JPH0361326A - 冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法 - Google Patents

冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法

Info

Publication number
JPH0361326A
JPH0361326A JP19742989A JP19742989A JPH0361326A JP H0361326 A JPH0361326 A JP H0361326A JP 19742989 A JP19742989 A JP 19742989A JP 19742989 A JP19742989 A JP 19742989A JP H0361326 A JPH0361326 A JP H0361326A
Authority
JP
Japan
Prior art keywords
annealing
cooling rate
secondary recrystallization
steel sheet
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19742989A
Other languages
English (en)
Other versions
JPH0757889B2 (ja
Inventor
Yozo Suga
菅 洋三
Hidehiro Kuwatori
英宏 鍬取
Isao Iwanaga
功 岩永
Nobuyuki Takahashi
延幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1197429A priority Critical patent/JPH0757889B2/ja
Publication of JPH0361326A publication Critical patent/JPH0361326A/ja
Publication of JPH0757889B2 publication Critical patent/JPH0757889B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気機器の鉄心材料として用いられる軟磁性
材料である一方向性電磁鋼板の製造法に関するものであ
る。
(従来の技術) 一方向性電磁鋼板は、鋼板面が(110)面で圧延方向
に<001>軸を有する所謂ゴス方位(ミラー指数で(
110)<001>と表す)をもつ結晶粒から構成され
ており、軟磁性材料として変圧器或は発電機用の鉄心に
使用される。一方向性電磁網板は、磁気特性として磁化
特性と鉄損特性が良好であることが要求される。
磁化特性は、かけられた一定の磁場力の下で鉄心内に誘
起される磁束密度の高低によってその良否が評価される
。高い磁束密度をもつ一方向性電磁鋼板は、結晶粒の方
位を(110) <001>に高度に揃えることによっ
て得られる。
鉄損特性は、鉄心に所定の交流磁場を与えた場合に熱エ
ネルギとして消費される電力損失の多寡によってその良
否が評価される。鉄損特性の良否には、磁束密度、板厚
、比抵抗、結晶粒径等の因子が影響する。高い磁束密度
をもつ一方向性電磁鋼板は、電気機器を小型化すること
を可能ならしめるとともに、鉄損特性を良好ならしめる
ので非常に好ましい。
ところで、一方向性電磁鋼板は、熱間圧延、冷間圧延お
よび焼鈍の適切な組み合わせによって最終板厚とした鋼
板に、高温の仕上焼鈍を施すことによって(110)<
001>方位を有する一次再結晶粒が選択的に成長する
、所謂、二次再結晶によって得られる。
二次再結晶は、二次再結晶前の鋼板中に微細な析出物、
たとえばMnS 、、A7NSMnSe等が存在するこ
と或いはSn、 Sb、 P等の粒界存在型の元素が存
在することによって達成される。これら鋼板中の微細な
析出物或は粒界存在型の元素は、仕上焼鈍中の(110
) <oo 1>方位以外の一次再結晶粒の成長を抑え
、(110)<001>方位粒を選択的に成長させる機
能を持つ。このような粒成長の抑制作用を、一般に、イ
ンヒビター効果と呼んでいる。従って、当該技術分野に
おける研究開発の重点課題は、如何なる種類の析出物或
は粒界存在型の元素を用いて二次再結晶を安定させるか
、そして正確な(110)<oot>方位粒の存在割合
を高めるために、それらの適切な存在状態を如何にして
達成するかにある。
現在、工業生産されている代表的な一方向性電磁鋼板+
板の製造方法は、3種類ある。
第1の技術は、M、F、  リットマンによる、特公昭
30−3651号公報に開示された、MnSをインヒビ
ターとして機能させる2回冷延法による製造方法である
第2の技術は、出口、坂倉による、特公昭40−156
44号公報に開示された、AffiN+MnSをインヒ
ビターとして機能させる最終冷間圧延を80%以上の強
圧下率の適用下に行う製造方法である。
第3の技術は、身中等による、特公昭51−13469
号公報に開示された、MnS  (または、およびMn
Se )+sbをインヒビターとして機能させる2回冷
延法による製造方法である。
これらの技術においては、何れも析出物を微細、均一に
分散、析出せしめる手段として熱間圧延に先立つ鋳片の
加熱段階での加熱温度を、第1の技術にあっては、12
60°C以上、第2の技術にあっては、特開昭48−5
1852号公報に開示されているように、素材における
Si含有量によるが、3%Stの場合で1350°C1
第3の技術にあっては、特開昭51−20716号公報
に開示されているように、1230°C以上、高い磁束
密度を有する製品が得られる実施例では、1320°C
といった極めて高い温度に鋳片を加熱することによって
、粗大な状態で存在する析出物を一旦固溶させ、その後
の熱間圧延或は熱処理中に微細に分散、析出させるよう
にしている。
鋳片の加熱温度を高くすることには、加熱時の使用エネ
ルギの増大、ノロと呼ばれる溶融スラグの発生に起因す
る歩留りの低下ならびに加熱炉の補修頻度が高くなるこ
とによるメインテナンスコストの増大および設備稼動率
の低下といった問題があるほか、特公昭57−4152
6号公報に開示されているように、二次再結晶不良が発
生するために、連続鋳造鋳片を使用するには種々の対策
が必要であり、さらに、特公昭59−7758号公報に
開示されているように、製品板厚を薄くすると、この二
次再結晶不良が一層増加する等の問題があった。鋳片の
高温加熱に起因する、これらの問題を解決するための技
術として、特公昭61−60896号公報に開示された
技術がある。この技術においては、鋳片は、1280°
C未満、実施例ではたと′えば1150°Cといった低
温に加熱されるから、上述の従来技術における問題は、
根本的に解決される。しかしながら、この技術にあって
も、高い磁束密度を有する製品を安定して製造し得るこ
とおよびさらなる低コスト化のために、解決さるべき課
題がある。
(発明が解決しようとする課題) 本発明は、鋳片加熱時に、インヒビターの作り込みをす
ることなく、脱炭焼鈍から仕上焼鈍における二次再結晶
開始までの何れかの段階で鋼板を窒化処理することによ
り、二次再結晶に必要な析出物を形成せしめることを基
盤とする一方向性電磁鋼板の製造方法において、極めて
安定した二次再結晶を実現させることにより、高磁束密
度を有する製品を得ることを遠戚しかつ、基本的には熱
間圧延を省略した鋳造薄帯を素材とすることにより、よ
り低コストのプロセスを実現することを課題とするもの
で、就中良好な磁気特性を有する製品を低コストで製造
し得る一方向性電磁鋼板の製造方法を提供することを目
的とするものである。
(課題を解決するための手段) 本発明の要旨とするところは下記のとおりである。
(1)重量で、Si:1.5〜4.7%、y、 : 0
.006〜0.032%(但し、M、−酸可溶性AI−
AlasAjN+27/ 14  (N  as Ti
N+N  as  BN))、total N≦0.0
095%を含み、残部が実質的にFeからなる鋼板に、
1回或は中間焼鈍を挟む2回以上の冷間圧延を施して最
終板厚とし、次いで脱炭焼鈍、焼鈍分離剤塗布を施した
後、二次再結晶を目的とする仕上焼鈍を施すプロセスに
あって、脱炭焼鈍から仕上焼鈍における二次再結晶開始
までの何れかの段階で鋼板の窒化処理を施す一方向性電
磁鋼板の製造方法において、冷間圧延素材として鋳造時
の(α+γ)二相共存域における冷却速度を8.5°C
/ s以上として凝固時のαおよびT中のSiの成分分
配比を小さくした鋳造薄帯を用いることを特徴とする冷
却速度制御鋳造材を用いた一方向性電磁鋼板の製造法。
(2)冷間圧延に先立って、冷間圧延素材を800〜1
120℃の温度域で焼鈍する前項1記載の冷却速度制御
鋳造材を用いた一方向性電磁鋼板の製造法。
(3)  αおよびγに対応する部分のSi比St i
nα/5iin γを1.04以下とした鋳造薄帯を冷
間圧延素材とする前項1または2記載の冷却速度制御鋳
造材を用いた一方向性電磁鋼板の製造法。
以下に、本発明の詳細な説明する。
先に述べたように、高配向(110) <001>方位
粒を安定して発現させるためには、二次再結晶に必要な
析出物を鋼中に均一に存在させる必要がある。鋼中の析
出物に疎密がある場合、たとえば、高配向の(110)
<001>方位粒出現潜在的位置の析出物が密で、その
他の方位粒位置の析出物が疎であると、高配向(110
) <001>方位粒の成長開始前にその他の方位粒の
成長が始まり、二次再結晶不良或は低配向二次再結晶に
なると考えられる。特に製品厚が薄くなり、板厚方向に
おける一次再結晶粒の個数が少なくなってくると、析出
物の疎密の悪影響が顕著に現れる。
ところで、本発明で基盤とする析出物形成法は一次再結
晶完了後から二次再結晶開始までの何れかの段階で鋼板
を窒化処理することにより、一部Mnを含むこともある
(iV、 5i)Nを主体とする複成分析出物を形成せ
しめるものである。従って、(AJ、 5i)Nを鋼中
に均一に形成せしめるためには、この析出物の構成元素
であるAJ、5iが鋼板全域に亙って均質でなければな
らない。本発明者等は、従来、一般に行なわれている鋳
造スラブを出発材とするプロセスにおいては、鋼板にS
iのミクロ偏析が見られることを知見した。就中、鋳造
後のスラブを、インヒビターとしての析出物を1400
°C前後の温度域で溶体化すべく、高温、長時間加熱す
る従来プロセスとは異なり、スラブ加熱段階では析出物
を溶体化しない本発明の基盤となるプロセスにおいては
、鋳造時のSi偏析は、解消し難い。
而して、このSi偏析は、AN、 Nの存在にも影響す
ると考えられる。即ち、高Si部にはフリーのM。
Nが少なく、低Si部にはフリーのAN、  Nが多く
存在すると思われる。
このような知見に基づき、本発明者等はさらに研究を進
めた結果、鋳造時の鋳片の冷却速度を一定以上に速くし
て凝固速度を高めると、成分が均質になり、鋼板の窒化
処理によって(/V、 5i)Nを均−に形成せしめる
のに極めて有効であることを発見した。而して、これに
よって二次再結晶が安定し、特に、本発明者等の一部が
先に特願平1−82393号にて提案した、高配向な二
次再結晶を得るのに有効である最終冷延後の一次再結晶
温度を高くする条件下でも二次再結晶が生じるので、高
磁束密度を有する一方向性電磁鋼板を安定して製造でき
る。
以下に、Si含有鋼における凝固速度とSi偏析状況を
示し、そのときの二次再結晶挙動を説明する。
重量で、Si:3.35%、C: 0.063%、Mn
:0.12%、s : o、 o o s%、酸可溶性
iV: 0.030%、total N : 0.00
75%を含有する溶鋼を、1150°Cまでの冷却速度
として、5.4°C/ll1in 、 54”C/mi
n 、600°C/n+inで凝固させ、その後水中に
浸漬して急冷させて2.8圓厚さの鋳造薄帯を作成した
この鋳造薄帯について、EPMAで組織に沿って線分析
を行い、Siの成分分布状況を調査した。
第1図に、5.4°C/win 、54°[/minの
冷却速度のものについて、Siの成分分布状況を実測し
た結果を示す。この組織の隣接した部位について、Si
の測定値の高い領域と低い領域とを対応させて第2図に
示す。なお、このようなStの不均一状態は、Fe−3
i−C状態図で、溶鋼が冷却される過程で、αからγが
晶出する際にSi分配が生じ、γ中のSiは排出され、
α中に濃く固溶したために生じたと考えられる。第2図
におけるX軸は、Siの低い領域即ちT域、Y軸はSi
の高い領域即ちα域を示す。第2図から、凝固時の冷却
速度が高くなるとSiの不均一さが少なくなることが分
る。次に、この鋳造薄帯に1120℃×1分間の焼鈍を
施した後、0.23mm厚さまで冷間圧延し、次いで、
800〜920 ℃の温度域でそれぞれ3分間、湿水素
雰囲気中で脱炭焼鈍し、MgO中に5%の窒化フェロマ
ンガンを添加した焼鈍分離剤を塗布、乾燥した後120
0°CX20hrsの仕上焼鈍を施した。
こうして得られた製品の磁束密度(B、値)と二次再結
晶不良に起因する細粒発生の程度を、第3図に示す。第
3図から明らかなように、本発明で基盤としている二次
再結晶前、−次回結晶後に鋼板を窒化することによって
インヒビターを形成する製造プロセスにおいては、特願
平1−82235号に示すように、特に、−次頁結晶と
脱炭を行う焼鈍工程において、−次回結晶温度を高くす
ると、製品の磁束密度が高くなるけれども、一定温度以
上では二次再結晶しなくなる。また、凝固時の冷却速度
を高くすることによって、二次再結晶不良が発生する温
度レベルが高くなることが分る。従って、凝固時の冷却
速度を高くすることにより、高温の脱炭および一次再結
晶焼鈍を採用できるから、磁束密度の高い製品を得るこ
とを可能にする。
本発明者等による、鋳造時の冷却速度を変えた実験によ
れば、510°C/1IIin  (8,5°C/ s
 )以上の冷却速度であれば、Siの偏析が少なく二次
再結晶が安定する。このときのSt inα/5iin
 γは、1.04である。
このような二次再結晶安定化の効果は、凝固時の冷却速
度を高めると、成分が均一になるため窒化後の析出物が
均一に形成され、脱炭焼鈍温度を高くしても結晶粒が均
一に戒長し、所謂混粒にならなかったために得られたと
考えられる。
以下、本発明の実施態様について述べる。
先ず、素材成分であるが、SiとMが本発明では二次再
結晶に必要な析出物として(Al、 5t)Nを用いる
ところから、必須である。
Siが1.5%未満では、仕上焼鈍時に鋼がα+T二相
になり、二次再結晶方位が破壊されるので1、5%以上
とする。一方、Siが4.7%を超えると、鋼板を冷間
圧延するときに割れが大きくなるので、4.7%以下と
する。
Mについては、銅板を窒化処理するときに析出物を形成
可能な状態、即ち、固溶AI量として、A11l=AI
−Al as A1N+ 27/ 14 (N as 
TiN+Na5BN)を規定し、二次再結晶が安定して
生じるに必要な量として、0.006〜0.032%を
限定範囲とする。
ここで、7VRを説明する。通常の分析で測定される酸
可溶性Mは、固溶A7.!ニアVNであるので先ず酸可
溶性MからA7NとしてのMを減じる。また、溶鋼にT
i、  Bが含まれる場合、TiNとBNが凝固中に安
定的に析出し鋼中のNを固定するからその分だけAIN
として析出する量が減少し、固溶Alが増加することに
なるので、27/ 14 (N as TiN+Na5
BN)だけMが増加したことになる。前記両者を加えた
ものが、窒化物形成可能な量であり、これをN、Iとす
る。
次にtotal Nについて述べるとtotal Nが
0.0095%を超えると、ブリスターと呼ばれる鋼板
の脹れが著しいので、0.0095%以下とする。
その他の成分にっていは、本発明の基本思想を逸脱しな
い範囲で含有せしめることは差し支えない。
一般に、元素は、その傾向の大小はあるが、α/γに分
配されるものであるから、基本的には含有しない方が窒
化物形成には望ましい。特に本発明の効果が著・しいの
は、α→γ変態が多い場合であり、Si:1.5〜4.
7%の範囲で、この変態が生しる成分系での本発明の意
義が大きい。例えば、Si:2.0%では、Cとして約
0.02%以上、Si:4.7%では、Cとして約0.
042%以上の場合に、α→γ変態が生じ、その中間の
Si含有量領域ではCがこの0.02〜0.042%の
範囲にある場合に、本発明の手段が明確な効果を現わす
ことになる。
一方、Mn、 Ni等のγ生成元素が含まれると、この
変態出現C量限界値が下がる。
これら成分を含有する溶鋼を、鋳造してスラブとする。
従来の、厚さ150〜300mmのスラブをアウトプッ
トする連続鋳造プロセスでは、8.5”C/ s以上の
冷却速度は実現できず、従来のプロセスでは、はぼ15
°C/itn  (0,25°C/ s )前後にある
。8.5°C/ s以上の冷却速度を実現するためには
、薄帯を直接的に鋳造によって得るプロセスが必要とな
る。たとえば、5 mm以下の厚さの薄帯を連続鋳造に
よって得る場合、特に困難な作業もなく連続的に冷却す
ることが可能である。冷却速度が高い程、成分偏析が少
なく望ましいから、冷却速度を高く採れるようにすべく
鋳造薄帯の厚さをより薄くすることが望ましいけれども
、後述するように、高い磁束密度を有する製品を得るた
めには高い冷延率での圧延を必要とし、従って、自ずか
ら鋳造薄帯の厚さが限定される。たとえば、0、06 
mmの製品厚さのものを、90%の冷延率で得ようとす
ると、冷延素材厚さ即ち鋳造薄帯の厚さは、0.6Mと
なる。鋳造過程での冷却速度が高い程、成分偏析が少な
く、均一な析出物の形成のために有利であるが、8.5
°C/ s以上の冷却速度であれば、はぼ満足できる。
この冷却速度を規定する領域は、α−T変態範囲である
。たとえば、c : o、o、io%、Si:3.35
%の調の場合、はぼ1320〜820°Cであるが、低
温域ではSiの拡散速度が極めて低く、Siの拡散によ
る分配が生じるのは、実質的には1150〜1320°
Cの温度域における冷却速度による。
上記鋳造薄帯は、既に薄くなっており、また、本発明に
おいて基盤としているプロセスの場合、従来プロセスに
おけるように、スラブ加熱段階で析出物を溶体化して熱
間圧延、焼鈍等の工程で析出させて二次再結晶発現に必
須なインヒビターを形成させることが必要ではなく、特
公昭62−45285号公報において述べているように
、むしろ有害であるから、熱間圧延することなく直接冷
間圧延工程に移る。但し、鋳造プロセスにおいて、鋳造
薄帯の形状を矯正すべく、軽度の加工を加えることは問
題ない。この鋳造薄帯に、結晶粒の状態を均質にするた
めに、800〜1120°Cの温度域で短時間の焼鈍を
施すと、製品の磁束密度が安定的に向上する。この鋳造
薄帯を直接に或は焼鈍後に冷間圧延し、最終板厚とする
。高い磁束密度を有する製品を得るためには、80%以
−E、望ましくは88%以上の強圧下を適用する冷間圧
延をすることが適切である。
なお、冷間圧延回数として、中間焼鈍を含む複数回の冷
間圧延工程を採ることもできるが、コストの上昇を招く
から複数回の冷間圧延工程を採る意義は小さく、1回の
冷間圧延工程で十分本発明の目的は達せられる。最終板
厚とされた材料は、次いで湿水素雰囲気中で短時間の脱
炭焼鈍を行う。
本発明のように、従来プロセスにおけるような熱間圧延
工程或は熱延板焼鈍工程で微細な析出物を作り込むこと
なく、冷間圧延した素材を脱炭焼鈍する場合、焼鈍温度
を高くして行くと結晶粒は円滑に戒長し、その鋼板を二
次再結晶させると、高配向(1101<001>が得ら
れる。しかし、限度以上に焼鈍温度を高くすると、二次
再結晶不良が発生する。この二次再結晶不良が出始める
温度は、鋳造時の冷却速度が高い程高くなる。この脱炭
焼鈍板に、焼鈍分離剤を塗布する。次いで、二次再結晶
を目的とする仕上焼鈍を行う。
本発明では、脱炭焼鈍後の鋼板を窒化能のある雰囲気中
で短時間焼鈍する方法、或は仕上焼鈍における昇温中、
二次再結晶開始までの間に窒化する方法の何れか一方ま
たは双方を組合せることにより、二次再結晶に有効な窒
化物を形成させることを、必須とする。
なお、後者は、鋼板を積層した状態或はストリップコイ
ルの状態で焼鈍がなされるところから、雰囲気による窒
化はでき難いので、焼鈍分離剤中に窒化能のある化合物
を添加することが、均一な窒化のために有効である。
(実施例) 実施例1 重量で、C: 0.068%、Si:3.35%、Mn
:0.12%、S : 0.008%、酸可溶性A7 
: 0.033%、total N : 0.0067
%、残部実質的にFeからなる溶鋼をはV 1400°
Cからは’; 1000°Cまでを平均冷却速度54°
C/minおよび600″C/n+inで厚さ2.0 
mmに鋳造した。この板を1050℃X 1.5 mi
n焼鈍後、0.1mm、0.2ma+、0.3 mm厚
さに冷間圧延し、860°Cで脱炭焼鈍し、焼鈍分離剤
としてMgO中に5%の窒化フェロマンガンを添加した
ものを塗布し、1200°CX20hrの仕上焼鈍を行
なった。この時の磁性と二次再結晶状況を第1表に示す
第1表 鋳造時の冷却速度が早い600°C/winのものは威
品厚に拘らず、二次再結晶が安定し、その時の配向度が
良好で磁束密度が高い。
実施例2 Si : 3.4%、Mn : 0.12%、S : 
0.008%、酸可溶性Aj : 0.034%、to
tal N : 0.0069%、残部実質的にFeか
らなり、Cとして0.008%と0.067%だけ含有
する2種類の溶鋼をはW’1400°CからはV 10
00°Cまでを平均冷却速度54°C/a+inと60
0℃/winとで板厚2. ONRに鋳造した。この板
を1050”CX 1.51IIin焼鈍後、0.15
mm厚に冷間圧延し、860℃で脱炭焼鈍し、焼鈍分離
剤としてMgO中に5%の窒化フェロマンガンを添加し
たものを塗布し、1200°CX20hrの仕上焼鈍を
行なった。この時の磁性と二次再結晶状況を第2表に示
す。
第2表 鋳造時の冷却速度が早い600°(:/minのものは
、いずれのC量についても二次再結晶が安定し、かつ磁
束密度が高い。
実施例3 Si:はり3.4%、Mn : 0.12%、S : 
0.007%、total N :はX’0.0073
%、残部実質的にFeから成る溶鋼で第3表に示すよう
な酸可溶性MとBとTiとがそれぞれ異る5種類の溶鋼
をは\’1400°CからはW’1000″Cまでを平
均冷却速度600 ”C/minで板厚2. Ortm
に鋳造した。この板を1050”CX1、5 win焼
鈍後、0.15ma+厚さに冷間圧延し、860°Cで
脱炭焼鈍し、焼鈍分離剤としてMgO中に5%の窒化フ
ェロマンガンを添加したものを塗布し、1200°CX
20hrの仕上焼鈍を行なった。この時の磁性と二次再
結晶状況を第3表に示す。
第3表 AtRが低くても、高くても二次再結晶不良が発生する
が、AI、lが適切であれば、二次再結晶、磁束密度と
もに良好である。
実施例4 実施例2の鋳造片を1120°CX1.5m1n焼鈍後
、板厚0.15mmに冷間圧延し、860°Cで脱炭焼
鈍した。その後の窒化処理として下記の3種類の方法を
行なった。
■焼鈍分離剤としてMgOを塗布する。
■焼鈍分離剤としてMgO+5%窒化フェロマンガンを
塗布する。
■脱炭焼鈍後にアンモニア含有水素雰囲気で800″C
X30secの窒化焼鈍後に焼鈍分離剤としてMgOを
塗布する。
かくして得られた3種類の板について1200°CX2
0hrの仕上焼鈍を行なった。この時の磁性と二次再結
晶状況を第4表に示す。
第4表 窒化を目的とした処理をしない■の条件によれば二次再
結晶不良が発生し磁性が悪いが、窒化をさせた■、■の
条件によれば二次再結晶、B、lいずれも良好である。
実施例5 実施例2の冷却速度600°C/n+inの鋳造片につ
いて、■焼鈍せず、0800°CX 1.5m1n 、
■1000°CX 1.5m1n 、■1120℃Xl
−5m1nの4種類の焼鈍を行なった後、板厚0.20
 anに冷間圧延した。湿水素中で860°Cの脱炭焼
鈍を行ない、焼鈍分離剤としてMgO中に5%の窒化フ
ェロマンガンを添加したものを塗布し、1200°CX
20hrの仕上焼鈍を行なった。この時の磁性と二次再
結晶状況を第5表に示す。
第5表 鋳造材を焼鈍することにより、磁束密度が高くなるが、
とりわけ800°C以上の温度で焼鈍した場合に高磁束
密度が得られる。
(発明の効果) 本発明によれば、仕上焼鈍における二次再結晶の発現が
極めて安定するので、磁気特性の優れた一方向性電磁鋼
板を安定して製造することができる。
【図面の簡単な説明】
第1図(a)、 (b)は、5.4°C/lll1n 
、 54°C/winの平均冷却速度で2.8 aii
厚さの薄帯を鋳造したものについて、EPMAで組織に
沿って線分析を行い、Stの成分分布状況を実測した結
果を示す図、第2図は、第1図における組織の隣接した
部位について、Stの高い領域と低い領域とを対応させ
て示す図、第3図は、鋳造過程における冷却速度水準別
に、脱炭焼鈍温度と製品の磁束密度および二次再結晶不
良発生の関係を示す図である。 第1図 (0L) 6−4 ℃/sz’n (b) 第2図 Sj ′(% ) 第3図 よダe偏、・7 6(’t7鏝、論 りωち〜171 ン1ら1と− [1鋳め湊却速度

Claims (3)

    【特許請求の範囲】
  1. (1)重量で、Si:1.5〜4.7%、Al_R:0
    .006〜0.032%(但し、Al_R=酸可溶性A
    l−Al_a_sAlN+27/14(N_a_sTi
    N+N_a_sBN))、totalN≦0.0095
    %を含み、残部が実質的にFeからなる鋼板に、1回或
    は中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚
    とし、次いで脱炭焼鈍、焼鈍分離剤塗布を施した後、二
    次再結晶を目的とする仕上焼鈍を施すプロセスにあって
    、脱炭焼鈍から仕上焼鈍における二次再結晶開始までの
    何れかの段階で鋼板の窒化処理を施す一方向性電磁鋼板
    の製造方法において、冷間圧延素材として鋳造時の(α
    +γ)二相共存域における冷却速度を8.5℃/s以上
    として凝固時のαおよびγ中のSiの成分分配比を小さ
    くした鋳造薄帯を用いることを特徴とする冷却速度制御
    鋳造材を用いた一方向性電磁鋼板の製造法。
  2. (2)冷間圧延に先立って、冷間圧延素材を800〜1
    120℃の温度域で焼鈍する請求項1記載の冷却速度制
    御鋳造材を用いた一方向性電磁鋼板の製造法。
  3. (3)αおよびγに対応する部分のSi比Siinα/
    Siinγを1.04以下とした鋳造薄帯を冷間圧延素
    材とする請求項1または2記載の冷却速度制御鋳造材を
    用いた一方向性電磁鋼板の製造法。
JP1197429A 1989-07-29 1989-07-29 冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法 Expired - Lifetime JPH0757889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197429A JPH0757889B2 (ja) 1989-07-29 1989-07-29 冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197429A JPH0757889B2 (ja) 1989-07-29 1989-07-29 冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法

Publications (2)

Publication Number Publication Date
JPH0361326A true JPH0361326A (ja) 1991-03-18
JPH0757889B2 JPH0757889B2 (ja) 1995-06-21

Family

ID=16374371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197429A Expired - Lifetime JPH0757889B2 (ja) 1989-07-29 1989-07-29 冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法

Country Status (1)

Country Link
JP (1) JPH0757889B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739384B2 (en) 2001-09-13 2004-05-25 Ak Properties, Inc. Method of continuously casting electrical steel strip with controlled spray cooling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397923A (en) * 1977-02-08 1978-08-26 Nippon Steel Corp Manufacture of oriented electrical steel sheet with high magnetic flux density
JPS6393824A (ja) * 1986-10-07 1988-04-25 Nippon Steel Corp 磁気特性、皮膜特性ともすぐれた方向性電磁鋼板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397923A (en) * 1977-02-08 1978-08-26 Nippon Steel Corp Manufacture of oriented electrical steel sheet with high magnetic flux density
JPS6393824A (ja) * 1986-10-07 1988-04-25 Nippon Steel Corp 磁気特性、皮膜特性ともすぐれた方向性電磁鋼板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739384B2 (en) 2001-09-13 2004-05-25 Ak Properties, Inc. Method of continuously casting electrical steel strip with controlled spray cooling

Also Published As

Publication number Publication date
JPH0757889B2 (ja) 1995-06-21

Similar Documents

Publication Publication Date Title
JP4653261B2 (ja) 薄いスラブからの高磁気特性を備えた粒配向性電気鋼ストリップの製造方法
JPH03211232A (ja) 磁束密度の高い一方向性珪素鋼板の製造方法
JP7507157B2 (ja) 方向性電磁鋼板およびその製造方法
JPH01283324A (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
KR950005793B1 (ko) 자속밀도가 높은 일방향성 전기 강스트립의 제조방법
SK284364B6 (sk) Spôsob riadenia inhibície pri výrobe oceľových plechov s orientovanou zrnitosťou
JP4653266B2 (ja) 一方向性電磁鋼板の製造方法
JP3359449B2 (ja) 超高磁束密度一方向性電磁鋼板の製造方法
JPS5836048B2 (ja) 鉄損の優れた一方向性電磁鋼板の製造法
JP4205816B2 (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
JPH042723A (ja) 磁束密度の高い二方向性電磁鋼板の製造方法
JPH02294428A (ja) 高磁束密度方向性電磁鋼板の製造法
JPH0361326A (ja) 冷却速度制御鋳造材を用いた一方向性電磁鋼板の製造法
JPH02228425A (ja) 高磁束密度方向性電磁鋼板の製造方法
KR100340495B1 (ko) 저온슬라브가열방식의고자속밀도방향성전기강판의제조방법
JPH05295440A (ja) 急冷凝固薄鋳片を用いた一方向性電磁鋼板の製造方法
JP2020509209A (ja) 方向性電磁鋼板およびその製造方法
JPH06256847A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2001192787A (ja) 磁気特性が良好な一方向性電磁鋼板およびその製造方法
JPH0730395B2 (ja) 表面脹れ欠陥の無い一方向性電磁鋼板の製造法
KR102319831B1 (ko) 방향성 전기강판의 제조방법
JP4473357B2 (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH06336611A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH0417618A (ja) 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH07258738A (ja) 高磁束密度一方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 15