リード線を溶接する際
の機械的ストレスもしくは外装樹脂の熱収縮ストレスな
どの影響をうけやすく、特性劣化特に漏れ電流の増加に
つながる。
In other words, since the connection between the sintered body and the anode lead is not protected in any way, it is easily affected by mechanical stress when welding the external lead wire to the anode lead 2 or thermal shrinkage stress of the exterior resin, resulting in characteristic deterioration, especially This leads to an increase in leakage current.

他方、同図(c)に示されている樹脂4の塗布による場
合には、焼結体と陽極リードとの接続部はそれによって
保護されるが、樹脂の滴下位置あるいは滴下量などの作
業性に難がある。
On the other hand, in the case of applying resin 4 as shown in FIG. There is a problem.

この発明は上記した従来の欠点を解決するためになされ
たもので、その目的は、生産性を損なうことなくコンデ
ンサ素子と陽極リードの接続部を効果的に保護し得るよ
うにした固体電解コンデンサの製造方法を提供すること
にある。
This invention was made to solve the above-mentioned conventional drawbacks, and the purpose is to provide a solid electrolytic capacitor that can effectively protect the connection between the capacitor element and the anode lead without impairing productivity. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明においては、Ta 
、 Nbなどの弁作用を有する金属粉末の焼結体からな
り、その−・端部に陽極リードが植設されたコンデンサ
素子の陽極リード導出部に、熱可塑性高耐熱樹脂からな
るワッシャーを挿通し、コンデンサ素子の表面に電解酸
化にて酸化皮膜を形成する化成工程の途中で同ワッシャ
ーを加熱溶融させて陽極リード導出部に密着させるよう
にしている。
In order to achieve the above object, in this invention, Ta
A washer made of a thermoplastic highly heat-resistant resin is inserted into the anode lead lead-out part of a capacitor element, which is made of a sintered body of metal powder having a valve action such as Nb, and has an anode lead implanted at its end. During the chemical conversion process in which an oxide film is formed on the surface of the capacitor element by electrolytic oxidation, the washer is heated and melted to adhere to the anode lead lead-out portion.

すなわち、この発明は第1化或(予備化成)後、ワッシ
ャを加熱溶融し、引き続き第2化成(本化酸)を行って
酸化皮膜を形成することに特徴を有している。
That is, the present invention is characterized in that after the first formation (preliminary chemical formation), the washer is heated and melted, and then the second formation (main acid formation) is performed to form an oxide film.

ワッシャーのうち、比較的に融点の高いワッシャーを加
熱溶融するにあたっては、コンデンサ素子が例えばTa
粉末で形成されている場合、常圧で高温に保持するとそ
の金属表面が酸化し、遂には燃焼する危険があるが、予
め金属表面に電解酸化によって酸化皮膜が形成されたコ
ンデンサ素子は高温に耐えることができる。
When heating and melting a washer with a relatively high melting point among washers, the capacitor element is made of Ta, for example.
If the capacitor element is made of powder and is held at high temperatures under normal pressure, the metal surface will oxidize and there is a risk of combustion, but capacitor elements with an oxide film formed on the metal surface through electrolytic oxidation can withstand high temperatures. be able to.

使用する熱可塑性高耐熱樹脂としては弗素系樹脂、例え
ば PFA(4−弗化エチレンとパーフロロアルコキシエチ
レンとの共重合体;融点310℃)、FEP(4−弗化
エチレンと6弗化プロピレンとの共重合体;融点211
1(1℃)、E T F E (4−弗化エチレンとエ
チレンとの共重合体;融点260℃)、 PVDE(ポリビニリデンフルオライド;融点170℃
)。
The thermoplastic highly heat-resistant resins used include fluorine-based resins, such as PFA (a copolymer of 4-fluoroethylene and perfluoroalkoxyethylene; melting point 310°C), FEP (a copolymer of 4-fluoroethylene and hexafluoropropylene), copolymer; melting point 211
1 (1°C), ETFE (copolymer of 4-fluorinated ethylene and ethylene; melting point 260°C), PVDE (polyvinylidene fluoride; melting point 170°C)
).

PCTFE(ポリクロロトリフルオロエチレン;融点2
10℃) などが好ましいが、その他の樹脂としては例えばpps
(ポリフェニレンサルファイド;融点285℃)PEE
K (ポリエーテルエーテルケトン;融点340℃)、
PE5(ポリエーテルスルホオン;非晶質融点なし)、
TPI(熱可塑ポリイミド;融点382℃)、また、弗
素樹脂(PTFE)と弗素系共重合体とのラミネート、
弗素樹脂(PTFE)とPEEKとのラミネート、弗素
樹脂(PTFE)とPES、PPSとのラミネートなど
が例示される。
PCTFE (polychlorotrifluoroethylene; melting point 2
10℃) is preferred, but other resins include, for example, pps
(Polyphenylene sulfide; melting point 285°C) PEE
K (polyetheretherketone; melting point 340°C),
PE5 (polyether sulfone; amorphous without melting point),
TPI (thermoplastic polyimide; melting point 382°C), laminate of fluororesin (PTFE) and fluorine copolymer,
Examples include a laminate of fluororesin (PTFE) and PEEK, and a laminate of fluororesin (PTFE) and PES or PPS.

ここで、第工図を参照してこの発明による固体電解コン
デンサの製造方法をより具体的に説明する。まず、同図
(a)に示されているように、熱可塑性高耐熱樹脂のフ
ィルムもしくはシートからなるワッシャー5をコンデン
サ素子1に見合った大きさにカットし、これを陽極リー
ド2に挿通したのち、同陽極リード2を適当なフープ材
6に溶接する。このフープ材6に取付けられた状態で次
工程に搬送される際、ワッシJ@−5は図示しないガイ
ド部材にて同図(b)に示されているように、陽極リー
ド2の導出部に当てがわれるように位置決めされる5次
に、第1化成を行ったのち、ワッシャー5を加熱溶融し
、さらに第2化成を行って酸化皮膜を形成する。これに
より、ワッシャー5は同図(c)に示されているように
溶融して陽極り−ド2の導出部に密着する。参照符号5
aはその密着したものを示している。
Here, the method for manufacturing a solid electrolytic capacitor according to the present invention will be explained in more detail with reference to the drawings. First, as shown in Figure (a), a washer 5 made of a film or sheet of thermoplastic highly heat-resistant resin is cut into a size suitable for the capacitor element 1, and then inserted into the anode lead 2. , the anode lead 2 is welded to a suitable hoop material 6. When the washer J@-5 is transported to the next process while attached to the hoop material 6, the washer J@-5 is attached to the lead-out part of the anode lead 2 by a guide member (not shown) as shown in FIG. Next, after performing the first chemical conversion, the washer 5 is heated and melted, and then the second chemical conversion is performed to form an oxide film. As a result, the washer 5 melts and comes into close contact with the lead-out portion of the anode electrode 2, as shown in FIG. 2(c). Reference number 5
A indicates the one in close contact.

〔作   用〕[For production]

上記の加熱溶融は一連の流れ工程において行うことがで
きるため、生産能力を下げることなく、陽極リード接続
部を強固に保護することができる。
Since the above heating and melting can be performed in a series of flow steps, the anode lead connection portion can be strongly protected without reducing production capacity.

また、比較的に融点の高いワッシャーを加熱溶融する場
合においても、コンデンサ素子の表面には電解酸化によ
って酸化皮膜が形成されているため、燃焼してしまうよ
うな危険性は殆どない。
Further, even when a washer having a relatively high melting point is heated and melted, there is almost no risk of combustion because an oxide film is formed on the surface of the capacitor element by electrolytic oxidation.

(実施例1) 外形寸法0.94 X L、!J5 X L、0瓢のタ
ンタルコンデンサ素子の陽極リードに、弗素系フィルム
・PFArネオフロン」(商品名;ダイキン工業■製)
からなる厚さ0.25mm1のワッシャーを挿通し、第
工化成後同ワッシャーを加熱溶融し、さらに第2化成を
行って電解酸化によりコンデンサ素子の表面に酸化皮膜
を施し、MnO□層、カーボン層、銀層を順次形成し、
外部端子を接続したのち、外装樹脂(エポキシ)で被覆
し、定格電圧4V、静電容量10μFの固体電解コンデ
ンサを製作した。
(Example 1) External dimensions: 0.94XL! For the anode lead of the tantalum capacitor element of J5 XL, 0 Gourd, use fluorine-based film PFAr Neoflon (product name: manufactured by Daikin Industries, Ltd.)
A washer with a thickness of 0.25 mm is inserted, and after the first chemical formation, the washer is heated and melted, and a second chemical formation is performed to apply an oxide film to the surface of the capacitor element by electrolytic oxidation, and to form an MnO□ layer and a carbon layer. , sequentially forming silver layers,
After connecting external terminals, it was covered with an exterior resin (epoxy) to produce a solid electrolytic capacitor with a rated voltage of 4 V and a capacitance of 10 μF.

(実施例2) 実施例1と同じコンデンサ素子の陽極リードに、ポリケ
トン系フィルム・PEEK rステイバーに200J(
商品名:アイ・シー・アイジャパン■製)からなる厚さ
0.1mmのワッシャーを挿通し、次いで電解酸化を行
ってコンデンサ素子の表面に酸化皮膜を施した(第1化
威)。しかるのち、同ワッシャーを加熱溶融し、さらに
電解酸化を行い酸化皮膜を形成した(第2化或)。そし
て、上記実施例1と同じく、MnO□層、カーボン層、
銀層を順次形成し、外部端子を接続したのち、外装樹脂
(エポキシ)で被覆し、定格電圧4V、静電容量10μ
Fの固体電解コンデンサを製作した。
(Example 2) The anode lead of the same capacitor element as in Example 1 was coated with 200 J (
A washer with a thickness of 0.1 mm (trade name: IC Japan ■) was inserted, and then electrolytic oxidation was performed to form an oxide film on the surface of the capacitor element (Daiichi Kawei). Thereafter, the washer was heated and melted, and electrolytically oxidized to form an oxide film (second conversion). As in Example 1 above, the MnO□ layer, the carbon layer,
After sequentially forming a silver layer and connecting external terminals, it is covered with exterior resin (epoxy), and the rated voltage is 4V and the capacitance is 10μ.
A F solid electrolytic capacitor was manufactured.

(実施例3) 実施例上と同じコンデンサ素子の陽極リードに、厚み0
.1mの弗素樹脂(PTFE)シートと同じく厚み0.
1−の弗素系共重合体樹脂フィルムPFA rネオフロ
ン」(商品名;ダイキン工業■製)とをラミネートして
なる厚み0.2mのワッシャーを挿通し、実施例1と同
じく電解酸化による酸化皮膜形成途中で加熱して弗素系
共重合体樹脂フィルムを溶融させた。次いで、電解酸化
によりコンデンサ素子の表面に酸化皮膜を施しく第2化
成)、 MnOJm、カーボン層、銀層を順次形威し、
外部端子を接続したのち、外装樹脂(エポキシ)で被覆
し、定格電圧4V。
(Example 3) The anode lead of the same capacitor element as in the example above has a thickness of 0.
.. Same as the 1m fluororesin (PTFE) sheet, the thickness is 0.
A washer with a thickness of 0.2 m made by laminating the fluorine-based copolymer resin film "PFAr Neoflon" (trade name; manufactured by Daikin Industries, Ltd.) of 1-1 was inserted, and an oxide film was formed by electrolytic oxidation as in Example 1. The fluorine-based copolymer resin film was melted by heating in the middle. Next, an oxide film is applied to the surface of the capacitor element by electrolytic oxidation (second chemical formation), then a MnOJm layer, a carbon layer, and a silver layer are sequentially formed.
After connecting the external terminals, cover with exterior resin (epoxy) and have a rated voltage of 4V.

静電容量lOμFの固体電解コンデンサを製作した。A solid electrolytic capacitor with a capacitance of 10 μF was manufactured.

〔比較例1〕 実施例1と同じコンデンサ素子の陽極リードに。[Comparative example 1] For the anode lead of the same capacitor element as in Example 1.

TFE (テトラフロロエチレン)からなる厚さ0.2
mmのワッシャーを挿通し、電解酸化を行ってその表面
に酸化皮膜を施し、次いでMnO,層、カーボン層、銀
層を順次形成し、外部端子を接続したのち、外装樹脂(
エポキシ)で被覆し、定格電圧4V、静電容量10μF
の固体電解コンデンサを製作した。
Made of TFE (tetrafluoroethylene), thickness 0.2
A washer of mm was inserted, electrolytic oxidation was performed to form an oxide film on the surface, then an MnO layer, a carbon layer, and a silver layer were sequentially formed. After connecting external terminals, the exterior resin (
coated with epoxy), rated voltage 4V, capacitance 10μF
A solid electrolytic capacitor was manufactured.

(実施例4) 実施例1と同じコンデンサ素子の陽極リードに、ポリイ
ミド系フィルムrNtJ・TPIJ (商品名;三井東
圧■製)からなる厚さ0.1+m■のワッシャーを挿通
し、実施例1と同じく電解酸化によりコンデンサ素子の
表面に酸化皮膜を形成した(第1化或)。次いで、ワッ
シャーを加熱溶融し、さらに電解酸化を行った(第2化
或)、シかるのち、 MnO2層、カーボン層、銀層を
順次形威し、外部端子を接続したのち、外装樹脂(エポ
キシ)で被覆し、定格電圧16V、静電容量3.3μF
の固体電解コンデンサを製作した。
(Example 4) A washer with a thickness of 0.1+m made of polyimide film rNtJ/TPIJ (trade name; manufactured by Mitsui Toatsu) was inserted into the anode lead of the same capacitor element as in Example 1. Similarly, an oxide film was formed on the surface of the capacitor element by electrolytic oxidation (first formation). Next, the washer was heated and melted, and electrolytically oxidized (secondary oxidation). After that, two MnO layers, a carbon layer, and a silver layer were sequentially formed, external terminals were connected, and an exterior resin (epoxy) was applied. ), rated voltage 16V, capacitance 3.3μF
A solid electrolytic capacitor was manufactured.

〔比較例2〕 従来例1と同様にして定格電圧16■、静電容量3.3
μFの固体電解コンデンサを製作した。
[Comparative example 2] Same as conventional example 1, rated voltage 16■, capacitance 3.3
A μF solid electrolytic capacitor was manufactured.

上記各実施例と比較例をそれぞれ10,000個用意し
、その静電容量Cap (μF)、損失角の正接tan
δ、漏れ電流LC(μA)、製品としての特性不良率(
%)、MnO2這い上がり率())を測定した結果(平
均値)を法衣に示す。
10,000 pieces of each of the above examples and comparative examples were prepared, and their capacitance Cap (μF) and tangent of loss angle tan
δ, leakage current LC (μA), product characteristic defect rate (
%) and MnO2 creep-up rate ()), the results (average values) are shown on the vestibule.

(表) この表から明らかなように、各実施例は特性不良率が従
来例の1/2〜1/3と改善されている。また、MnO
□這い上がり率は各実施例ともに0%を記録している。
(Table) As is clear from this table, the characteristic defect rate of each example is improved to 1/2 to 1/3 of that of the conventional example. Also, MnO
□The climbing rate was recorded as 0% in each example.

さらに、漏れ電流の値からして陽極外部端子溶接時のス
トレス、外装樹脂のストレスに対して顕著な緩和作用が
認められる。
Furthermore, judging from the value of leakage current, a remarkable effect of alleviating the stress during welding of the anode external terminal and the stress of the exterior resin is recognized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、コンデンサ素
子の陽極リード導出部に熱可塑性高耐熱樹脂からなるワ
ッシャーを挿通して、同ワッシャーを加熱溶融させて陽
極リード導出部に密着させるようにしたことにより、一
連の流れ工程において、生産能力を下げることなく陽極
リード接続部を強固に保護することができる。また、比
較的に融点の高いワッシャーを加熱溶融する場合におい
ても、コンデンサ素子の表面には電解酸化によって酸化
皮膜が形成されているため、燃焼してしまうような危険
性は殆どない。
As explained above, according to the present invention, a washer made of a thermoplastic highly heat-resistant resin is inserted into the anode lead lead-out part of a capacitor element, and the washer is heated and melted so as to be brought into close contact with the anode lead lead-out part. As a result, the anode lead connection portion can be strongly protected during a series of flow steps without reducing production capacity. Further, even when a washer having a relatively high melting point is heated and melted, there is almost no risk of combustion because an oxide film is formed on the surface of the capacitor element by electrolytic oxidation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(Q)はこの発明による固体電解コンデ
ンサの製造過程を示した説明図、第2図(a)〜(c)
はそれぞれ従来例を示した説明図である。 図中、1はコンデンサ素子、2は陽極リード、5は熱可
塑性高耐熱樹脂からなるワッシャー、6はフープ材であ
る。
FIGS. 1(a) to (Q) are explanatory diagrams showing the manufacturing process of a solid electrolytic capacitor according to the present invention, and FIGS. 2(a) to (c)
are explanatory diagrams showing conventional examples, respectively. In the figure, 1 is a capacitor element, 2 is an anode lead, 5 is a washer made of a thermoplastic highly heat-resistant resin, and 6 is a hoop material.

Claims (1)

【特許請求の範囲】[Claims] (1) Ta、Nbなどの弁作用を有する金属粉末の焼
結体からなり、その一端部に陽極リードが植設されたコ
ンデンサ素子の上記陽極リード導出部に、熱可塑性高耐
熱樹脂からなるワッシヤーを挿通し、上記コンデンサ素
子の表面に電解酸化にて酸化皮膜を形成する化成工程の
途中で同ワッシヤーを加熱溶融させて上記陽極リード導
出部に密着させることを特徴とする固体電解コンデンサ
の製造方法。
(1) A washer made of a thermoplastic highly heat-resistant resin is attached to the anode lead lead-out part of the capacitor element, which is made of a sintered body of metal powder having a valve action such as Ta or Nb, and has an anode lead implanted at one end. A method for manufacturing a solid electrolytic capacitor, characterized in that the washer is heated and melted during a chemical conversion process in which an oxide film is formed on the surface of the capacitor element by electrolytic oxidation, and the washer is brought into close contact with the anode lead lead-out portion. .
JP20423489A 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor Pending JPH0368123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20423489A JPH0368123A (en) 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20423489A JPH0368123A (en) 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0368123A true JPH0368123A (en) 1991-03-25

Family

ID=16487069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20423489A Pending JPH0368123A (en) 1989-08-07 1989-08-07 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0368123A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981862A (en) * 1972-11-17 1974-08-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981862A (en) * 1972-11-17 1974-08-07

Similar Documents

Publication Publication Date Title
US5654869A (en) Chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US7433175B2 (en) Solid electrolytic capacitor, distributed constant type noise filter, and method of producing the same
US20130095299A1 (en) Sintered article and sintering method, particularly for low esr capacitor anodes
EP3731298B1 (en) Case member with terminals, and method for manufacturing same
WO2022259931A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JPH0368123A (en) Manufacture of solid electrolytic capacitor
JP2711564B2 (en) Method for manufacturing solid electrolytic capacitor
JP6273461B2 (en) Film capacitor and manufacturing method thereof
JPH0624178B2 (en) Method for manufacturing solid electrolytic capacitor
US6839223B2 (en) Capacitor
JPH0760778B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0368124A (en) Manufacture of solid electrolytic capacitor
JP4706158B2 (en) Solid electrolytic capacitor
JP2001068381A (en) Solid state electrolytic capacitor element
JP2000223375A (en) Electric double layer capacitor and manufacture thereof
JP3116960B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03292715A (en) Solid electrolytic capacitor
JP2953478B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US4430688A (en) Small heat resistant film condenser
JPH04264710A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH03215924A (en) Manufacture of solid electrolytic capacitor
JP2697373B2 (en) Method for manufacturing solid electrolytic capacitor
KR0163860B1 (en) Carbon and argentum pasting method in tantalum electrolytic condenser
JPH08153650A (en) Manufacture of solid-state electrolytic capacitor
JPS6167216A (en) Solid electrolytic condenser