JPH0364946A - Formation of semiconductor element isolation - Google Patents

Formation of semiconductor element isolation

Info

Publication number
JPH0364946A
JPH0364946A JP20159489A JP20159489A JPH0364946A JP H0364946 A JPH0364946 A JP H0364946A JP 20159489 A JP20159489 A JP 20159489A JP 20159489 A JP20159489 A JP 20159489A JP H0364946 A JPH0364946 A JP H0364946A
Authority
JP
Japan
Prior art keywords
film
type impurity
substrate
element isolation
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20159489A
Other languages
Japanese (ja)
Inventor
Atsuhiro Kajitani
敦宏 柁谷
Mikio Kishimoto
岸本 幹夫
Yasuhiro Takasu
高須 保弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP20159489A priority Critical patent/JPH0364946A/en
Publication of JPH0364946A publication Critical patent/JPH0364946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make possible the formation of an element isolation of a small narrow-channel effect by a method wherein a selective ion-implantation process, by which the position of the peak of an impurity concentration becomes a specified position from the surface of a silicon substrate, and a process for oxidizing selectively the silicon substrate on said implanted part are provided. CONSTITUTION:An impurity is implanted using ions of an accelerating energy in a selective ion implantation process, by which the position of the peak of an impurity concentration becomes a position of 0.4 to 0.6mum from the surface of a substrate, and after a P-type impurity layer is formed, the substrate on this P-type impurity layer is selectively oxidized. A silicon nitride film 3a is selectively removed by dry etching using a resist film 4 formed by patterning as a mask and after a silicon nitride film 3b with a pattern transferred thereon is formed, boron ions 5 are implanted in 4X10<13>/cm<-2> in 200keV, for example, and a P-type impurity diffused layer 6a is formed. Then, the film 4 is removed and an oxide film 7 of about 600nm is formed on the opening parts of the film 3b, which is formed by patterning and consists of an oxidation resisting material, by selective oxidation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体素子分離の形成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming semiconductor isolation.

従来の技術 近年、半導体基板に多数の機能素子を組み込む集積回路
技術が発達してきた。このような集積回路における高集
積化を実現する素子の分離技術の一手段として、局部酸
化法、いわゆるLOCO8法がある。
BACKGROUND OF THE INVENTION In recent years, integrated circuit technology has developed in which a large number of functional elements are incorporated into a semiconductor substrate. A local oxidation method, the so-called LOCO8 method, is one means of element isolation technology for achieving high integration in such integrated circuits.

ところが、素子の微細化につれて、LOCO8法では、
分離層となる酸化膜直下の不純物の酸化時の熱による拡
散が無視できなくなってきている。
However, as devices become smaller, the LOCO8 method
It is becoming impossible to ignore the diffusion of impurities directly under the oxide film that serves as the separation layer due to heat during oxidation.

以下に、従来の半導体素子分離の形成方法について第4
図(a)〜(d)の工程順断面図を用いて説明する。
Below, we will discuss the fourth method of forming conventional semiconductor element isolation.
This will be explained using step-by-step cross-sectional views of FIGS. (a) to (d).

第4図(al〜(dlにおいて、11はp型シリコン基
板、12はシリコン酸化膜、13a、13bおよび13
cはシリコン窒化膜、14はレジスト膜、15はポロン
イオン、16aおよび16bはp型不純物拡散層、17
はシリコン酸化膜、18はゲート酸化膜、19はゲート
ポリシリコン膜である。
FIG. 4 (al to (dl), 11 is a p-type silicon substrate, 12 is a silicon oxide film, 13a, 13b and 13
c is a silicon nitride film, 14 is a resist film, 15 is a poron ion, 16a and 16b are p-type impurity diffusion layers, 17
1 is a silicon oxide film, 18 is a gate oxide film, and 19 is a gate polysilicon film.

まず、第4図(a)に示すように、p型シリコン基板1
1に熱酸化によりシリコン酸化膜12を40nm成長さ
せ、その上にCVD法を用い、シリコン窒化膜13aを
150nm堆積する。続いてレジスト14を塗布し、露
光現像により所望のパターンのレジスト膜14を形成す
る。
First, as shown in FIG. 4(a), a p-type silicon substrate 1
1, a silicon oxide film 12 is grown to a thickness of 40 nm by thermal oxidation, and a silicon nitride film 13a is deposited thereon to a thickness of 150 nm using the CVD method. Subsequently, a resist 14 is applied, and a desired pattern of the resist film 14 is formed by exposure and development.

次に、第4図(b)に示すように、パターン形成された
レジスト膜14をマスクとして、シリコン窒化膜13a
をドライエツチングにより選択除去し、パターン転写し
たシリコン窒化膜13bを形威した後、ボロンイオン1
5を比較的低加速、例えば5QkeVで4 X 101
3/ am−2注入し、p型不純物拡散層16aを形成
する。
Next, as shown in FIG. 4(b), using the patterned resist film 14 as a mask, the silicon nitride film 13a is
After selectively removing the silicon nitride film 13b by dry etching and shaping the pattern-transferred silicon nitride film 13b, boron ions 1
5 at relatively low acceleration, e.g. 4 x 101 at 5QkeV
3/am-2 is implanted to form a p-type impurity diffusion layer 16a.

次に、第4図(C1に示すように、レジスト膜14を除
去し、パターン形成された耐酸化材のシリコン窒化膜1
3bの開口部分を選択酸化することにより、約600n
mの酸化膜17を形成する。これらの工程で、厚い酸化
膜17とp型不純物拡散層16bを備えた半導体素子の
分離層が形成される。
Next, as shown in FIG. 4 (C1), the resist film 14 is removed and the patterned oxidation-resistant silicon nitride film 1 is removed.
By selectively oxidizing the opening portion of 3b, approximately 600n
An oxide film 17 of m is formed. Through these steps, a semiconductor element isolation layer including the thick oxide film 17 and the p-type impurity diffusion layer 16b is formed.

その後、第4図Td)に示すように、リン酸でシリコン
窒化膜13cを除去し、弗化アンモンと弗酸の混合液(
20:1)で1分エツチングして素子領域の酸化膜を除
去した後、10nmのゲート酸化膜18を形威し、さら
に、所望のパターンのゲートポリシリコン膜19を形成
し、MO8型半導体素子を形成する。
Thereafter, as shown in FIG. 4 Td), the silicon nitride film 13c is removed with phosphoric acid, and a mixed solution of ammonium fluoride and hydrofluoric acid (
After removing the oxide film in the element region by etching at a ratio of 20:1) for 1 minute, a 10 nm gate oxide film 18 is formed, and then a gate polysilicon film 19 with a desired pattern is formed, forming an MO8 type semiconductor element. form.

発明が解決しようとする課題 しかしながら、素子分離領域に形成するp型不純物拡散
層は、選択酸化、ゲート酸化、およびゲートポリシリコ
ンへのリンの気相拡散などの高温の熱処理によって著し
く拡散し、素子領域にしみだし、素子領域の基板表面の
不純物濃度が増加し、ゲート幅の狭い素子では、しきい
値電圧が上昇するナローチャンネル効果が生じるという
問題がある。
Problems to be Solved by the Invention However, the p-type impurity diffusion layer formed in the element isolation region is significantly diffused by high-temperature heat treatments such as selective oxidation, gate oxidation, and vapor phase diffusion of phosphorus into gate polysilicon. There is a problem in that the impurity concentration on the substrate surface of the device region increases, and in devices with narrow gate widths, a narrow channel effect occurs in which the threshold voltage increases.

課題を解決するための手段 上記課題を解決するために、本発明は、不純物濃度のピ
ークが基板表面より0.4μm〜0.6μmとなる加速
エネルギーのイオンを用いて注入し、p型不純物層を形
成したのち、このp型不純物層上の基板を選択酸化する
Means for Solving the Problems In order to solve the above problems, the present invention implants ions with acceleration energy such that the impurity concentration peak is 0.4 μm to 0.6 μm below the substrate surface, and implants the p-type impurity layer. After forming the p-type impurity layer, the substrate on the p-type impurity layer is selectively oxidized.

作用 このような方法を用いることにより、高温の熱処理によ
る不純物拡散があっても、素子領域の基板表面の不純物
濃度の変化は少なく、ナローチャンネル効果の小さな素
子分離の形成が可能である。
Effect: By using such a method, even if impurity diffusion occurs due to high-temperature heat treatment, there is little change in the impurity concentration on the substrate surface in the element region, and it is possible to form element isolation with a small narrow channel effect.

実施例 以下に、本発明の半導体素子分離の形成方法について第
1図(a)〜(dlの工程順断面図を参照しながら説明
する。
EXAMPLES Below, a method for forming a semiconductor element isolation according to the present invention will be described with reference to step-by-step sectional views of FIGS. 1(a) to (dl).

第1図(al〜Td)において、1はp型シリコン基板
、2はシリコン酸化膜、3a、3bおよび3cはシリコ
ン窒化膜、4はレジスト膜、5はボロンイオン、6aお
よび6bはp型不純物拡散層、7はシリコン酸化膜、8
はゲート酸化膜、9はゲートポリシリコン膜である。
In FIG. 1 (al to Td), 1 is a p-type silicon substrate, 2 is a silicon oxide film, 3a, 3b and 3c are silicon nitride films, 4 is a resist film, 5 is a boron ion, 6a and 6b are p-type impurities Diffusion layer, 7, silicon oxide film, 8
9 is a gate oxide film, and 9 is a gate polysilicon film.

まず、第1図(alに示すように、p型シリコン基板1
に熱酸化によりシリコン酸化膜2を40nm成長させ、
その上にCVD法を用い、シリコン窒化膜3aを150
nm堆積する。続いてレジスト4を塗布し、露光現像に
より所望のパターンのレジスト膜4を形成する。
First, as shown in FIG. 1 (al), a p-type silicon substrate 1
A silicon oxide film 2 is grown to a thickness of 40 nm by thermal oxidation.
On top of that, a silicon nitride film 3a with a thickness of 150 mm is deposited using the CVD method.
nm deposited. Subsequently, a resist 4 is applied, and a desired pattern of the resist film 4 is formed by exposure and development.

次に、第1図(blに示すように、パターン形成された
レジスト膜4をマスクとして、シリコン窒化膜3aをド
ライエツチングにより選択除去し、パターン転写したシ
リコン窒化膜3bを形成した後、ボロンイオン5を、例
えば200keVで4 X 10 I3/ am−”注
入し、p型不純物拡散層6aを形成する。
Next, as shown in FIG. 1 (bl), using the patterned resist film 4 as a mask, the silicon nitride film 3a is selectively removed by dry etching to form a pattern-transferred silicon nitride film 3b. 5 is implanted at, for example, 200 keV in an amount of 4.times.10 I3/am-" to form a p-type impurity diffusion layer 6a.

次に、第1図(C)に示すように、レジスト膜4を除去
し、パターン形成された耐酸化材のシリコン窒化膜3b
の開口部分を選択酸化により、約600nmの酸化膜7
を形成する。これらの工程で、厚い酸化膜7とp型不純
物拡散層6bを備えた半導体素子の分離層が形成される
Next, as shown in FIG. 1C, the resist film 4 is removed and the patterned silicon nitride film 3b of the oxidation-resistant material is removed.
An oxide film 7 of approximately 600 nm is formed by selective oxidation of the opening portion of the
form. Through these steps, a semiconductor element isolation layer including the thick oxide film 7 and the p-type impurity diffusion layer 6b is formed.

その後、第1図1dlに示すように、リン酸でシリコン
窒化膜3Cを除去し、弗化アンモンと弗酸の混合液(2
0:1)で1分エツチングし素子領域の酸化膜を除去し
た後、10nmのゲート酸化膜8を形成し、さらに、所
望のパターンのゲートポリシリコン膜9を形威し、MO
8型半導体素子を形成する。
Thereafter, as shown in FIG. 1 1dl, the silicon nitride film 3C is removed with phosphoric acid, and a mixed solution of ammonium fluoride and hydrofluoric acid (2
After removing the oxide film in the element region by etching at a ratio of 0:1) for 1 minute, a gate oxide film 8 of 10 nm is formed, and then a gate polysilicon film 9 of a desired pattern is formed, and MO
An 8-type semiconductor element is formed.

第2図にシリコン基板表面の不純物濃度分布を示す。従
来の素子分離形成方法に比べ、本発明の方法では、p型
不純物の素子領域へのしみだしが小さいことがわかる。
FIG. 2 shows the impurity concentration distribution on the surface of the silicon substrate. It can be seen that the method of the present invention causes less p-type impurity to seep into the element region than the conventional method for forming element isolation.

第3図は、ゲート幅としきい値電圧の関係で、ナローチ
ャンネル効果を示す。本発明の素子分離形成方法では、
従来方法に比べ、ナローチャンネル効果が著しく低減し
ている。
FIG. 3 shows the narrow channel effect in terms of the relationship between gate width and threshold voltage. In the element isolation forming method of the present invention,
Compared to the conventional method, the narrow channel effect is significantly reduced.

また、本発明は、注入エネルギーによって、不純物濃度
のピーク位置を正確に変更できるので、熱処理条件の変
更にも容易に対処できる優れた素子分離形成方法である
Further, the present invention is an excellent element isolation formation method that can easily handle changes in heat treatment conditions because the peak position of the impurity concentration can be changed accurately depending on the implantation energy.

また、実施例では、nチャンネルMOS型半導体素子に
ついて説明したが、リンイオンを使用すれば、pチャン
ネルMOS型半導体素子にも適用できる。
Further, in the embodiment, an n-channel MOS type semiconductor device has been described, but if phosphorus ions are used, the present invention can also be applied to a p-channel MOS type semiconductor device.

発明の効果 本発明によれば、p型不純物濃度のピークを基板表面か
ら0.4μm〜0.6μmの位置とする加速エネルギー
で注入するので、高温の熱処理での拡散による、素子領
域の不純物濃度の変化、すなわち、同不純物のしみだし
は少ない。
Effects of the Invention According to the present invention, the p-type impurity concentration is implanted with acceleration energy that makes the peak concentration 0.4 μm to 0.6 μm from the substrate surface, so that the impurity concentration in the element region due to diffusion during high-temperature heat treatment is reduced. In other words, there is little change in the amount of the same impurity seeped out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(dlは本発明の一実施例における半導
体素子分離形成の工程順断面図、第2図は分離領域と素
子領域における基板表面の不純物濃度分布を示すグラフ
、第3図はナローチャンネル効果を示すグラフ、第4図
は従来の半導体素子分離形成の工程順断面図である。 1・・・・・・p型シリコン基板、2・・・・・・シリ
コン酸化膜、3a、3bおよび3c・・・・・・シリコ
ン窒化膜、4・・・・・・レジスト膜、5・・・・・・
ポロンイオン、6aおよび6b・・・・・・p型不純物
拡散層、7・・・・・・シリコン酸化膜、8・・・・・
・ゲート酸化膜、9・・・・・・ゲートポリシリコン膜
、11・・・・・・p型シリコン基板、12・・・・・
・シリコン酸化膜、13a、13bおよび13c・・・
・・・シリコン窒化膜、14・・・・・・レジスト膜、
15・・・・・・ポロンイオン、16aおよび16b・
・・・・・p型不純物拡散層、17・・・・・・シリコ
ン酸化膜、18・・・・・・ゲート酸化膜、19・・・
・・・ゲートポリシリコン膜。
FIG. 1 (al to (dl) are cross-sectional views in the order of steps for semiconductor element isolation formation in one embodiment of the present invention, FIG. 2 is a graph showing the impurity concentration distribution on the substrate surface in the isolation region and the element region, and FIG. 3 is A graph showing the narrow channel effect, and FIG. 4 are cross-sectional views in the order of steps of conventional semiconductor element isolation formation. 1...p-type silicon substrate, 2... silicon oxide film, 3a, 3b and 3c...Silicon nitride film, 4...Resist film, 5...
Poron ions, 6a and 6b...p-type impurity diffusion layer, 7...silicon oxide film, 8...
・Gate oxide film, 9... Gate polysilicon film, 11... P-type silicon substrate, 12...
・Silicon oxide film, 13a, 13b and 13c...
...Silicon nitride film, 14...Resist film,
15... Poron ion, 16a and 16b.
...p-type impurity diffusion layer, 17 ... silicon oxide film, 18 ... gate oxide film, 19 ...
...Gate polysilicon film.

Claims (1)

【特許請求の範囲】[Claims] 不純物濃度のピーク位置がシリコン基板表面から0.4
μm〜0.6μmの位置となる選択イオン注入工程と同
注入部上の前記シリコン基板の選択酸化工程とを備えた
半導体素子分離の形成方法。
The peak position of impurity concentration is 0.4 from the silicon substrate surface.
A method for forming semiconductor element isolation comprising a selective ion implantation step at a position of .mu.m to 0.6 .mu.m and a selective oxidation step of the silicon substrate on the same implantation part.
JP20159489A 1989-08-03 1989-08-03 Formation of semiconductor element isolation Pending JPH0364946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20159489A JPH0364946A (en) 1989-08-03 1989-08-03 Formation of semiconductor element isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20159489A JPH0364946A (en) 1989-08-03 1989-08-03 Formation of semiconductor element isolation

Publications (1)

Publication Number Publication Date
JPH0364946A true JPH0364946A (en) 1991-03-20

Family

ID=16443645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20159489A Pending JPH0364946A (en) 1989-08-03 1989-08-03 Formation of semiconductor element isolation

Country Status (1)

Country Link
JP (1) JPH0364946A (en)

Similar Documents

Publication Publication Date Title
JPH0638479B2 (en) CMOS integrated circuit technology
JPS61237422A (en) Manufacture of semiconductor device
JPH0974072A (en) Manufacture of semiconductor device
JPS62130558A (en) Manufacture of integrated circuit device
JPH0324727A (en) Manufacture of semiconductor device
EP0164737A2 (en) A method of fabricating self-aligned regions in a substrate
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH1041476A (en) Manufacturing method of semiconductor device
JPH0364946A (en) Formation of semiconductor element isolation
JPS6197859A (en) Manufacture of cmos ic
JP2003031679A (en) Method for manufacturing semiconductor device
JP2000183175A (en) Manufacture of semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPH03191529A (en) Manufacture of semiconductor device
JPH02106043A (en) Manufacture of semiconductor device
JPH0358430A (en) Semiconductor device and manufacture thereof
JPH0274042A (en) Manufacture of mis transistor
JPS6197974A (en) Manufacture of semiconductor device
JPH0316232A (en) Manufacture of charge coupled device
JPH05166746A (en) Manufacture of semiconductor device
JPS62131538A (en) Manufacture of semiconductor device
JPH0428246A (en) Semiconductor device and manufacture thereof
JPH05175441A (en) Semiconductor device and manufacture thereof
JPS60134469A (en) Manufacture of semiconductor device
JPH0714988A (en) Manufacture of semiconductor device