JPH0672202B2 - Epoxy resin composition for semiconductor encapsulation - Google Patents
Epoxy resin composition for semiconductor encapsulationInfo
- Publication number
- JPH0672202B2 JPH0672202B2 JP63253580A JP25358088A JPH0672202B2 JP H0672202 B2 JPH0672202 B2 JP H0672202B2 JP 63253580 A JP63253580 A JP 63253580A JP 25358088 A JP25358088 A JP 25358088A JP H0672202 B2 JPH0672202 B2 JP H0672202B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- weight
- fused silica
- less
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、半田耐熱性および信頼性に優れ、線膨張係数
の小さい半導体封止用エポキシ樹脂組成物に関するもの
である。The present invention relates to an epoxy resin composition for semiconductor encapsulation, which has excellent solder heat resistance and reliability and a small linear expansion coefficient.
<従来の技術> エポキシ樹脂は耐熱性、耐湿性、電気特性、接着性など
に優れており、さらに配合処方により種々の特性が付与
できるため、塗料、接着剤、電気絶縁材料など工業材料
として利用されている。<Prior art> Epoxy resin has excellent heat resistance, moisture resistance, electrical properties, adhesiveness, etc., and since various properties can be imparted by blending formulation, it is used as an industrial material such as paints, adhesives, and electrical insulation materials. Has been done.
たとえば、半導体装置などの電子回路部品の封止方法と
して従来より金属やセラミックスによるハーメチックシ
ールやフェノール樹脂、シリコーン樹脂、エポキシ樹脂
などによる樹脂封止が提案されているが、経済性、生産
性、物性のバランスの点からエポキシ樹脂による樹脂封
止が中心になっている。For example, as a sealing method for electronic circuit parts such as semiconductor devices, hermetic seals made of metal or ceramics and resin seals made of phenolic resin, silicone resin, epoxy resin, etc. have been proposed so far. From the standpoint of balance, the main focus is resin sealing with epoxy resin.
一方、最近は、プリント基板への部品実装においては高
密度化、自動化が進められており、従来のリードピンを
基板の穴に挿入する“挿入実装方式”に代り、基板表面
に部品を半田付けする“表面実装方式”がさかんになっ
てきている。それに伴い、パッケージも従来のDIP(デ
ュアル・インライン・パッケージ)型から高密度実装、
表面実装に適した薄型のFPP(フラット・プラスチック
・パッケージ)型に移行しつつある。On the other hand, recently, in mounting components on a printed circuit board, densification and automation have been promoted. Instead of the conventional "insertion mounting method" in which lead pins are inserted into holes in the board, components are soldered to the surface of the board. “Surface mounting method” is becoming popular. Along with that, the package is high-density mounting from the conventional DIP (dual in-line package) type,
It is shifting to a thin FPP (flat plastic package) type suitable for surface mounting.
表面実装方式への移行に伴い、従来あまり問題とならな
かった半田付け工程が大きな問題となってきている。従
来のピン挿入実装方式では半田付け工程はリード部が部
分的に加熱されるだけであったが、表面実装方式ではパ
ッケージ全体が熱媒に浸され加熱される。表面実装方式
における半田付け方法としては半田浴浸漬、不活性ガス
の飽和蒸気による加熱(ベーパフェイズ法)や赤外線リ
フロー法などが用いられるが、いずれの方法でもパッケ
ージ全体が210〜270℃の高温に加熱されることになる。
そのため従来の封止用樹脂で封止したパッケージは半田
付け時に樹脂部分にクラックが発生し、信頼性が低下し
て製品として使用できないという問題がおきる。With the shift to the surface mounting method, the soldering process, which has not been a problem so far, has become a big problem. In the conventional pin insertion mounting method, the lead portion is only partially heated in the soldering process, but in the surface mounting method, the entire package is immersed in a heating medium and heated. As the soldering method in the surface mounting method, immersion in a solder bath, heating with a saturated vapor of an inert gas (vapor phase method), infrared reflow method, etc. are used. In either method, the entire package is heated to a high temperature of 210 to 270 ° C. It will be heated.
Therefore, a package sealed with a conventional sealing resin has a problem that a crack is generated in a resin portion during soldering, the reliability is deteriorated, and the package cannot be used as a product.
半田付け工程におけるクラックの発生は、後硬化してか
ら実装工程の間までに吸湿された水分が半田付け加熱時
に爆発的に水蒸気化、膨脹することに起因するといわれ
ており、その対策として後硬化したパッケージ全体を乾
燥し密封した容器に収納して出荷する方法が用いられて
いる。The occurrence of cracks in the soldering process is said to be due to the moisture absorbed between the post-curing and the mounting process explosively turning into steam and expanding during soldering heating. A method is used in which the entire package is stored in a sealed container that is dried and shipped.
封止用樹脂の改良も種々検討されている。たとえば、封
止用樹脂にゴム成分を配合し内部応力を低下させる方法
(特開昭58−219218号公報、特開昭59−96122号公
報)、無機充填剤の品種を選択する方法(特開昭58−19
136号公報、特開昭60−202145号公報)、無機充填剤の
形状を球形化したり粒子径をコントロールすることによ
り応力、ひずみを均一化させる方法(特開昭60−171750
号公報、特開昭60−17937号公報、特開昭62−74924号公
報、特開昭62−124143号公報、特開昭62−209128号公
報、特公昭63−26128号公報)、撥水性の添加剤やワッ
クスにより吸水性を低下させ、半田浴での水分による応
力発生を下げる方法(特開昭60−65023号公報)などが
ある。Various improvements have been made to the sealing resin. For example, a method of blending a rubber component with a sealing resin to reduce the internal stress (JP-A-58-219218, JP-A-59-96122) and a method of selecting the type of inorganic filler (JP-A- Sho 58-19
No. 136, JP-A-60-202145), a method of making the stress and strain uniform by making the shape of the inorganic filler spherical or controlling the particle diameter (JP-A-60-171750).
JP, JP-A-60-17937, JP-A-62-74924, JP-A-62-124143, JP-A-62-209128, JP-B-63-26128), water repellency There is a method (Japanese Unexamined Patent Publication (Kokai) No. 60-65023) in which water absorption is reduced by the additive or wax described above to reduce stress generation due to water in the solder bath.
<発明が解決しようとする課題> しかるに乾燥パッケージを容器に封入する方法は製造工
程および製品の取扱作業が煩雑になるうえ、製品価格が
きわめて高価になる欠点がある。<Problems to be Solved by the Invention> However, the method of enclosing a dry package in a container has the drawbacks that the manufacturing process and the handling of the product are complicated, and the product price is extremely high.
また種々の方法で改良された樹脂も、それぞれ少しずつ
効果をあげてきているが、実装技術の進歩に伴うより過
酷な要請に答えるには十分でない。具体的にはこれら従
来の方法で得られた樹脂により封止された半導体装置を
加湿処理後、たとえば、85℃/85%RH処理72時間、また
は121℃/2気圧PCT(プレッシャー・クッカー・テスト)
処理72時間後に半田浴に浸すと樹脂部分にはことごこく
膨れまたはクラックが発生し、信頼性が低下する。Also, resins improved by various methods have been gradually effective, but they are not sufficient to meet the more severe demands accompanying the progress of packaging technology. Specifically, after humidifying the semiconductor device sealed with the resin obtained by these conventional methods, for example, 85 ° C / 85% RH treatment for 72 hours, or 121 ° C / 2 atmosphere PCT (pressure cooker test). )
If 72 hours after the treatment, it is soaked in a solder bath, the resin part swells or cracks, and the reliability decreases.
すなわち、また半田付け加熱時のクラック発生を防止
し、信頼性の高い封止用樹脂は得られておらず、表面実
装化技術の進展に対応した半田耐熱性が優れた封止用樹
脂の開発が望まれているのが現状である。In other words, the development of a sealing resin with excellent solder heat resistance that prevents cracks from occurring during soldering heating and has not obtained a highly reliable sealing resin, corresponding to the progress of surface mounting technology Is currently desired.
本発明の目的は、かかる半田付け工程で生じるクラック
の問題を解消し、信頼性の高いエポキシ樹脂組成物を提
供することにあり、表面実装ができる樹脂封止半導体装
置を可能にすることにある。An object of the present invention is to solve the problem of cracks generated in the soldering process, to provide a highly reliable epoxy resin composition, and to enable a resin-encapsulated semiconductor device capable of surface mounting. .
<課題を解決するための手段> すなわち本発明は、エポキシ樹脂(A)、硬化剤(B)
および平均粒径20μm以下の溶融シリカ(C)75〜85重
量%を含有するエポキシ樹脂組成物であって、前記溶融
シリカ(C)が平均粒径10μm以下の破砕溶融シリカ
(C′)90〜50重量%と平均粒径30μm以下の球状溶融
シリカ(C″)10〜50重量%からなり、かつ前記組成物
の線膨脹係数が15×10-6/℃以下である半導体封止用エ
ポキシ樹脂組成物である。<Means for Solving the Problems> That is, the present invention relates to an epoxy resin (A) and a curing agent (B).
And an epoxy resin composition containing 75 to 85% by weight of fused silica (C) having an average particle diameter of 20 μm or less, wherein the fused silica (C) is a crushed fused silica (C ′) 90 having an average particle diameter of 10 μm or less. Epoxy resin for semiconductor encapsulation, which comprises 50% by weight and 10 to 50% by weight of spherical fused silica (C ″) having an average particle size of 30 μm or less, and the coefficient of linear expansion of the composition is 15 × 10 −6 / ° C. or less. It is a composition.
以下、本発明の構成を詳述する。The configuration of the present invention will be described in detail below.
本発明におけるエポキシ樹脂(A)は、1分子中にエポ
キシ基を2個以上有するものであれば特に限定されな
い。The epoxy resin (A) in the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule.
たとえば、クレゾールノボラック型エポキシ樹脂、ビス
ヒドロキシビフェニル型エポキシ樹脂、ビスフェノール
A型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エ
ポキシ樹脂、複素環式エポキシ樹脂、ハロゲン化エポキ
シ樹脂、スピロ環含有エポキシ樹脂などが挙げられる。For example, cresol novolac type epoxy resin, bishydroxybiphenyl type epoxy resin, bisphenol A type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, halogenated epoxy resin, spiro ring containing epoxy resin And so on.
用途によっては二種以上のエポキシ樹脂を併用してもよ
いが、半導体装置封止用としては耐熱性、耐湿性の点か
らクレゾールノボラック型エポキシ樹脂、ビスヒドロキ
シビフェニル型エポキシ樹脂などのエポキシ当量が500
以下、特に300以下のエポキシ樹脂を全エポキシ樹脂中
に50重量%以上含むことが好ましい。Depending on the application, two or more epoxy resins may be used together, but for semiconductor device encapsulation, the epoxy equivalent of cresol novolac type epoxy resin, bishydroxybiphenyl type epoxy resin, etc. is 500 from the viewpoint of heat resistance and moisture resistance.
In particular, it is preferable that the total epoxy resin content of the epoxy resin is 300% or less, especially 50% by weight or more.
本発明においてエポキシ樹脂(A)の配合量は通常、5
〜25重量%である。5重量%未満では、成形性、接着性
が不十分であり、25重量%を越えると線膨脹係数が大き
くなり、低応力化が困難になる。In the present invention, the compounding amount of the epoxy resin (A) is usually 5
~ 25% by weight. If it is less than 5% by weight, moldability and adhesiveness are insufficient, and if it exceeds 25% by weight, the coefficient of linear expansion becomes large and it becomes difficult to reduce the stress.
本発明における硬化剤(B)としてはエポキシ樹脂
(A)と反応して硬化させるものであれば特に限定され
ない。The curing agent (B) in the present invention is not particularly limited as long as it reacts with the epoxy resin (A) and is cured.
たとえば、フェノールノボラック、クレゾールノボラッ
クなどのノボラック樹脂、テトラブロム、ビスフェノー
ルAなどのビスフェノール化合物、無水マレイン酸、無
水フタル酸、無水ピロメリット酸などの酸無水物、メタ
フェニレンジアミン、ジアミノジフェニルメタン、ジア
ミノジフェニルスルホンなどの芳香族アミンなどが挙げ
られる。半導体装置封止用としては耐熱性、保存性の点
からビスフェノールノボラック、クレゾールノボラック
が好ましく用いられる。用途によっては二種以上の硬化
剤を併用してもよい。For example, novolak resins such as phenol novolac and cresol novolac, bisphenol compounds such as tetrabrom and bisphenol A, acid anhydrides such as maleic anhydride, phthalic anhydride, pyromellitic anhydride, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, etc. Aromatic amines and the like. Bisphenol novolac and cresol novolac are preferably used for sealing semiconductor devices from the viewpoint of heat resistance and storability. Two or more curing agents may be used in combination depending on the application.
本発明において硬化剤(B)の配合量は通常、2〜15重
量%である。In the present invention, the compounding amount of the curing agent (B) is usually 2 to 15% by weight.
さらには、エポキシ樹脂(A)と硬化剤(B)の配合比
は、機械的性質、耐湿性の点から(A)に対する(B)
の化学当量比が0.5〜1.6、特に0.8〜1.3の範囲にあるこ
とが好ましい。また、本発明においてエポキシ樹脂
(A)と硬化剤(B)の硬化反応を促進するため硬化触
媒を用いてもよい、硬化触媒は硬化反応を促進させるも
のならば特に限定されない。たとえば、2−メチルイミ
ダゾール、2,4−ジメチルイミダゾール、2−エチル−
4−メチルイミダゾール、2−フェニルイミダゾール、
2−フェニル−4−メチルイミダゾール、2−ヘプタデ
シルイミダゾールなどのイミダゾール類、トリエチルア
ミン、ベンジルジメチルアミン、α−メチルベンジルジ
メチルアミン、2−(ジメチルアミノメチル)フェノー
ル、2,4,6−トリス(ジメチルアミノメチル)フェノー
ル、1,8−ジアザビシクロ(5,4,0)ウンデセン−7など
の3級アミン類、ジルコニウムテトラメトキシド、ジル
コニウムテトラプロポキシド、テトラキス(アセチルア
セトナト)ジルコニウム、トリ(アセチルアセトナト)
アルミニウムなどの有機金属類、トリフェニルホスフィ
ン、トリエチルホスフィン、トリブチルホスフィン、ト
リメチルホスフィン、トリ(p−メチルフェニル)ホス
フィン、トリ(ノニルフェニル)ホスフィンなどの有機
ホスフィン類などが挙げられる。用途によっては二種以
上の硬化触媒を併用してもよい。硬化触媒の添加量はエ
ポキシ樹脂(A)100重量部に対して0.1〜10重量部が好
ましい。Furthermore, the blending ratio of the epoxy resin (A) and the curing agent (B) is (B) to (A) from the viewpoint of mechanical properties and moisture resistance.
It is preferable that the chemical equivalent ratio of is in the range of 0.5 to 1.6, particularly 0.8 to 1.3. In the present invention, a curing catalyst may be used to accelerate the curing reaction between the epoxy resin (A) and the curing agent (B). The curing catalyst is not particularly limited as long as it accelerates the curing reaction. For example, 2-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-
4-methylimidazole, 2-phenylimidazole,
Imidazoles such as 2-phenyl-4-methylimidazole and 2-heptadecylimidazole, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethyl) Aminomethyl) phenol, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, zirconium tetramethoxide, zirconium tetrapropoxide, tetrakis (acetylacetonato) zirconium, tri (acetylacetonato) )
Examples thereof include organic metals such as aluminum, triphenylphosphine, triethylphosphine, tributylphosphine, trimethylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and the like. Depending on the application, two or more curing catalysts may be used together. The addition amount of the curing catalyst is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
本発明における溶融シリカ(C)は平均粒径が20μm以
下であり、平均粒径10μm以下の破砕溶融シリカ
(C′)90〜50重量%と平均粒径30μm以下の球状溶融
シリカ(C″)10〜50重量%からなる。ここで、平均粒
径とは累積重量が50%になる粒径(メジアン径)を意味
する。溶融シリカ(C)の平均粒径が20μmを越える
か、または破砕溶融シリカ(C′)の平均粒径が10μm
を越えると半田耐熱性が不十分である。また、球状溶融
シリカ(C″)の平均粒径が30μmを越えると半導体の
Al配線にダメージを与える。溶融シリカ(C)の平均粒
径は好ましくは15μm以下である。The fused silica (C) in the present invention has an average particle size of 20 μm or less, and 90 to 50% by weight of crushed fused silica (C ′) having an average particle size of 10 μm or less and spherical fused silica (C ″) having an average particle size of 30 μm or less. 10 to 50% by weight, where the average particle size means the particle size (median size) at which the cumulative weight becomes 50% The average particle size of fused silica (C) exceeds 20 μm or is crushed. The average particle size of fused silica (C ') is 10 μm
If it exceeds, the solder heat resistance is insufficient. Also, if the average particle size of spherical fused silica (C ″) exceeds 30 μm,
Damage the Al wiring. The average particle size of the fused silica (C) is preferably 15 μm or less.
本発明の溶融シリカ(C)における破砕溶融シリカ
(C′)と球状溶融シリカ(C″)の比率は、(C′)
が90〜50重量%、(C″)が10〜50重量%である。破砕
溶融シリカ(C′)の比率が90重量%を越えると、成形
時の流動性が低下し、50重量%未満では半田耐熱性が不
十分である 本発明において、溶融シリカ(C)の配合量は75〜85重
量%、好ましくは75〜83重量部である。75重量%未満で
は半田耐熱性が不十分であり、85重量%を越えると成形
時の流動性が低下し、実用的ではない。The ratio of crushed fused silica (C ′) and spherical fused silica (C ″) in the fused silica (C) of the present invention is (C ′).
Is 90 to 50% by weight and (C ″) is 10 to 50% by weight. When the ratio of the crushed fused silica (C ′) exceeds 90% by weight, the fluidity at the time of molding is lowered to less than 50% by weight. In the present invention, the blending amount of fused silica (C) is 75 to 85% by weight, preferably 75 to 83 parts by weight. However, if it exceeds 85% by weight, the fluidity at the time of molding decreases, which is not practical.
本発明において、溶融シリカ(C)はシランカップリン
グ剤、チタネートカップリング剤などのカップリング剤
で、あらかじめ表面処理することが耐湿性および機械的
性質の点で好ましい。In the present invention, the fused silica (C) is preferably surface-treated in advance with a coupling agent such as a silane coupling agent or a titanate coupling agent from the viewpoint of moisture resistance and mechanical properties.
本発明のエポキシ樹脂組成物は線膨脹係数が15×16-6/
℃以下、好ましくは13×10-6/℃以下である。線膨脹係
数が15×10-6/℃を越えると熱応力が大きくなり半田耐
熱性が低下する。ここで、線膨脹係数はエポキシ樹脂組
成物を十分硬化させた状態でASTM D696規格に基づいて
測定したガラス転移温度以下での値である。The epoxy resin composition of the present invention has a linear expansion coefficient of 15 × 16 −6 /
C. or less, preferably 13 × 10 −6 / ° C. or less. If the coefficient of linear expansion exceeds 15 × 10 -6 / ℃, the thermal stress increases and the solder heat resistance decreases. Here, the coefficient of linear expansion is a value at a glass transition temperature or lower measured in accordance with ASTM D696 standard in a state where the epoxy resin composition is sufficiently cured.
本発明のエポキシ樹脂組成物には結晶性シリカ、炭酸カ
ルシウム、炭酸マグネシウム、アルミナ、マグネシア、
クレー、タルク、ケイ酸カルシウム、酸化チタン、アス
ベルト、ガラス繊維などの充填剤、ハロゲン化エポキシ
樹脂などのハロゲン化合物、リン化合物などの難燃剤、
三酸化アンチモンなどの難燃助剤、カーボンブラック、
酸化鉄などの着色剤、シリコーンオイル、変成ニトリル
ゴム、変成ポリブタジエンゴム、オレフィン系ゴム、ス
チレン系ゴムなどのエラストマー、シランカップリング
剤、チタネートカップリング剤などのカップリング剤、
長鎖脂肪酸、長鎖脂肪酸の金属塩、長鎖脂肪酸のエステ
ル、長鎖脂肪酸のアミド、パラフィンワックスなどの離
型剤、有機過酸化物などの架橋剤を任意に添加すること
ができる。The epoxy resin composition of the present invention includes crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia,
Clay, talc, calcium silicate, titanium oxide, asbelt, filler such as glass fiber, halogen compound such as halogenated epoxy resin, flame retardant such as phosphorus compound,
Flame retardant aids such as antimony trioxide, carbon black,
Coloring agents such as iron oxide, silicone oil, modified nitrile rubber, modified polybutadiene rubber, olefin rubber, elastomers such as styrene rubber, silane coupling agents, coupling agents such as titanate coupling agents,
A long-chain fatty acid, a metal salt of a long-chain fatty acid, an ester of a long-chain fatty acid, an amide of a long-chain fatty acid, a release agent such as paraffin wax, and a crosslinking agent such as an organic peroxide can be optionally added.
本発明のエポキシ樹脂組成物は溶融混練することが好ま
しく、溶融混練は公知の方法を用いることができる。た
とえば、バンバリーミキサー、ニーダー、ロール、一軸
もしくは二軸の押出機、コニーダーなどを用い、通常50
〜150℃の温度で樹脂組成物とすることができる。The epoxy resin composition of the present invention is preferably melt-kneaded, and a known method can be used for melt-kneading. For example, using a Banbury mixer, kneader, roll, single-screw or twin-screw extruder, co-kneader, etc.
The resin composition can be prepared at a temperature of up to 150 ° C.
<実施例> 以下、実施例により本発明を具体的に説明する。<Examples> Hereinafter, the present invention will be specifically described with reference to Examples.
実施例中の部数は重量部を意味する。The number of parts in the examples means parts by weight.
実施例1〜7、比較例1〜5 表1および表2に示す配合処方の組成比で試薬をミキサ
ーによりドライブレンドした。これを、ロール表面温度
90℃のミキシングロールを用いて5分間加熱混練後、冷
却・粉砕してエポキシ樹脂組成物を製造した。Examples 1 to 7 and Comparative Examples 1 to 5 Reagents were dry-blended with a mixer at the composition ratios shown in Tables 1 and 2. This is the roll surface temperature
The mixture was heated and kneaded for 5 minutes using a 90 ° C. mixing roll, cooled and pulverized to produce an epoxy resin composition.
この組成物を用い、低圧トランスファー成形法により17
5℃×4分の条件で成形して、模擬素子を封止した44pin
QFPを得た後、成形品とランナー部分を175℃で5時間ポ
ストキュアした。ポストキュア後、次の物性測定法によ
り、各組成物の物性を測定した。Using this composition, a low-pressure transfer molding method was used.
44pin molded under the condition of 5 ℃ × 4 minutes and sealed with simulated element
After obtaining QFP, the molded product and the runner portion were post-cured at 175 ° C. for 5 hours. After post-cure, the physical properties of each composition were measured by the following physical property measuring methods.
半田耐熱性:44pinQFP16個を85℃、85%RHで72時間加温
処理後、ベーパーフェーズリフロー215℃で90秒処理
し、クラックの発生しないQFPの個数の割合を求めた。Solder heat resistance: 16 44-pin QFPs were heated at 85 ° C and 85% RH for 72 hours, and then vapor phase reflow was performed at 215 ° C for 90 seconds, and the number of QFPs without cracks was calculated.
線膨脹係数:44pinQFP成形時のランナー部分を用いてAST
M D−696規格に従い測定し、50〜170℃の値を求め
た。Linear expansion coefficient: AST by using the runner part at the time of 44pin QFP molding
It measured according to MD-696 standard, and calculated | required the value of 50-170 degreeC.
信頼性:前記の半田耐熱性試験を行った44pinQFPを用
い、121℃、100%RHで加熱処理し、ピン不良発生率50%
になる時間を求めた。Reliability: Using the 44-pin QFP that has been subjected to the solder heat resistance test described above, heat-treating it at 121 ° C and 100% RH, and pin failure rate is 50%.
I asked for the time.
これらの結果を合せて表2に示す。The results are shown together in Table 2.
比較例6 表1に示すエポキシ樹脂(A)、硬化触媒のかわりに各
々エポキシ当量190はクレゾールノボラックエポキシ樹
脂と2−フェニルイミダゾールを使用した以外は表1お
よび表3に示す配合処方で実施例1〜7、比較例1〜5
と同様に混練し、成形・評価した。これらの結果を表3
に示す。Comparative Example 6 In place of the epoxy resin (A) and the curing catalyst shown in Table 1, epoxy equivalent 190 was cresol novolac epoxy resin and 2-phenylimidazole, respectively. ~ 7, Comparative Examples 1-5
Kneading, molding and evaluation were performed in the same manner as in. These results are shown in Table 3.
Shown in.
比較例7 エラストマーの添加量を0重量%とし、エポキシ樹脂
(A)、硬化剤(B)および溶融シリカ(C)の添加量
を表3に示す割合に変更した以外は比較例6と同じ配合
処方で混練し、成形・評価した。これらの結果を合せて
表3に示す。Comparative Example 7 Same composition as Comparative Example 6 except that the addition amount of the elastomer was 0% by weight and the addition amounts of the epoxy resin (A), the curing agent (B) and the fused silica (C) were changed to the ratios shown in Table 3. The composition was kneaded, molded, and evaluated. The results are shown together in Table 3.
表2に見られるように、実施例1〜7の本発明のエポキ
シ樹脂組成物は、半田耐熱性が69%以上、信頼性が1290
hと優れている。 As shown in Table 2, the epoxy resin compositions of the present invention of Examples 1 to 7 have a solder heat resistance of 69% or more and a reliability of 1290.
It is excellent with h.
これに対して、比較例1、3にみられるように、破砕溶
融シリカ(C′)の平均粒径が10μmを越える場合、破
砕溶融シリカ(C″)のシリカ中の割合が50重量%未満
の場合は、半田耐熱性が25%以下、信頼性が300h以下と
劣っている。また、比較例2にみられるようにシリカ中
の破砕シリカの比率が90重量%を越える場合は、信頼性
が570hと劣っている。On the other hand, as seen in Comparative Examples 1 and 3, when the average particle size of the crushed fused silica (C ′) exceeds 10 μm, the ratio of the crushed fused silica (C ″) in the silica is less than 50% by weight. The solder heat resistance is less than 25% and the reliability is less than 300 hours, and the reliability is higher when the ratio of crushed silica in silica exceeds 90% by weight, as seen in Comparative Example 2. Is inferior to 570h.
さらに比較例4にみられるように、溶融シリカ(C)の
添加量が75重量%未満で線膨脹係数が15×10-6/℃を越
える場合は、半田耐熱性が13%、信頼性が260hと劣って
いる。Further, as seen in Comparative Example 4, when the amount of fused silica (C) added is less than 75% by weight and the coefficient of linear expansion exceeds 15 × 10 −6 / ° C., the solder heat resistance is 13% and the reliability is high. Inferior to 260h.
比較例5にみらられるように溶融シリカ(C)の添加量
が85重量%を越えると、流動性が低下し、成形時に未充
填が発生した。As seen in Comparative Example 5, when the amount of the fused silica (C) added exceeded 85% by weight, the fluidity was lowered and unfilling occurred during molding.
表3にみられるように、比較例6、7では平均粒径10μ
m以下の破砕溶融シリカ(C′)90〜50重量%と平均粒
径30μm以下の球状溶融シリカ10〜90重量%からなる平
均粒径20μm以下の溶融シリカ(C)を75〜85重量%含
有しているが線膨脹係数が15×10-6/℃を越えている。
この場合は、半田耐熱性が13%以下、信頼性が280h以下
と劣っている。このことから本発明においては、線膨脹
係数が15×10-6/℃以下であることが必要なことが明白
である。As seen in Table 3, in Comparative Examples 6 and 7, the average particle size is 10 μm.
75 to 85% by weight of fused silica (C) having an average particle size of 20 μm or less consisting of 90 to 50% by weight of crushed fused silica (C ′) of m or less and 10 to 90% by weight of spherical fused silica having an average particle size of 30 μm or less However, the coefficient of linear expansion exceeds 15 × 10 -6 / ℃.
In this case, the solder heat resistance is 13% or less, and the reliability is 280 hours or less. From this, it is clear that in the present invention, the linear expansion coefficient needs to be 15 × 10 −6 / ° C. or less.
<発明の効果> 本発明は、エポキシ樹脂に硬化剤および特定の組成の溶
融シリカを添加し、線膨脹係数を小さくすることにより
半田耐熱性および信頼性に優れた半導体封止用エポキシ
樹脂組成物が得られる。<Effects of the Invention> The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in solder heat resistance and reliability by adding a curing agent and fused silica having a specific composition to an epoxy resin to reduce the linear expansion coefficient. Is obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/29 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 23/29 23/31
Claims (1)
平均粒径20μm以下の溶融シリカ(C)75〜85重量%を
含有するエポキシ樹脂組成物であって、前記溶融シリカ
(C)が平均粒径10μm以下の破砕溶融シリカ(C′)
90〜50重量%と平均粒径30μm以下の球状溶融シリカ
(C″)10〜50重量%からなり、かつ前記組成物の線膨
脹係数が15×10-6/℃以下である半導体封止用エポキシ
樹脂組成物。1. An epoxy resin composition containing an epoxy resin (A), a curing agent (B), and 75 to 85% by weight of fused silica (C) having an average particle size of 20 μm or less, wherein the fused silica (C) is used. Is crushed fused silica (C ') with an average particle size of 10 μm or less
90 to 50% by weight and 10 to 50% by weight of spherical fused silica (C ″) having an average particle size of 30 μm or less, and the linear expansion coefficient of the composition is 15 × 10 −6 / ° C. or less for semiconductor encapsulation Epoxy resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63253580A JPH0672202B2 (en) | 1988-10-06 | 1988-10-06 | Epoxy resin composition for semiconductor encapsulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63253580A JPH0672202B2 (en) | 1988-10-06 | 1988-10-06 | Epoxy resin composition for semiconductor encapsulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0299552A JPH0299552A (en) | 1990-04-11 |
JPH0672202B2 true JPH0672202B2 (en) | 1994-09-14 |
Family
ID=17253352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63253580A Expired - Fee Related JPH0672202B2 (en) | 1988-10-06 | 1988-10-06 | Epoxy resin composition for semiconductor encapsulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672202B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645740B2 (en) * | 1989-03-01 | 1994-06-15 | 信越化学工業株式会社 | Epoxy resin composition for semiconductor encapsulation |
JP2541712B2 (en) * | 1990-06-18 | 1996-10-09 | 東レ株式会社 | Epoxy resin composition for semiconductor encapsulation |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60210643A (en) * | 1983-11-30 | 1985-10-23 | Denki Kagaku Kogyo Kk | Filler and its composition |
JPS6164755A (en) * | 1984-09-05 | 1986-04-03 | Nippon Steel Corp | Inorganic filler-containing resin composition |
JPS61268750A (en) * | 1985-05-22 | 1986-11-28 | Shin Etsu Chem Co Ltd | Epoxy resin composition for semiconductor sealing use |
JPH0651786B2 (en) * | 1985-09-30 | 1994-07-06 | 株式会社東芝 | Epoxy resin composition for semiconductor device encapsulation |
JPS6281446A (en) * | 1985-10-04 | 1987-04-14 | Sumitomo Bakelite Co Ltd | Epoxy resin composition |
JPS6296538A (en) * | 1985-10-24 | 1987-05-06 | Denki Kagaku Kogyo Kk | Inorganic filler and resin composition |
JPS62261161A (en) * | 1986-05-08 | 1987-11-13 | Mitsubishi Electric Corp | Resin sealed semiconductor device |
JPS63107050A (en) * | 1986-10-24 | 1988-05-12 | Hitachi Ltd | Resin seal type semiconductor device |
JPS63128020A (en) * | 1986-11-18 | 1988-05-31 | Hitachi Ltd | Epoxy resin composition and resin-sealed type semiconductor device |
JPS63178121A (en) * | 1987-01-20 | 1988-07-22 | Hitachi Chem Co Ltd | Resin composition for sealing semiconductor |
-
1988
- 1988-10-06 JP JP63253580A patent/JPH0672202B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0299552A (en) | 1990-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3649535B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP4348775B2 (en) | Epoxy resin composition | |
JP2955013B2 (en) | Epoxy resin composition | |
JPH0791364B2 (en) | Solder heat resistant epoxy resin composition for semiconductor encapsulation | |
JP2697510B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH0672202B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH0733429B2 (en) | Epoxy resin composition | |
JPH0782343A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device sealed therewith | |
JPH0668010B2 (en) | Resin composition for semiconductor encapsulation | |
JP3451666B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP2001114994A (en) | Epoxy resin composition and semiconductor device | |
JP3413923B2 (en) | Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device | |
JP3451710B2 (en) | Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device | |
JP2964634B2 (en) | Epoxy composition | |
JP2501140B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH04325517A (en) | Epoxy resin composition for semiconductor sealing | |
JP3451690B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH0676539B2 (en) | Epoxy-containing composition for semiconductor encapsulation | |
JP3528925B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP2955012B2 (en) | Epoxy resin composition | |
JP2823569B2 (en) | Epoxy composition | |
JP4788053B2 (en) | Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device | |
JP3092176B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH08253555A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith | |
JPH0778108B2 (en) | Epoxy resin composition for semiconductor encapsulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |