JPH0368067B2 - - Google Patents

Info

Publication number
JPH0368067B2
JPH0368067B2 JP59186074A JP18607484A JPH0368067B2 JP H0368067 B2 JPH0368067 B2 JP H0368067B2 JP 59186074 A JP59186074 A JP 59186074A JP 18607484 A JP18607484 A JP 18607484A JP H0368067 B2 JPH0368067 B2 JP H0368067B2
Authority
JP
Japan
Prior art keywords
resin
silica
weight
silica particles
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59186074A
Other languages
Japanese (ja)
Other versions
JPS6164755A (en
Inventor
Michio Ito
Yasuaki Shinohara
Yoshiaki Kurata
Sumikazu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18607484A priority Critical patent/JPS6164755A/en
Publication of JPS6164755A publication Critical patent/JPS6164755A/en
Publication of JPH0368067B2 publication Critical patent/JPH0368067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子部品の封止材に使用するシリカ
充填樹脂組成物に関するものである。 〔従来の技術・欠点〕 樹脂成形体にシリカ充填材を添加し、機械的強
度、耐熱性の向上、寸法安定性、コスト低下など
を図ることが知られている。この樹脂が電子部品
の封止材に使用される場合は、電子部品の発熱を
樹脂を通して外部へ放散する必要がある。また電
子回路を正常に保つため、低熱膨張性が要求され
る。 シリカ充填材は、一般に粉砕により細粒化され
ている。このため粒子は角ばつており、樹脂への
分散性や樹脂の流動性が低下する。また、成形体
を得るための金型の磨耗が激しい。この対策とし
て、充填材を予め高温火炎中に通し、溶融して得
た平均粒径1〜60μmの球状シリカ粒を熱硬化性
樹脂に対して30〜80重量%使用して上記欠点を解
決することが、例えば特開昭58−138740号公報で
知られている。 ところが、充填材としてこの球状シリカ粒のみ
を使用すると樹脂の粘性が低すぎて、成形時に金
型のすき間に入り込み、バリ発生が著しいという
新たな欠点が生じた。 〔発明の目的〕 本発明は、球状シリカ粒の特徴を生かし、同時
にその欠点であるバリ発生を防止することを目的
としている。 〔問題点を解決するための手段〕 本発明は、高温火炎中を通して得られた平均粒
径5〜50μmの球状シリカ粒55〜85重量%および
粉砕シリカ粒15〜45重量%からなる充填材を、熱
硬化性樹脂に対して50〜80重量%含有させたバリ
が発生しない封止材用シリカ充填樹脂組成物であ
る。 この樹脂組成物は、球状シリカ粒の特徴を生か
しつつ、その欠点であるバリ発生を粉砕シリカ粒
の併用で防止したものである。したがつて従来の
ものに比べて材料費の低減およばバリ除去にとも
なう工数の削減など、その効果はきわめて大き
い。 また、充填材が球状で流動性に富むために樹脂
への充填量が増し、樹脂の熱伝導率が向上する。
あるいは、溶融シリカは低熱膨張性材料であるな
どの理由から、この樹脂組成物は電子部品として
優れた特性を発揮することができる。 つぎに、本発明で使用する配合物とその割合に
ついて詳述する。 球状シリカ粒は、天然産の珪石、珪砂あるいは
これらを焼成して得られるトリジマイト、クリス
トパライトを粉砕して細粒化し、これをプロパ
ン、水素、ブタン、アセチレンなどを可熱ガスと
した高温火炎中に通すことで得られる。火炎温度
は、2000℃以上好ましくは2200〜2800℃である。 球状シリカ粒の形状は、真球に近いほど好まし
いが、表面部の溶融で、粒子の角ばつた部分が滑
らかになつた程度でもよい。球状シリカの結晶相
は主としてガラス相であるが、中心部に石英、ト
リジマイト、クリストパライトを含んでもよい。
一方、粉砕シリカ粒は、溶融シリカ粒を粉砕して
得た粉砕溶融シリカおよび珪石を粉砕して得た粉
砕珪石であり、それぞれ粉砕したそのまま使用す
るもので、粒子は角ばつている。 球状シリカ粒55重量%未満又は粉砕シリカ粒45
重量%を超える場合では流動性に劣り、樹脂に対
する充填性が低下し、低膨張性の樹脂組成物が得
られず、かつ強度も低下する。球状シリカ粒85重
量%を超え又粉砕シリカ粒15重量%未満では樹脂
の粘性が小さくなり金型の隙間に入つてバリを発
生する。 これら充填材の樹脂中に占める割合は、50重量
%未満では充填効果が十分でなく、電子部品用と
して要求される熱伝導性および低熱膨張性が得ら
れない。80重量%を超える圧力をかけて樹脂を注
入成形する場合、電子部品の強度の弱い部分、例
えば半導体素子とリード部を結ぶボンデイングワ
イヤーや細いコイルの取り出し部を充填材で切断
する危険性がある。 すなわち本願発明により球状シリカと粉砕シリ
カの配合によりバリが発生することなく、シリカ
充填材が50重量%以上の配合が可能となつた。 充填材の平均粒径は5〜50μmでかつ粒径は
177μm以下である。 平均粒径が5μm未満ではフイラーの比表面積が
大きくなり、コンパウンドの粘度上昇をきたす。 粘度の増大は流動性が低下し、成形性が悪化す
る。 50μmを超えると流動性の低下をきたす。 ICチツプ表面に充填材が接触すると過大な応
力がシリコンに加えられ誤作動の要因となる。 充填材の粒径が177μmを超えるとコンパウンド
をトランスフアーモールドする際、ゲート詰りを
防止するために充填材の最大粒径が規制される。
近年とみにゲートの大きさが小さくなつて177μm
以上ではゲートに粉粒が詰り易くなり、トランス
フアー成形が阻害される。 熱硬化性樹脂の種類は特に限定するものではな
く、例えばエポキシ樹脂、フエノール樹脂、ユリ
ア樹脂、メラミン樹脂、不飽和ポリエステル樹脂
などが使用できる。 その他の添加剤としては樹脂に対する硬化剤、
硬化促進剤、着色剤、難燃剤、離型剤、カツプリ
ング剤などを必要に応じて使用できる。 〔実施例〕 つぎに本発明実施例とその比較例を示す。 珪石(結晶質シリカ)を粉砕により細粒化し、
平均粒径15μmの粉砕シリカ粒を得た。球状シリ
カ粒は、プロパン−酸素の高温火炎中に前記の粉
砕珪石を一定量づつ投入し、表面溶融あるいは完
全溶融して平均粒径15μmのものを得た。 次に示す各例は、アミン系硬化促進剤を3重量
%含有させたエポキシ樹脂をペースとし、これに
充填材とその割合を変化させたものである。これ
らを低圧トランスフアー成形でICを封止し、そ
の試験結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a silica-filled resin composition used as a sealant for electronic components. [Prior Art/Disadvantages] It is known to add a silica filler to a resin molded body to improve mechanical strength, heat resistance, dimensional stability, cost reduction, etc. When this resin is used as a sealant for electronic components, it is necessary to dissipate the heat generated by the electronic components to the outside through the resin. In addition, low thermal expansion is required to maintain the normal state of electronic circuits. Silica fillers are generally pulverized into fine particles. For this reason, the particles are angular, resulting in poor dispersibility in the resin and fluidity of the resin. Furthermore, the mold for obtaining the molded body is subject to severe wear. As a countermeasure to this problem, the above-mentioned drawback is solved by using 30 to 80% by weight of the thermosetting resin of spherical silica particles with an average particle size of 1 to 60 μm obtained by passing the filler through a high-temperature flame and melting it. This is known, for example, from Japanese Patent Application Laid-open No. 138740/1983. However, when only these spherical silica particles were used as a filler, the viscosity of the resin was too low, causing a new drawback in that they entered the gaps in the mold during molding, resulting in significant burrs. [Object of the Invention] The object of the present invention is to take advantage of the characteristics of spherical silica grains and at the same time prevent the occurrence of burrs, which is a drawback thereof. [Means for solving the problem] The present invention uses a filler consisting of 55 to 85% by weight of spherical silica particles and 15 to 45% by weight of crushed silica particles with an average particle size of 5 to 50 μm obtained by passing through a high-temperature flame. , a silica-filled resin composition for encapsulants that does not generate burrs and contains 50 to 80% by weight of the thermosetting resin. This resin composition utilizes the characteristics of spherical silica particles while preventing the generation of burrs, which is a drawback thereof, by using crushed silica particles in combination. Therefore, compared to the conventional method, the effects are extremely large, such as a reduction in material costs and a reduction in the number of man-hours required for removing burrs. In addition, since the filler is spherical and highly fluid, the amount of filling into the resin increases, and the thermal conductivity of the resin improves.
Alternatively, because fused silica is a material with low thermal expansion, this resin composition can exhibit excellent properties as an electronic component. Next, the formulations used in the present invention and their proportions will be explained in detail. Spherical silica grains are made by crushing naturally produced silica stone, silica sand, or tridymite and cristopalite obtained by firing these, and then pulverizing them into fine grains using a high-temperature flame using propane, hydrogen, butane, acetylene, etc. as a flammable gas. It can be obtained by passing it inside. The flame temperature is 2000°C or higher, preferably 2200 to 2800°C. The shape of the spherical silica particles is preferably as close to a true sphere as possible, but it may be as long as the rough edges of the particles become smooth due to melting of the surface portion. The crystalline phase of spherical silica is mainly a glass phase, but may also contain quartz, tridymite, and cristopalite in the center.
On the other hand, crushed silica particles are crushed fused silica obtained by crushing fused silica particles and crushed silica stone obtained by crushing silica stone, and are used as they are after being crushed, and the particles are angular. Less than 55% by weight of spherical silica particles or 45% of ground silica particles
If it exceeds % by weight, the fluidity will be poor, the filling property for the resin will be reduced, a resin composition with low expansion property will not be obtained, and the strength will also be reduced. If the amount exceeds 85% by weight of spherical silica particles and is less than 15% by weight of crushed silica particles, the viscosity of the resin will become so low that it will enter the mold gap and cause burrs. If the proportion of these fillers in the resin is less than 50% by weight, the filling effect will not be sufficient and the thermal conductivity and low thermal expansion required for electronic components will not be achieved. When injection molding resin is applied with pressure exceeding 80% by weight, there is a risk that the filler material may cut weak parts of electronic components, such as bonding wires that connect semiconductor elements and leads, or the extraction parts of thin coils. . That is, according to the present invention, it has become possible to mix spherical silica and ground silica without generating burrs and to have a silica filler content of 50% by weight or more. The average particle size of the filler is 5 to 50 μm, and the particle size is
It is 177 μm or less. If the average particle size is less than 5 μm, the specific surface area of the filler becomes large, causing an increase in the viscosity of the compound. An increase in viscosity leads to a decrease in fluidity and deterioration in moldability. If it exceeds 50 μm, fluidity will decrease. When the filler comes into contact with the surface of the IC chip, excessive stress is applied to the silicon, causing malfunction. If the particle size of the filler exceeds 177 μm, the maximum particle size of the filler is regulated to prevent gate clogging when transfer molding the compound.
In recent years, the gate size has become smaller to 177μm.
If this is the case, the gate is likely to be clogged with powder particles, which impedes transfer molding. The type of thermosetting resin is not particularly limited, and for example, epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, etc. can be used. Other additives include curing agents for resins,
Curing accelerators, colorants, flame retardants, mold release agents, coupling agents, etc. can be used as necessary. [Example] Next, examples of the present invention and comparative examples thereof will be shown. Silica stone (crystalline silica) is crushed into fine particles,
Pulverized silica particles with an average particle size of 15 μm were obtained. Spherical silica particles having an average particle diameter of 15 μm were obtained by placing a certain amount of the above-mentioned crushed silica stone into a high-temperature propane-oxygen flame and melting the surface or completely. In each of the following examples, an epoxy resin containing 3% by weight of an amine curing accelerator is used as a paste, and fillers and their proportions are varied. The ICs were sealed using low-pressure transfer molding, and the test results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 高温火炎中を通して得られた平均粒径5〜
50μmの球状シリカ粒55〜85重量%および粉砕シ
リカ粒15〜45重量%からなる充填材を、熱硬化性
樹脂組成物に対して50〜80重量%含有させたバリ
が発生しない封止材用シリカ充填樹脂組成物。
1 Average particle size obtained through high temperature flame: 5~
For burr-free sealing materials containing 50-80% by weight of a filler consisting of 50-μm spherical silica particles and 15-45% by weight of crushed silica particles based on the thermosetting resin composition. Silica-filled resin composition.
JP18607484A 1984-09-05 1984-09-05 Inorganic filler-containing resin composition Granted JPS6164755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18607484A JPS6164755A (en) 1984-09-05 1984-09-05 Inorganic filler-containing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18607484A JPS6164755A (en) 1984-09-05 1984-09-05 Inorganic filler-containing resin composition

Publications (2)

Publication Number Publication Date
JPS6164755A JPS6164755A (en) 1986-04-03
JPH0368067B2 true JPH0368067B2 (en) 1991-10-25

Family

ID=16181926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18607484A Granted JPS6164755A (en) 1984-09-05 1984-09-05 Inorganic filler-containing resin composition

Country Status (1)

Country Link
JP (1) JPS6164755A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574364B2 (en) * 1988-02-09 1997-01-22 日東電工株式会社 Semiconductor device
JPH0672202B2 (en) * 1988-10-06 1994-09-14 東レ株式会社 Epoxy resin composition for semiconductor encapsulation
JPH02158637A (en) * 1988-12-09 1990-06-19 Nippon Chem Ind Co Ltd Silica filler and sealing resin composition using the same
JP2925088B2 (en) * 1989-03-20 1999-07-26 日本化学工業株式会社 Fine fused spherical silica and resin composition for sealing using the same
JP3827391B2 (en) * 1997-03-04 2006-09-27 昭和高分子株式会社 Resin composition for sealing
JP3907773B2 (en) * 1997-03-25 2007-04-18 昭和高分子株式会社 Resin composition for low thermal expansion cured product and composite thereof
JP5038007B2 (en) * 2007-04-17 2012-10-03 電気化学工業株式会社 Composition, metal-based circuit board using the composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition

Also Published As

Publication number Publication date
JPS6164755A (en) 1986-04-03

Similar Documents

Publication Publication Date Title
JPS6157347B2 (en)
JPH10292094A (en) Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JPS6274924A (en) Epoxy resin composition for sealing semiconductor device
JPS627211B2 (en)
JPH0368067B2 (en)
JPS6296568A (en) Semiconductor sealing resin composition
JPS5829858A (en) Resin composition for sealing electronic component
JPS6216223B2 (en)
JPS6296567A (en) Semiconductor sealing resin composition
JPS6296538A (en) Inorganic filler and resin composition
JPS6296569A (en) Semiconductor sealing resin composition
JP2006249343A (en) Epoxy resin composition and package for housing semiconductor element
JPH02261856A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH0686515B2 (en) Epoxy resin composition for semiconductor device encapsulation
JP3880211B2 (en) Resin composition for sealing and semiconductor device
JP2505485B2 (en) Additive for semiconductor resin encapsulation
JP3611439B2 (en) Microcapsule-type phosphorus curing accelerator and epoxy resin composition for semiconductor encapsulation using the same
JP2702401B2 (en) Resin-sealed semiconductor device and its manufacturing method
JPS6126672A (en) Production of sealing molding material
JPH088367A (en) Thermosetting transparent resin body for optical conductor and optical semiconductor device
JPS6164754A (en) Inorganic filler-containing resin composition
JPH11349825A (en) Sealing resin composition and semiconductor device
JPH0841293A (en) Epoxy resin composition for sealing and semiconductor device
JPS63297436A (en) Sealant polymer composition for ic
JP2000001601A (en) Resin composition for sealing and semiconductor device