JPH0493012A - Solid-state electrolytic capacitor and its manufacture - Google Patents

Solid-state electrolytic capacitor and its manufacture

Info

Publication number
JPH0493012A
JPH0493012A JP20988990A JP20988990A JPH0493012A JP H0493012 A JPH0493012 A JP H0493012A JP 20988990 A JP20988990 A JP 20988990A JP 20988990 A JP20988990 A JP 20988990A JP H0493012 A JPH0493012 A JP H0493012A
Authority
JP
Japan
Prior art keywords
anode lead
press
anode
insulating resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20988990A
Other languages
Japanese (ja)
Other versions
JP3036017B2 (en
Inventor
Takayuki Endo
隆之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2209889A priority Critical patent/JP3036017B2/en
Publication of JPH0493012A publication Critical patent/JPH0493012A/en
Application granted granted Critical
Publication of JP3036017B2 publication Critical patent/JP3036017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To relieve failures in electric characteristics such as capacitance shortage, increases in leakage current, and increases in impedance by press- molding a metal powder having valve action with anode leads planted and by providing a water-repellent insulating resin layer on the periphery of or around projections or recesses of anode leads in the cross-sectional direction. CONSTITUTION:After tantalum powder is press-molded and implanted with anode leads 1, it is sintered in vacuum and welded to a supporter 5 to provide a press molding 2. Next, a part of anode leads are rolled by a clamp 6 made of a supernet or the like so that projections dog-legged away from the center line 1c of the anode lead 1 may face back to back across the center line, thereby providing the bump 1a of an anode lead. The top of the bump 1a of an anode lead and its surrounding is coated annularly with an insulating resin such as polyterafluoroethylene by means of a dispenser and the like: this resin is dried and hardened to form a dielectric film layer. Dipping the workpiece in a solution 7 manganese nitrate makes the insulating resin 4 repel the solution 7. Finally, after a solid-state electrolyte layer is formed by pyrolysis, a graphite layer and a silver paste layer are formed successively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解コンデンサおよびその製造方法に関し
、特にコンデンサ素子構造の改良およびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly to an improvement in the structure of a capacitor element and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に固体電解コンデンサの素子は第9図(a)に示す
如くタンタル、ニオブ、アルミニウムなどの弁作用を有
する金属粉末に、前述の金属粉末と同種の陽極リード6
】の一部を埋設してプレス加工し、円柱状、角柱状等の
プレス成形体62を形成した後、真空焼結して多孔質構
造を有する焼結体63を形成する。次に第9図(b)に
示す如く焼結体63の陽極リード61を導電性金属から
なる支持材5に溶接等の工法で接続した後、電解液に浸
漬し、電気化学的工法で、焼結体63の周囲に誘電体皮
膜層を形成する。次に、陽極リード6]のプレス成形体
62に近接した部分61bの周囲にポリテトラフルオロ
エチレン等の耐熱性、耐薬品性、漬水性を有する絶縁樹
脂64を塗布し、乾燥硬化させる。次に第10図に示す
如く、硝酸マンガン水溶液7に前述の誘電体皮膜層を形
成した焼結体63を前述の絶縁樹脂64を塗布した部位
まで浸漬し、焼結体内部まで含浸させな後200〜40
0°Cの高温雰囲気中での熱分解を繰り返し、焼結体6
3の誘電体皮膜層の上に、二酸化マンガンからなる固体
電解質層を形成する。次に、その上に、グラファイト及
び銀ペーストなとの陰極引き出し層8を設は第9図(b
)に示すような固体電解コンデンサ素子6つを形成して
いた。
Generally, the element of a solid electrolytic capacitor is made of metal powder having a valve action such as tantalum, niobium, or aluminum, and an anode lead 6 of the same type as the metal powder described above, as shown in FIG. 9(a).
] is partially buried and pressed to form a press molded body 62 having a cylindrical, prismatic, etc. shape, and then vacuum sintered to form a sintered body 63 having a porous structure. Next, as shown in FIG. 9(b), the anode lead 61 of the sintered body 63 is connected to the support material 5 made of conductive metal by a construction method such as welding, and then immersed in an electrolytic solution, and by an electrochemical construction method. A dielectric film layer is formed around the sintered body 63. Next, an insulating resin 64 having heat resistance, chemical resistance, and water soakability, such as polytetrafluoroethylene, is applied around the portion 61b of the anode lead 6 near the press-molded body 62, and is dried and hardened. Next, as shown in FIG. 10, the sintered body 63 on which the dielectric film layer has been formed is immersed in the manganese nitrate aqueous solution 7 up to the area where the insulating resin 64 is applied, and the inside of the sintered body is not impregnated. 200-40
Repeated thermal decomposition in a high temperature atmosphere of 0°C resulted in a sintered body 6.
A solid electrolyte layer made of manganese dioxide is formed on the dielectric film layer No. 3. Next, a cathode extraction layer 8 made of graphite and silver paste is placed on top of it as shown in FIG. 9(b).
), six solid electrolytic capacitor elements were formed.

〔発明が解決しようとする課題〕 しかし、上述した従来の焼結体には次の欠点がある。[Problem to be solved by the invention] However, the conventional sintered body described above has the following drawbacks.

(1)平滑な曲面を有する陽極リード61の表面に絶縁
樹脂64を塗布する為、絶縁樹脂64の自重により第1
1図に示す如く絶縁樹脂64がたれ下り、更に、絶縁性
樹脂64のなれ下りが著しい場合には、プレス成形体6
2の表面に達して、プレス成形体内部に浸み込み、二酸
化マンガン層の被覆率低下、誘電体皮膜層修復時の電解
液浸透性の劣化等により、容量不足、漏れ電流の増大、
インピーダンスの増大等電気的特性を悪化する原因とな
る。
(1) Since the insulating resin 64 is applied to the surface of the anode lead 61 which has a smooth curved surface, the self-weight of the insulating resin 64 causes the first
As shown in FIG.
2 and penetrates into the press-formed body, resulting in a decrease in the coverage of the manganese dioxide layer and a deterioration in electrolyte permeability during repair of the dielectric film layer, resulting in insufficient capacity, increased leakage current, etc.
This causes deterioration of electrical characteristics such as an increase in impedance.

り2)一方、コンデンサの小型大容量化に伴い、コンデ
ンサ素子の陽極リードと外部引き出し陽極端子との接続
点はプレス成形体62に限りなく近すいており、従って
陽極リード61上の限られた狭い部分に絶縁樹脂64を
正確に、且つ適量塗布する必要性が生している。
2) On the other hand, as capacitors become smaller and larger in capacity, the connection point between the anode lead of the capacitor element and the externally drawn out anode terminal is extremely close to the press molded body 62, and therefore the limited area on the anode lead 61 is There is a need to accurately and appropriately apply the insulating resin 64 to narrow areas.

本発明の第1の目的は、半導体層形成前に陽極リードの
所定位置に形成される絶縁樹脂がたれ下ることがなくな
り、プレス成形体内に絶縁樹脂が入ることがなく、二酸
化マンガン層の被覆率低下、誘電体皮膜層修復不良がな
くなり、容量不足、漏れ電流増大、インピーダンス大等
の電気的特性不良を減少さぜることができる固体電解コ
ンデンサ及びその製造方法を提供することにある。
The first object of the present invention is to prevent the insulating resin formed at a predetermined position of the anode lead from sagging before forming the semiconductor layer, to prevent the insulating resin from entering the press molded body, and to improve the coverage of the manganese dioxide layer. It is an object of the present invention to provide a solid electrolytic capacitor and a method for manufacturing the same, which can eliminate defects in dielectric film layer repair and decrease in electrical characteristics such as insufficient capacity, increased leakage current, and large impedance.

また、本発明の第2の目的は、絶縁樹脂を正確、かつ適
量塗布することができ、コンデンサ素子の陽極リードと
外部引き出し陽極端子との接続点がプレス成形体に近づ
けることが可能となり、その結果より高密度化が達成で
きる固体電解コンデンサ及びその製造方法を提供するこ
とにある。
A second object of the present invention is to be able to apply the insulating resin accurately and in an appropriate amount, and to bring the connection point between the anode lead of the capacitor element and the externally drawn anode terminal close to the press-formed body. The object of the present invention is to provide a solid electrolytic capacitor that can achieve higher density and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1の発明の固体電解コンデンサは、弁作用を
有する金属粉末に陽極リードを植立させてプレス成形し
、真空焼結した陽極体の陽極リードに、陽極リードの断
面方向に凸部又は凹部を設け、更に、上記陽極リード上
の断面方向凸部又は凹部の周上およびその周囲又は凹部
内およびその周囲に、ボリテI〜ラフルオロエチレン等
の溶水性絶縁樹脂層を設けたことを特徴として構成され
る。
In the solid electrolytic capacitor of the first aspect of the present invention, an anode lead is embedded in a metal powder having a valve action, press-formed, and vacuum sintered. Or a recess is provided, and a water-soluble insulating resin layer such as Volite I to Lafluoroethylene is further provided on and around the cross-sectional protrusion or recess on the anode lead or in and around the recess. Constructed as a feature.

また、本発明の第2の発明の固体電解コンデンサの製造
方法は、弁作用を有する金属粉末に陽極リードの一部を
埋設・プレス成形し、プレス成形体を得る工程と、その
プレス成形体を真空焼結し焼結体を得る工程と、その焼
結体の陽極リードの前記プレス成形体から所定の距離離
れた部分に陽極リードの断面方向に凸部又は凹部を形成
する工程と、前記凸部上およびその周囲又は凹部内およ
びその周囲にポリテトラフルオロエチレン等の澄水性絶
縁樹脂を塗布・硬化し、環状の絶縁樹脂層を形成する工
程と、誘電体皮膜層を形成する工程と、固体電解質層を
形成する工程とを含むことを特徴として構成される。
In addition, the method for manufacturing a solid electrolytic capacitor according to the second aspect of the present invention includes a step of embedding and press-molding a part of an anode lead in a metal powder having a valve action to obtain a press-molded body, and a step of obtaining a press-molded body. a step of vacuum sintering to obtain a sintered body; a step of forming a convex portion or a concave portion in a cross-sectional direction of the anode lead at a portion of the anode lead of the sintered body that is a predetermined distance away from the press-formed body; A step of coating and curing a clear water insulating resin such as polytetrafluoroethylene on and around the part or in and around the recess to form a ring-shaped insulating resin layer, a step of forming a dielectric film layer, and a step of forming a solid insulating resin layer. and forming an electrolyte layer.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は、本発明の第1の実施例の固体
電解コンデンサ素子の構造を示す側面断面図、斜視図及
び陽極リード凸部の拡大図、第2図(a>、(b)、(
d)、(e)は本発明の固体電解コンデンサ素子の製造
工程を順次説明した側面図、第2図(c)は陽極リード
凸部の断面図である。
1(a) to (c) are a side sectional view and a perspective view showing the structure of a solid electrolytic capacitor element according to a first embodiment of the present invention, an enlarged view of an anode lead convex portion, and FIG. ,(b),(
d) and (e) are side views sequentially explaining the manufacturing process of the solid electrolytic capacitor element of the present invention, and FIG. 2(c) is a sectional view of the anode lead convex portion.

図中参照符号]aは、弁作用を有する金属粉末からなる
プレス成形体2と同種の金属よりなる陽極リード1七に
、上記プレス成形体に近接した部分1bで、陽極リード
1の中心線に平行て、目−つ対面する2方向にくの字状
の突出を設けた凸部てあり、4は上記陽極リード1の凸
部1a上に、充填された耐熱性・耐薬品性及び漬水性を
有する絶縁樹脂である。
[Reference numeral in the figure]a is a portion 1b that is close to the press molded body 2 and the anode lead 17 made of the same kind of metal as the press molded body 2 made of metal powder having a valve action, and is aligned with the center line of the anode lead 1. There are convex portions with dogleg-shaped protrusions in two directions facing each other in parallel, and 4 is a heat-resistant, chemical-resistant, and water-resistant material filled on the convex portion 1a of the anode lead 1. It is an insulating resin with

次に本発明の実施例で用いた固体電解コンデンサ素子を
従来例で用いた固体電解コンテンサ素子と比較して詳細
に説明する。
Next, the solid electrolytic capacitor element used in the embodiment of the present invention will be explained in detail in comparison with the solid electrolytic capacitor element used in the conventional example.

従来例の同体電解コンデンサ素子として第9図(a)、
(b)に示し概略を説明した様にタンタル粉末をプレス
成形して、直径0.4.mmの陽極リード61を埋設部
分の深さ1..5mm、素子の直径を2.0mm全長を
3.0mmの円柱状のプレス成形体62を得な。次に、
このプレス成形体62を真空度10−’torr、温度
1700℃の真空高温炉で真空焼結して、焼結体63を
得た。
FIG. 9(a) shows a conventional homogeneous electrolytic capacitor element.
As shown in (b) and outlined, tantalum powder was press-molded to a diameter of 0.4. The anode lead 61 is buried at a depth of 1. .. Obtain a cylindrical press molded body 62 having a diameter of 5 mm, an element diameter of 2.0 mm, and a total length of 3.0 mm. next,
This press-formed body 62 was vacuum sintered in a vacuum high temperature furnace at a vacuum degree of 10-'torr and a temperature of 1700°C to obtain a sintered body 63.

次に銅、銀、アルミニウム等の導電性を有する金属から
なる支持材5に溶接等の工法で接続した後、硝酸、硫酸
等の水溶液からなる電解液に浸漬し、電気化学的工法に
より、焼結体63の空腔内を含め、タンタルの表面に五
酸化タンタルからなる誘電体皮膜層を形成し、次に、陽
極リード61のプレス成形体62から0.5mrnll
れなプレス成形体近接部分61の周上に、ボリテl〜ラ
フルオロエチレン等の絶縁樹脂64をデイスペンサー等
で幅0.3mm厚さ0.3mm程度に塗布し、乾燥硬化
後、硝酸マンガン水溶液に浸漬し、200〜400℃の
高温雰囲気中での熱分解により二酸化マンガンからなる
固体電解質層を形成し、この二酸化マンガン形成工程を
数回繰り返しな後、その上にグラファイト層、銀ペース
ト層などの陰極引き出し層8を順次形成して固体電解コ
ンデンサ素子6つを形成した。
Next, it is connected to a supporting material 5 made of conductive metal such as copper, silver, or aluminum by a method such as welding, and then immersed in an electrolytic solution made of an aqueous solution such as nitric acid or sulfuric acid, and then sintered by an electrochemical method. A dielectric film layer made of tantalum pentoxide is formed on the surface of the tantalum including the cavity of the body 63, and then 0.5 mrnll is formed from the press molded body 62 of the anode lead 61.
An insulating resin 64 such as Boritel to Lafluoroethylene is applied on the circumference of the press-formed body adjacent portion 61 to a width of 0.3 mm and a thickness of about 0.3 mm using a dispenser, etc. After drying and hardening, a manganese nitrate aqueous solution is applied. A solid electrolyte layer made of manganese dioxide is formed by pyrolysis in a high-temperature atmosphere of 200 to 400 degrees Celsius, and after repeating this manganese dioxide formation process several times, a graphite layer, a silver paste layer, etc. Six solid electrolytic capacitor elements were formed by sequentially forming cathode extraction layers 8.

一方本発明の一実施例による固体電解コンデンサ素子と
して、前述従来例と同一のタンタル粉末をプレス成形し
、陽極リード1を埋設した後、真空焼結し、次に前述従
来例と同一の金属よりなる支持材5に溶接し、第2図(
a>に示すプレス成形体を得る。次に第1図(C)、第
2図(b)。
On the other hand, as a solid electrolytic capacitor element according to an embodiment of the present invention, the same tantalum powder as in the conventional example described above is press-molded, the anode lead 1 is embedded, vacuum sintered, and then the same metal as in the conventional example described above is formed. Welded to the supporting material 5, shown in Fig. 2 (
A press molded product shown in a> is obtained. Next, Fig. 1(C) and Fig. 2(b).

(C)に示す如く陽極リード1のプレス成形体2から0
.5mm離れた部分に、陽極リードの中心線ICから離
れる方向にO,]、mm幅が最大Q、3mmとなるくの
字状の突出が、中心線をはさんで対背する様に、超鋼等
からなるクランプ6で、陽極リード1の一部を圧延し陽
極リードの凸部1aを得た。次に、第2図(d)に示す
如く、陽極リードの凸部]aの上部及びその周囲をデイ
スペンサー等を用いて、絶縁樹脂を環状に塗布し、乾燥
硬化させ、次に、電気化学的方法により、誘電体皮膜層
を形成する。次に、硝酸マンガン水溶液に浸漬すると、
第2図(e)に示す如く絶縁樹脂4が硝酸マンガン水溶
液7を澄水させる。次に、従来例と同様に熱分解を行な
い、二酸化マンガンからなる固体電解質層を形成し、こ
の二酸化マンガン形成工程を数回繰り返した後、グラフ
ァイト層、銀ペースト層を順次形成し、本発明の一実施
例による固体電解コンデンサ素子を得た。
As shown in (C), from the press molded body 2 of the anode lead 1
.. At the part 5 mm away from the center line of the anode lead, there is a dogleg-shaped protrusion with a maximum width of Q, 3 mm in the direction away from the center line IC of the anode lead. A part of the anode lead 1 was rolled using a clamp 6 made of steel or the like to obtain a convex portion 1a of the anode lead. Next, as shown in FIG. 2(d), using a dispenser or the like, an insulating resin is applied in a ring shape to the upper part of the convex part [a] of the anode lead and its surroundings, dried and hardened, and then electrochemical A dielectric film layer is formed using a conventional method. Next, when immersed in a manganese nitrate aqueous solution,
As shown in FIG. 2(e), the insulating resin 4 makes the manganese nitrate aqueous solution 7 clear. Next, thermal decomposition is performed in the same manner as in the conventional example to form a solid electrolyte layer made of manganese dioxide. After repeating this manganese dioxide forming process several times, a graphite layer and a silver paste layer are sequentially formed. A solid electrolytic capacitor element according to one example was obtained.

従来例では絶縁性樹脂の粘度、チキソトロピーの変動等
により、陽極リード上の所定の位置に塗布しても、自重
により、陽極リード−にのたれ下りか発生したのに対し
、本発明では、陽極リード上に凸部を設け、その−上部
に絶縁樹脂を塗布することにより、絶縁樹脂の陽極リー
ドとの体積あたりの接触面積が広くなり、かつ凸部上に
絶縁樹脂が保持され、絶縁樹脂のなれ下りが発生しなく
なる利点があり、被膜率の低下による容量不足の発生を
従来の1/2以下にすることが出来る。
In the conventional example, due to variations in the viscosity and thixotropy of the insulating resin, even if the coating was applied to a predetermined position on the anode lead, it would sag on the anode lead due to its own weight.In contrast, in the present invention, the anode By providing a convex portion on the lead and applying insulating resin to the upper part of the convex portion, the contact area per volume of the insulating resin with the anode lead becomes larger, and the insulating resin is held on the convex portion, thereby increasing the contact area of the insulating resin with the anode lead. It has the advantage that sagging does not occur, and the occurrence of capacity shortage due to a decrease in coating rate can be reduced to less than half that of the conventional method.

第3図は、本発明の他の実施例を示す斜視図であり、絶
縁樹脂を塗布する前の形状を示す、この実施例では前例
と同様に弁作用を有する金属粉末をプレス成形してプレ
ス成形体2を形成した後、=9 ]0 プレス成形体2より導出している陽極リード上に、プレ
ス成形体2に近接した部分11. bで、陽極リードの
中心線]、 1 cに平行で、かつ、対置する2方向に
くの字状の突出を2段連続して設けた陽極リードの凸部
]、1aが得られ、2段に連続した突出部が樹脂との接
触面積を拡げることにより、実施例1と同等以上の効果
が得られる。
FIG. 3 is a perspective view showing another embodiment of the present invention, showing the shape before applying the insulating resin. In this embodiment, like the previous example, metal powder having a valve action is press-molded and pressed. After forming the molded body 2, a portion 11.=9]0 close to the press molded body 2 is placed on the anode lead leading out from the press molded body 2. At b, the center line of the anode lead], 1 a convex part of the anode lead with two successive dogleg-shaped protrusions parallel to c and in two opposing directions], 1a are obtained, and 2 The successive protrusions expand the contact area with the resin, so that an effect equal to or greater than that of Example 1 can be obtained.

第4図は本発明の第3の実施例を説明するための斜視図
である。実施例3では実施例1に於て、陽極リードの凸
部を中心線を挟んで対置した2箇所に設けたのに対し、
断面形状くの字状の突出を陽極リード21の周囲に輪状
に設けた陽極リードの凸部21aに於ても実施例1と同
様な効果が得られるとともに突出が陽極リードを1周す
る為、絶縁樹脂がよりいっそうたれにくくなる。
FIG. 4 is a perspective view for explaining a third embodiment of the present invention. In Example 3, in contrast to Example 1, where the convex portions of the anode lead were provided at two locations opposite to each other across the center line,
The same effect as in Example 1 can be obtained with the protrusion 21a of the anode lead in which a protrusion having a dogleg shape in cross section is provided in a ring shape around the anode lead 21, and since the protrusion goes around the anode lead once, The insulating resin becomes even more difficult to sag.

尚、凸部の形状は本実施例に限るものではなく第2.第
3の実施例を合わせたもの、2段の突出部を陽極リード
の中心線に対して90°回転して交互に設けたもの等の
形状に於ても、同様の効果が得られる。
Note that the shape of the convex portion is not limited to that of this embodiment, but is similar to that of the second embodiment. Similar effects can be obtained with shapes such as a combination of the third embodiment and a shape in which the two-stage protrusions are rotated by 90 degrees with respect to the center line of the anode lead and provided alternately.

更に、凸部の形成工程も、支持材に焼結体を接続した後
に限るものではなく、線材料に於ての加工、又はプレス
成形体形成時、プレス成形体焼結後、誘電体皮膜形成後
等で実施しても同様な効果が得られることは勿論である
Furthermore, the process of forming the convex portions is not limited to after connecting the sintered body to the support material, but can also be performed during processing of the wire material, during formation of the press-formed body, after sintering the press-formed body, or during dielectric film formation. Of course, the same effect can be obtained even if the process is performed later.

第5図(a)、(b)は本発明の第4の実施例の固体電
解コンデンサ素子の構造を示す側面断面図及び斜視図で
あり、第6図(a)〜(d)は第4の実施例の固体電解
コンデンサ素子の製造工程を順次説明した側面図である
FIGS. 5(a) and 5(b) are a side sectional view and a perspective view showing the structure of a solid electrolytic capacitor element according to a fourth embodiment of the present invention, and FIGS. FIG. 3 is a side view sequentially explaining the manufacturing process of the solid electrolytic capacitor element of the example.

図中符号3 ]、 aは弁作用を有する金属粉末からな
るプレス成形体2と同種の金属よりなる陽極リード31
上に、上記プレス成形体に近接した部分3 ]、 bで
陽極リード3]の中心線3]−cに平行で、かつ対面す
る様に2方向からコの字状の凹みを設けた凹部であり、
34は上記陽極リード31の凹部31a内に充填された
耐熱性、耐薬品性及び漬水性を有する絶縁樹脂である。
In the figure, reference numeral 3], a denotes an anode lead 31 made of the same kind of metal as the press molded body 2 made of metal powder having a valve action.
At the top, there is a part 3 near the press-formed body, and at b, a U-shaped recess is provided from two directions parallel to the center line 3]-c of the anode lead 3 and facing each other. can be,
Reference numeral 34 denotes an insulating resin having heat resistance, chemical resistance, and water immersion property, which is filled in the recess 31a of the anode lead 31.

製造工程は、前述の第1の実施例と同様に、タンタル粉
末をプレス成形して、陽極リード31を埋設した後、真
空焼結し、次に前述従来例と同一の金属からなる支持材
5に溶接し、第5図(a)に示すプレス成形体を得る。
The manufacturing process is similar to the first embodiment described above, in which tantalum powder is press-molded and the anode lead 31 is embedded, followed by vacuum sintering, and then the supporting material 5 made of the same metal as in the conventional example described above is formed. The press-formed body shown in FIG. 5(a) is obtained.

次に、第6図(b)に示す如く陽極リード3]のプレス
成形体2から0.5mm離れた部分に陽極リードの中心
線31C方向に幅0.3mm、直径方向の深さ0.1m
mのコの字状の凹みが、中心線31cを挟んで、対面す
る様に超鋼等からなるクランプ36で加圧成形し陽極リ
ードの凹部31aを得た。次に、第6図(C)に示す如
く、陽極リードの凹部31aの内部、及びその周囲をデ
イスペンサー等を用いて絶縁樹脂を環状に塗布し、乾燥
硬化させ、次に電気化学的方法により誘電体皮膜層を形
成する。
Next, as shown in FIG. 6(b), a portion of the anode lead 3 which is 0.5 mm away from the press-formed body 2 has a width of 0.3 mm in the direction of the center line 31C of the anode lead and a depth of 0.1 m in the diametrical direction.
The U-shaped recess 31a of the anode lead was formed under pressure using a clamp 36 made of super steel or the like so that the U-shaped recesses faced each other with the center line 31c interposed therebetween. Next, as shown in FIG. 6(C), an insulating resin is coated in a ring shape inside and around the recess 31a of the anode lead using a dispenser or the like, dried and hardened, and then electrochemically applied. Form a dielectric film layer.

次に硝酸マンガン水溶液に浸漬すると、第6図(d)に
示す如く絶縁樹脂34が硝酸マンガン水溶液を撥水さぜ
る。次に従来例と同様に熱分解を行ない二酸化マンカン
からなる固体電解質層を形成し、この二酸化マンガン形
成工程を数回繰り返した後、前述従来例、第1実施例と
同様にタラファイト層、銀ペースト層を順次形成し、本
発明第4の実施例による固体電解コンデンサ素子を得た
Next, when immersed in a manganese nitrate aqueous solution, the insulating resin 34 repels the manganese nitrate aqueous solution as shown in FIG. 6(d). Next, similar to the conventional example, thermal decomposition is performed to form a solid electrolyte layer made of manganese dioxide, and after repeating this manganese dioxide forming process several times, a taraphite layer, a silver Paste layers were sequentially formed to obtain a solid electrolytic capacitor element according to a fourth embodiment of the present invention.

本実施例では、陽極リード上に四部を設け、その内部に
絶縁樹脂を入れることにより絶縁樹脂の陽極リードとの
体積あたりの接触面積が拡くなり、凹部内に絶縁樹脂が
保持され、かつ凹部の側面部に樹脂が支えられ、絶縁樹
脂のたれ下がりが発生しなくなる利点がある。
In this example, by providing four parts on the anode lead and putting insulating resin inside them, the contact area per volume of the insulating resin with the anode lead is increased, the insulating resin is held in the recessed part, and the recessed part The resin is supported by the side surfaces of the insulating resin, which has the advantage of preventing the insulating resin from sagging.

第7図は本発明の第5の実施例を示す斜視図であり、絶
縁樹脂を塗布する前の形状を示す。この実施例では前例
と同様に弁作用を有する金属粉末をプレス成形してプレ
ス成形体2を形成した後、プレス成形体2より導出して
いる陽極リード上に、プレス成形体2に近接した部分4
1bで、陽極リードの中心線41cに平行で、かつ対面
する様に2方向からコの字状の凹みを設け、更に、陽極
リードの中心線41cと平行する部分に鋸歯状の細かい
凹凸4 ]、 dを設けた陽極リードの凹部41aが得
られ、鋸歯状の細かい凹凸41. dを有することによ
り、実施例4と同等以上の効果が得られる。
FIG. 7 is a perspective view showing a fifth embodiment of the present invention, and shows the shape before application of insulating resin. In this example, similarly to the previous example, a metal powder having a valve action is press-molded to form a press-formed body 2, and then a portion close to the press-formed body 2 is placed on the anode lead led out from the press-formed body 2. 4
1b, U-shaped recesses are provided from two directions parallel to and facing the center line 41c of the anode lead, and fine sawtooth-like unevenness 4 is provided in the portion parallel to the center line 41c of the anode lead. , d of the anode lead is obtained, and fine sawtooth irregularities 41 . By having d, an effect equal to or greater than that of Example 4 can be obtained.

第8図は本発明の第6の実施例の斜視図である゛。実施
例6では実施例4に於て、陽極リードの凹部を中心線を
挟んだ対面した2箇所に設けたのに対し、断面形状コの
字状の凹みを陽極リード51の周囲に輪状に設けた陽極
リードの四部51aが得られ、実施例4と同様な効果が
得られるとともに凹みが陽極リードを1周する為、絶縁
樹脂がよりいっそうたれにくくなる。
FIG. 8 is a perspective view of a sixth embodiment of the present invention. In Embodiment 6, in contrast to Embodiment 4, in which the recesses of the anode lead were provided at two locations facing each other across the center line, a recess with a U-shaped cross section was provided in a ring shape around the anode lead 51. Four parts 51a of the anode lead are obtained, and the same effect as in Example 4 is obtained, and since the recess goes around the anode lead once, the insulating resin becomes even more difficult to sag.

尚、凹みの形状は前述した実施例に限るものではなく、
第5.第6の実施例を合わせたもの、凹み内に格子状の
細かい凹凸等の形状にしても、同様の効果が得られる。
Note that the shape of the recess is not limited to the above-mentioned embodiment.
Fifth. A similar effect can be obtained even if the sixth embodiment is combined, or if the recess is formed into a shape such as a grid-like fine unevenness.

更に凹みの形成工程も、支持材に焼結体を接続した後に
限るものではなく、プレス成形体形成時、プレス成形体
焼結後、誘電体皮膜形成後等で実施しても同様な効果が
得られ、ることは勿論である。
Furthermore, the process of forming the depressions is not limited to after the sintered body is connected to the support material, but can be performed at the time of forming the press-formed body, after sintering the press-formed body, after forming the dielectric film, etc., with the same effect. Of course, it can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明には次の効果がある。 As explained above, the present invention has the following effects.

(1)陽極リード上に塗布される絶縁樹脂は陽極リード
上に形成された凸部上又は凹部内に保持される為、たれ
下ることがなくなり、プレス成形体内に絶縁樹脂が入る
ことがなく二酸化マンガン層の被覆率低下、誘電体皮膜
層修復不良がなくなり、容量不足、漏れ電流増大、イン
ピーダンス大等の電気的特性不良を減少させることが出
来る。
(1) The insulating resin applied on the anode lead is held on the convex part or in the concave part formed on the anode lead, so it does not sag, and the insulating resin does not enter the press molded body and oxidizes. Decreased coverage of the manganese layer and defective recovery of the dielectric film layer are eliminated, and defects in electrical characteristics such as insufficient capacity, increased leakage current, and large impedance can be reduced.

(2)絶縁樹脂を正確且つ適量塗布出来る為、コンデン
サ素子の陽極リードと外部引き出し陽極端子との接続点
がプレス成形体に近ずけることが可能となり、従ってよ
り高密度な同体電解コンデンサを作ることが出来る。
(2) Since the insulating resin can be applied accurately and in the appropriate amount, the connection point between the anode lead of the capacitor element and the externally drawn anode terminal can be brought closer to the press molded body, thus creating a higher-density monolithic electrolytic capacitor. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の第1の実施例の固体電
解コンデンサ素子の側面断面図、斜視図及び陽極リード
四部の拡大図、第2図(a)〜(e)は第1図(a)〜
(c)に示す第1の実施例の製造工程を説明するための
側面図、第3図は本発明の第2の実施例斜視図、第4図
は本発明の第3の実施例の斜視図、第5図(a)、(b
)は本発明の第4の実施例の側面断面図および斜視図、
第6図(a)〜(d)は第5図<a)(b)に示す第4
の実施例の製造工程を説明するための側面図、第7図は
本発明の第5の実施例の斜視図、第8図は本発明の第6
の実施例の斜視図、第9図(a)、(b)は従来の固体
電解コンデンサの焼結体の即断面図及び陰極引き出し層
形成後の正面図、第10図は絶縁樹脂形成後の焼結体を
硝酸マンガン水溶液に浸漬中の正面図、第11図は従来
例で絶縁樹脂が垂れ下った不良焼結体を示す正面図であ
る。 1.11,21,3]、、41.51・・・陽極リード
、la、]、la、21 a・・・陽極リードの凸部、
3]、a、41a、51a・・・陽極リードの凹部、]
 b、]、lb、31F+、4]、b、61b・・・陽
極リードとプレス成形体に近接した部分、lc、11c
、31c、4]、c・・・陽極リードの中心線、4]d
・・鋸歯状の細かい凹凸、2・・・プレス成形体、3.
33.63・・・焼結体、4,34.64・・・絶縁樹
脂、5・・・支持材、6,36・・・クランプ、7・・
・硝酸マンカン水溶液、8・・陰極引き出し層、69・
・・固体電解コンデンサ素子。
FIGS. 1(a) to (c) are a side sectional view, a perspective view, and an enlarged view of four parts of the anode lead of a solid electrolytic capacitor element according to a first embodiment of the present invention, and FIGS. 2(a) to (e) are Figure 1(a)~
(c) is a side view for explaining the manufacturing process of the first embodiment, FIG. 3 is a perspective view of the second embodiment of the present invention, and FIG. 4 is a perspective view of the third embodiment of the present invention. Figure 5 (a), (b)
) are side sectional views and perspective views of the fourth embodiment of the present invention;
Figures 6(a) to (d) are the fourth
7 is a side view for explaining the manufacturing process of the embodiment of the present invention, FIG. 7 is a perspective view of the fifth embodiment of the present invention, and FIG. 8 is the sixth embodiment of the present invention.
FIGS. 9(a) and 9(b) are an immediate cross-sectional view of a sintered body of a conventional solid electrolytic capacitor and a front view after forming a cathode extraction layer, and FIG. 10 is a view after forming an insulating resin. FIG. 11 is a front view showing a sintered body being immersed in an aqueous manganese nitrate solution, and FIG. 11 is a front view showing a defective sintered body in which the insulating resin hangs down in a conventional example. 1.11,21,3], 41.51... Anode lead, la, ], la, 21 a... Convex portion of anode lead,
3], a, 41a, 51a... recessed part of anode lead, ]
b, ], lb, 31F+, 4], b, 61b...portion close to the anode lead and press molded body, lc, 11c
, 31c, 4], c...center line of anode lead, 4]d
・・Sawtooth-like fine unevenness, 2 ・・Press molded product, 3.
33.63... Sintered body, 4, 34.64... Insulating resin, 5... Support material, 6, 36... Clamp, 7...
・Mankan nitrate aqueous solution, 8.・Cathode extraction layer, 69・
...Solid electrolytic capacitor element.

Claims (2)

【特許請求の範囲】[Claims] 1.弁作用を有する金属粉末に陽極リードを植立させて
プレス成形し、真空焼結した陽極体の表面に順次陽極酸
化層,固体電解質層,および陰極引き出し部が設けられ
た固体電解コンデンサにおいて、前記陽極体の陽極リー
ドに、陽極リードの断面方向に凸部又は凹部を設け、か
つ前記陽極リード上に形成した凸部上およびその周囲、
又は凹部内およびその周囲に、ポリテトラフルオロエチ
レン等からなる溌水性絶縁樹脂層を設けたことを特徴と
する固体電解コンデンサ。
1. In a solid electrolytic capacitor, an anode lead is embedded in a metal powder having a valve action, press-formed, and an anode body is vacuum sintered, and an anodized layer, a solid electrolyte layer, and a cathode extension part are sequentially provided on the surface of the anode body. The anode lead of the anode body is provided with a convex part or a concave part in the cross-sectional direction of the anode lead, and on and around the convex part formed on the anode lead,
Alternatively, a solid electrolytic capacitor characterized in that a water-repellent insulating resin layer made of polytetrafluoroethylene or the like is provided in and around the recess.
2.弁作用を有する金属粉末に陽極リードの一部を埋設
・プレス成形し、プレス成形体を得る工程と、該プレス
成形体を真空焼結し焼結体を得る工程と、該焼結体の陽
極リードの前記プレス成形体から所定の距離離れた部分
に陽極リードの断面方向に凸部又は凹部を形成する工程
と、前記凸部上およびその周囲又は凹部内およびその周
囲にポリテトラフルオロエチレン等の溌水性絶縁樹脂を
塗布・硬化し、環状の絶縁樹脂層を形成する工程と、誘
電体皮膜層を形成する工程と、固体電解質層を形成する
工程とを含むことを特徴とする固体電解コンデンサの製
造方法。
2. A step of embedding and press-molding a part of an anode lead in a metal powder having a valve action to obtain a press-formed body, a step of vacuum-sintering the press-formed body to obtain a sintered body, and a step of obtaining an anode of the sintered body. forming a convex portion or a concave portion in the cross-sectional direction of the anode lead at a portion of the lead that is a predetermined distance from the press molded body; and forming a polytetrafluoroethylene or the like on and around the convex portion or in and around the concave portion. A solid electrolytic capacitor comprising the steps of applying and curing a water-repellent insulating resin to form an annular insulating resin layer, forming a dielectric film layer, and forming a solid electrolyte layer. Production method.
JP2209889A 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same Expired - Lifetime JP3036017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209889A JP3036017B2 (en) 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209889A JP3036017B2 (en) 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0493012A true JPH0493012A (en) 1992-03-25
JP3036017B2 JP3036017B2 (en) 2000-04-24

Family

ID=16580328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209889A Expired - Lifetime JP3036017B2 (en) 1990-08-08 1990-08-08 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3036017B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124856A (en) * 1992-10-12 1994-05-06 Rohm Co Ltd Manufacture of electronic component
JPH06181148A (en) * 1992-12-15 1994-06-28 Rohm Co Ltd Coating method for lead wire with liquid insulating material
JP2006216680A (en) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2010153690A (en) * 2008-12-26 2010-07-08 Sanyo Electric Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2015201668A (en) * 2010-04-22 2015-11-12 ローム株式会社 Solid electrolytic capacitor and manufacturing method for solid electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124856A (en) * 1992-10-12 1994-05-06 Rohm Co Ltd Manufacture of electronic component
JPH06181148A (en) * 1992-12-15 1994-06-28 Rohm Co Ltd Coating method for lead wire with liquid insulating material
JP2006216680A (en) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4601440B2 (en) * 2005-02-02 2010-12-22 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2010153690A (en) * 2008-12-26 2010-07-08 Sanyo Electric Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2015201668A (en) * 2010-04-22 2015-11-12 ローム株式会社 Solid electrolytic capacitor and manufacturing method for solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3036017B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US9472349B2 (en) Sintered article, particularly for low ESR capacitor anodes
US6906912B2 (en) Solid electrolytic capacitor and method of producing the same
KR20030035883A (en) Solid electrolytic capacitor and method for preparing the same
JP3535014B2 (en) Electrode for electrolytic capacitor
JPH0493012A (en) Solid-state electrolytic capacitor and its manufacture
JP2010192831A (en) Solid electrolytic capacitor
US11915886B2 (en) Solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP4424658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004014667A (en) Solid electrolytic capacitor
KR20060135865A (en) Method for manufacturing solid electrolytic capacitor
KR19990039881A (en) Method for manufacturing tantalum solid electrolytic capacitor
JP4090021B2 (en) Capacitor element in solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element
JP3116960B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP7473537B2 (en) Solid Electrolytic Capacitors
KR200211021Y1 (en) Porous Tantalum Pellets of Tantalum Solid Electrolytic Capacitors
JPH01152617A (en) Solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JP2002231579A (en) Method for manufacturing capacitor element of solid- state electrolytic capacitor
KR0163860B1 (en) Carbon and argentum pasting method in tantalum electrolytic condenser
JPS6051254B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004055807A (en) Capacitor element of solid-state electrolytic capacitor and its manufacturing method, and solid-state electrolytic capacitor using the capacitor element
JPH02207519A (en) Manufacture of solid electrolytic capacitor
JPH03215924A (en) Manufacture of solid electrolytic capacitor