JPH0358474A - Input protective device of semiconductor device - Google Patents

Input protective device of semiconductor device

Info

Publication number
JPH0358474A
JPH0358474A JP1193755A JP19375589A JPH0358474A JP H0358474 A JPH0358474 A JP H0358474A JP 1193755 A JP1193755 A JP 1193755A JP 19375589 A JP19375589 A JP 19375589A JP H0358474 A JPH0358474 A JP H0358474A
Authority
JP
Japan
Prior art keywords
type
high concentration
type well
diffusion region
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1193755A
Other languages
Japanese (ja)
Inventor
Koichi Murakami
浩一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1193755A priority Critical patent/JPH0358474A/en
Publication of JPH0358474A publication Critical patent/JPH0358474A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a surge current from being concentrated and to protect an element against damage when an electrostatic surge is impressed by a method wherein N-type high concentration diffusion regions formed on a first and a second P-type well respectively are connected to an output line which connects an input terminal with an output terminal, and the second P-type well is connected to a ground side or a power source side. CONSTITUTION:A first P-type well 32 and a second P-type well 33 are provided onto an N-type substrate 31. A high concentration N-type diffusion region 34 and a high concentration P-type well contact region 35 are formed on the surface of the first P-type well 32, and a high concentration N-type diffusion region 36 and a high concentration P-type well contact region 37 are formed on the surface of the second P-type well 33. The N-type high concentration diffusion region 34 formed on the first P-type well 32 and the N-type high concentration diffusion region 36 formed on the second P-type well 33 are connected to an output line which connects an input terminal 1 with an output terminal 2, and the second P-type well 33 is connected to a ground side or a power source VDD side. By this setup, a surge current can be prevented from being concentrated when an electrostatic surge is impressed, so that an element can be protected against damage.

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、サージ耐量の増大に改良の加えられた半導
体装置の入カ保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to an input protection device for a semiconductor device that has been improved to increase surge resistance.

《従来の技術} 従来のこの種入力保護装置としては、第5図に示すもの
が知られている。
<<Prior Art>> As a conventional input protection device of this type, the one shown in FIG. 5 is known.

同図において、11はCMOS回路の形成されるN型基
板で、N型基板11上の入カ側には入カ用の金属配線1
8に接続されて抵抗状の高濃度P型拡散領域13が形成
されているとともに、この高濃度P型拡散領域13とN
型基板11との間には電源側ダイオード21が設けられ
ている。
In the figure, 11 is an N-type substrate on which a CMOS circuit is formed, and on the input side of the N-type substrate 11 is a metal wiring 1 for input.
A resistive high-concentration P-type diffusion region 13 is formed connected to the high-concentration P-type diffusion region 13 and N
A power supply side diode 21 is provided between the mold substrate 11 and the mold substrate 11 .

また、12はN型基板11上に形成されたP型ウェルで
、このP型ウェル12の表面には高濃度N型拡散領域1
4およびP型ウェルコンタクト15が形成され、高濃度
N型拡散領域14は出カ用金属配線19を介して高濃度
P型拡散領域13と接続されているとともに、P型ウェ
ルコンタク1・領域15は接地用金属配線2oに接続さ
れている。
Further, 12 is a P-type well formed on the N-type substrate 11, and a high concentration N-type diffusion region 1 is provided on the surface of this P-type well 12.
4 and a P-type well contact 15 are formed, and the high concentration N-type diffusion region 14 is connected to the high concentration P-type diffusion region 13 via an output metal wiring 19. is connected to the grounding metal wiring 2o.

また、22は高濃度N型拡散領域14とP型ウェル12
間に形或された接地側ダイオード、44はP型ウェル1
2をベースとする寄生NPNトランジスタである。
Further, 22 is a high concentration N type diffusion region 14 and a P type well 12.
A ground side diode 44 is formed between the P-type well 1
2-based parasitic NPN transistor.

さらに、16はフィールド酸化膜,17は層間絶縁膜で
あり、入力用金属配線18には入力端子1が接続されて
いるとともに、出力用金属配線1つには出力端子2が接
続されている。
Furthermore, 16 is a field oxide film, 17 is an interlayer insulating film, and an input terminal 1 is connected to an input metal wiring 18, and an output terminal 2 is connected to one output metal wiring.

一方、第6図には第5図の等価回路図が示されており、
同図を用いて第5図に示した入力保護回路の動作を説明
すると、この例では、入力に■サージが印加される場合
、サージ電流は抵抗状の高濃度P型拡散領域13および
電源側ダイオード21を通って電源側VDDに流れる(
同図矢印A参照)。
On the other hand, FIG. 6 shows an equivalent circuit diagram of FIG. 5,
To explain the operation of the input protection circuit shown in FIG. 5 using the same diagram, in this example, when a surge is applied to the input, the surge current flows through the resistive high concentration P type diffusion region 13 and the power supply side. Flows through the diode 21 to the power supply side VDD (
(See arrow A in the figure).

一方、入力にeサージが印加される場合、サージ電流は
接地側から接地側ダイオード22および低抗状の高濃度
P型拡散領域13を通って入力側に流れる(同図矢印B
参照)。
On the other hand, when an e-surge is applied to the input, the surge current flows from the ground side to the input side through the ground side diode 22 and the low resistance high concentration P-type diffusion region 13 (arrow B in the figure).
reference).

《発明が解決しようとする問題点〉 しかしながら、」二記の如き従来の入力保護装置にあっ
ては、静電サージなどのように出力インビ−ダンスの低
いサージの場合、印加されるサージの立ち上がりが急峻
で、短時間に大電流が流れるので、以下のような問題点
があった。
<<Problems to be Solved by the Invention>> However, in the conventional input protection device as described in 2.2, in the case of a surge with low output impedance such as an electrostatic surge, the rise of the applied surge Since the current is steep and a large current flows in a short period of time, there are the following problems.

すなわち、まず入力に■サージが印加される場合、サー
ジ電流は電源側ダイオード21を通って電源側VDDに
流れるが、電源側ダイオード21は分布定数的に形成さ
れているので、入力側で大電流が電源側ダイオード21
を通って電源側vDOに流れ込み、高濃度P型拡散領域
13の入力側で電流の集中が起り、素子破壊が起こりや
すいという問題点があった。
That is, first, when a surge is applied to the input, the surge current flows through the power supply side diode 21 to the power supply side VDD, but since the power supply side diode 21 is formed in a distributed constant manner, a large current flows on the input side. is the power supply side diode 21
There is a problem in that the current flows into the power supply side vDO through the current, causing concentration of current on the input side of the high-concentration P-type diffusion region 13, which tends to cause device destruction.

また、入力にeサージが印加される場合、サージ電流は
接地側から接地側ダイオード22および抵抗状の高濃度
P型拡散領域13を通って入力側に流れるが、この場合
、サージ電流は抵抗状の高濃度P型拡散領域13により
制限される。従って、入力保護回路入力でサージ印加電
圧は下がり、電源側ダイオード21の逆方向耐圧を越え
るようになり、電源側ダイオード21にブレイクダウン
電流が流れる。一方、電源側ダイオード21は、上記の
如く分布定数的に形成されているため、高濃度P型拡散
領域13の入力側で電流の集中が起りやすくなるととも
に、逆方向耐圧は高濃度P型拡敗領域13のエッジ部で
低くなる。このため、高;農度P形拡散領域13の入力
側のエッジ部で電流の集中が起こり、同じく素子破壊が
起こりやすいという問題点があった。
Furthermore, when an e-surge is applied to the input, the surge current flows from the ground side to the input side through the ground side diode 22 and the resistive high-concentration P-type diffusion region 13; is limited by the high concentration P type diffusion region 13. Therefore, the surge applied voltage at the input of the input protection circuit decreases and exceeds the reverse breakdown voltage of the power supply diode 21, causing a breakdown current to flow through the power supply diode 21. On the other hand, since the power supply side diode 21 is formed in a distributed constant manner as described above, current concentration tends to occur on the input side of the heavily doped P-type diffusion region 13, and the reverse breakdown voltage is It becomes low at the edge part of the losing area 13. For this reason, there is a problem in that current concentration occurs at the input side edge portion of the high-intensity P type diffusion region 13, and the device is likely to be destroyed.

《発明の目的) この発明は、上記問題点に鑑み、静電サージ印加時にお
いてサージ電流の集中が防止され、これによって素子破
壊の起りにくい半導体装置の入力保護装置を提供するこ
とを目的とする。
[Object of the Invention] In view of the above-mentioned problems, it is an object of the present invention to provide an input protection device for a semiconductor device that prevents concentration of surge current when an electrostatic surge is applied, and is thereby less likely to cause element destruction. .

(問題点を解決するための手段) L記目的を達成するために、この発明は入力端子と半導
体集積回路に接続される出力端子とを有する半導体基板
上に形成される半導体装置の入力保護装置において、 上記半導体基板上に該基板の導電型と異なる導徂型で形
成される2つのウェルと、 それぞれのウェル表面に上記半導体基板と同型の導電型
で形成される高濃度拡散領域と、を有し、上記入力端子
と出力端子を結ぶ出力線路には、第1のウェルに形成さ
れた半導体基板と同型の導電型の高濃度拡散領域および
第2のウェルに形成された半導体基板と同型の導電型の
高濃度拡散領域が接続されているとともに、第2のウェ
ルは接地側または電源側に接続されていることを特徴と
する。
(Means for Solving the Problems) In order to achieve the object L, the present invention provides an input protection device for a semiconductor device formed on a semiconductor substrate having an input terminal and an output terminal connected to a semiconductor integrated circuit. two wells formed on the semiconductor substrate with a conductivity type different from the conductivity type of the substrate; and a high concentration diffusion region formed on the surface of each well with the same conductivity type as the semiconductor substrate. The output line connecting the input terminal and the output terminal includes a high concentration diffusion region of the same conductivity type as the semiconductor substrate formed in the first well and a high concentration diffusion region of the same conductivity type as the semiconductor substrate formed in the second well. The conductive type high concentration diffusion region is connected to the second well, and the second well is connected to the ground side or the power source side.

《実施例の説明》 以下、この発明を図面に基づいて説明する。《Explanation of Examples》 The present invention will be explained below based on the drawings.

第1図には本発明が適用されたー実施例の断面構造が示
されており、この例ではN型基板31上には第1のP型
ウェル32および第2のP型ウェル33が設けられてい
る。
FIG. 1 shows a cross-sectional structure of an embodiment to which the present invention is applied, and in this example, a first P-type well 32 and a second P-type well 33 are provided on an N-type substrate 31. It is being

そして、第1のP型ウェル32の表面には、高濃度N型
拡散領域34および同じく高濃度のP型ウェルコンタク
ト領域35が形成され、これらは入出力用金属配線40
に接続されている。また、この第1のP型ウェル32内
には、P型ウェル32をベースとして、N型基板31,
P型ウェル32,高濃度N型拡散領域34より第1の寄
生NPNトランジスタ(バイボーラトランジスタ)42
が形成されている。
Then, a high concentration N type diffusion region 34 and a similarly high concentration P type well contact region 35 are formed on the surface of the first P type well 32, and these are connected to the input/output metal wiring 40.
It is connected to the. In addition, in this first P-type well 32, with the P-type well 32 as a base, an N-type substrate 31,
A first parasitic NPN transistor (bibolar transistor) 42 from the P-type well 32 and the high concentration N-type diffusion region 34
is formed.

一方、第2のP型ウェル33の表面には、上記人出力用
金属配線40に接続された高濃度N型拡散領域36およ
び接地用金属配線41に接続された高濃度のP型ウェル
コンタクト領域37が形成されている。また、この第2
のP型ウェル33内には、PLYウェル33をベースと
して、N型基板31,P型ウェル33,高濃度N型拡散
領域36より第2の寄生NPNI−ランジスタ(バイボ
ーラトランジスタ)44が形成されているとともに、高
濃度N型拡散領域36と第2のP型ウェル33間には接
地側ダイオード43が形成されている。
On the other hand, on the surface of the second P-type well 33, there is a high concentration N-type diffusion region 36 connected to the human output metal wiring 40 and a high concentration P-type well contact region connected to the grounding metal wiring 41. 37 is formed. Also, this second
In the P-type well 33, a second parasitic NPNI-transistor (bibolar transistor) 44 is formed from the N-type substrate 31, the P-type well 33, and the high concentration N-type diffusion region 36, using the PLY well 33 as a base. In addition, a ground side diode 43 is formed between the high concentration N type diffusion region 36 and the second P type well 33.

さらに、同図において、38はフィールド酸化膜、39
は層間絶縁膜である。また、この例では、入力端子1お
よび出力端子2は入出力川金属配線40に接続されてい
る。
Furthermore, in the same figure, 38 is a field oxide film, 39 is a field oxide film, and 39 is a field oxide film.
is an interlayer insulating film. Further, in this example, the input terminal 1 and the output terminal 2 are connected to the input/output river metal wiring 40.

一方、第2図には第1図の等価回路図が示されており、
同図に基いて、この実施例の動作を説明すると、通常動
作時においては、入力端子1から出力端子2方向に電流
は流れるが、いま入力から■サーシが印加される場合、
第1の寄生NPNI−ランジスタ42のコレクタ、ベー
ス化が接続されているため、トランジスタ42はターン
オンし、サージ電流はトランジスタ42を通って電源側
V00に流れ込む。従って、この場合電流集中は発生し
ない(同図矢印A参照)。
On the other hand, FIG. 2 shows an equivalent circuit diagram of FIG. 1,
The operation of this embodiment will be explained based on the figure.During normal operation, current flows from input terminal 1 to output terminal 2, but when current is applied from the input,
Since the collector and base of the first parasitic NPNI transistor 42 are connected, the transistor 42 is turned on and the surge current flows through the transistor 42 to the power supply side V00. Therefore, in this case, current concentration does not occur (see arrow A in the figure).

一方、入力からeサージが印加される場合、サージ電流
は従来例と同様に接地側から接地側ダイオード43を通
って入力に流れるが、この例では従来例のように抵抗状
の高濃度P型拡散領域13を設けていない。従って、電
流の流れが制限されることもない。このため電流集中は
起きない(同図矢印B参照)。
On the other hand, when an e-surge is applied from the input, the surge current flows from the ground side to the input through the ground side diode 43 as in the conventional example, but in this example, unlike the conventional example, the surge current flows through the resistive high concentration P-type No diffusion region 13 is provided. Therefore, the flow of current is not restricted. Therefore, current concentration does not occur (see arrow B in the figure).

本実施例では、上記の如く、サージ電流を流す箇所は第
1の寄生NPN}ランジスタ42および接地側ダイオー
ド43の順方向側、すなわち第2の寄生NPN}ランジ
スタ44のみである。従って、従来例のように電流集中
が発生せず、素子破壊を招来することもない。
In this embodiment, as described above, the portions through which the surge current flows are only the forward direction side of the first parasitic NPN} transistor 42 and the ground side diode 43, that is, the second parasitic NPN} transistor 44. Therefore, unlike the conventional example, current concentration does not occur and element destruction does not occur.

なお、この実施例では、N型基板内にP型ウェルを形成
するタイプの回路構戊の例を示したが、P型基板内にN
型ウェルを形成するタイプの回路構戊では、P型,N型
をそれぞれ反対に形成するとともに、電極の極性も反対
にすれば良い。
In this example, an example of a circuit structure in which a P-type well is formed in an N-type substrate is shown, but an N-type well is formed in a P-type substrate.
In a type of circuit structure in which type wells are formed, P-type and N-type wells may be formed to be opposite to each other, and the polarities of the electrodes may also be reversed.

次に、上記実施例同様、入力保護回路にバイボーラトラ
ンジスタを用い、静電サージ印加時にサージ電流の集中
を無くすよう構成された入力保護回路の他の例を第3図
および第4図に基づいて説明する。なお、上記実施例で
用いたものと同一構戊部材には同一符号を付してその詳
細説門は省略する。
Next, another example of an input protection circuit that uses a bibolar transistor in the input protection circuit and is configured to eliminate the concentration of surge current when an electrostatic surge is applied, as in the above embodiment, is shown in FIGS. 3 and 4. I will explain. Note that the same reference numerals are given to the same structural members as those used in the above embodiment, and a detailed explanation thereof will be omitted.

ところで、この例において、上記実施例と異なるのは、
第1のP型ウェル32内に形成される高濃度N型拡散領
域を抵抗状の高濃度N型拡散領域4つとしていることで
ある。このため、この例では、高濃度N型拡散領域49
の一側には入力川金属配線50が接続されるとともに、
他側には出力用金属配線51が接続され、この出力用金
属配線51には第1のP型ウェル32内に形成されたP
型ウェルコンタクト領域35および第2のP型ウェル3
3内に形成された高濃度N型拡散領域36が接続さるよ
う構戊されている。
By the way, in this example, the difference from the above example is that
The high concentration N type diffusion regions formed in the first P type well 32 are made into four resistive high concentration N type diffusion regions. Therefore, in this example, the high concentration N type diffusion region 49
An input river metal wiring 50 is connected to one side of the
The output metal wiring 51 is connected to the other side, and the output metal wiring 51 is connected to a P well formed in the first P-type well 32.
Type well contact region 35 and second P type well 3
The high concentration N-type diffusion region 36 formed in 3 is connected to the high concentration N type diffusion region 36.

第4図は、第3図に示した入力保護回路の等価回路図で
あるが、次に第4図に基づいて、この入力保護回路の動
作を説明する。
FIG. 4 is an equivalent circuit diagram of the input protection circuit shown in FIG. 3. Next, the operation of this input protection circuit will be explained based on FIG. 4.

まず、■サージが印加される場合、」二記実施例と同様
サージ電流は第1の寄生NPNトランジスタ42を通っ
て電源側に流れる。このため、電流の集中は発生しない
First, when a surge is applied, the surge current flows to the power supply side through the first parasitic NPN transistor 42, as in the second embodiment. Therefore, current concentration does not occur.

一方、eサージが印加される場合、サージ電流は接地側
から接地側ダイオード43,抵抗状の高濃度N型拡散領
域49を通って入力側に流れる。
On the other hand, when an e-surge is applied, the surge current flows from the ground side to the input side through the ground side diode 43 and the resistive high concentration N-type diffusion region 49.

ところで、この場合、サージ電流は高濃度N型拡散領域
4つによって制限される。このため、接地側タイオード
43の設計が容易になることになる。
Incidentally, in this case, the surge current is limited by the four heavily doped N-type diffusion regions. Therefore, the design of the ground side diode 43 becomes easy.

一方、上記の如く電流が制限されるため、入力保護回路
入ノノでサージ電圧は下がるが、第1の寄生NPN ト
ランジスタ42は高濃度N型拡散領域49をエミッタと
してターンオンするので電圧はクランプされ、電流集中
は発生しない。
On the other hand, since the current is limited as described above, the surge voltage decreases when the input protection circuit is turned on, but since the first parasitic NPN transistor 42 is turned on using the heavily doped N-type diffusion region 49 as an emitter, the voltage is clamped. No current concentration occurs.

(発明の効果) 本発叩に係る入力保護回路は、上記の如く、半導体基板
トに、該基板の導電型とことなる導電型で形成される2
つのウェルと、さらに、これらウェル表面に」二記半導
体基板と同型の導電型で形成される高濃度拡散領域を設
け、入力端子と出力端子を結ぶ出力線路には、第1のウ
ェルに形成された半導体基板と同型の導電型の高濃度拡
散領域および第2のウェルに形成された半導体基板と同
型の導電型の高濃度拡散領域を接続するとともに、第2
のウェルは接地側または電源側に接続されるよう構成し
たので、静電サージ印加時にサージ電流の集中を防止す
ることができ、電力集中に起因する素子破壊を防止でき
るとともに、半導体装置の信頼性を高めることができる
等の効果を有する。
(Effects of the Invention) As described above, the input protection circuit according to the present invention is formed on a semiconductor substrate with a conductivity type different from that of the substrate.
Furthermore, on the surface of these wells, a high concentration diffusion region formed of the same conductivity type as the semiconductor substrate mentioned above is provided, and an output line connecting the input terminal and the output terminal is formed in the first well. The high concentration diffusion region of the same conductivity type as the semiconductor substrate formed in the second well is connected to the high concentration diffusion region of the same conductivity type as the semiconductor substrate formed in the second well.
Since the well is configured to be connected to the ground side or the power supply side, it is possible to prevent the concentration of surge current when an electrostatic surge is applied, prevent element destruction due to power concentration, and improve the reliability of the semiconductor device. It has the effect of increasing the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用された実施列の断面図、第2図は
第1図の等価回路図、第3図はサージ耐瓜の増大が図ら
れた入力保護回路の他の例、第4図は第3図の等価回路
図、第5図は従来例における入力保護回路の断面図、第
6図は第5図の等価回路図である。 1・・・入力端子 2・・・出力端子 31・・・N型基板 32・・・第1のP型ウェル 33・・・第2のP型ウェル 34・・・高濃度N型拡散領域(第1のP型ウェル内)
35・・・P型ウェルコンタクト領域(第1のP型ウェ
ル内) 36・・・高濃度N型拡散領域(第2のP型ウェル内)
37・・・P型ウェルコンタクト領域(第2のP型ウェ
ル内) 40・・・人出力用金属配線 41・・・接地用金属配線 42・・・第1の寄生NPN}ランジスタ43・・・接
地側ダイオード
FIG. 1 is a sectional view of an embodiment to which the present invention is applied, FIG. 2 is an equivalent circuit diagram of FIG. 1, and FIG. 3 is another example of an input protection circuit with increased surge resistance. 4 is an equivalent circuit diagram of FIG. 3, FIG. 5 is a sectional view of a conventional input protection circuit, and FIG. 6 is an equivalent circuit diagram of FIG. 1... Input terminal 2... Output terminal 31... N type substrate 32... First P type well 33... Second P type well 34... High concentration N type diffusion region ( (inside the first P-type well)
35...P-type well contact region (inside the first P-type well) 36...High concentration N-type diffusion region (inside the second P-type well)
37... P-type well contact region (inside the second P-type well) 40... Metal wiring for human output 41... Metal wiring for grounding 42... First parasitic NPN} transistor 43... Ground side diode

Claims (1)

【特許請求の範囲】 1、入力端子と半導体集積回路に接続される出力端子と
を有する半導体基板上に形成される半導体装置の入力保
護装置において、 上記半導体基板上に該基板の導電型と異なる導電型で形
成される2つのウェルと、 それぞれのウェル表面に上記半導体基板と同型の導電型
で形成される高濃度拡散領域と、を有し、上記入力端子
と出力端子を結ぶ出力線路には、第1のウェルに形成さ
れた半導体基板と同型の導電型の高濃度拡散領域および
第2のウェルに形成された半導体基板と同型の導電型の
高濃度拡散領域が接続されているとともに、第2のウェ
ルは接地側または電源側に接続されていることを特徴と
する入力保護装置。
[Scope of Claims] 1. In an input protection device for a semiconductor device formed on a semiconductor substrate having an input terminal and an output terminal connected to a semiconductor integrated circuit, an input protection device for a semiconductor device formed on a semiconductor substrate having a conductivity type different from that of the substrate is provided on the semiconductor substrate. It has two wells formed of the same conductivity type and a high concentration diffusion region formed of the same conductivity type as the semiconductor substrate on the surface of each well, and an output line connecting the input terminal and the output terminal. , a high concentration diffusion region of the same conductivity type as the semiconductor substrate formed in the first well and a high concentration diffusion region of the same conductivity type as the semiconductor substrate formed in the second well are connected; An input protection device characterized in that well No. 2 is connected to a ground side or a power supply side.
JP1193755A 1989-07-26 1989-07-26 Input protective device of semiconductor device Pending JPH0358474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193755A JPH0358474A (en) 1989-07-26 1989-07-26 Input protective device of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193755A JPH0358474A (en) 1989-07-26 1989-07-26 Input protective device of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0358474A true JPH0358474A (en) 1991-03-13

Family

ID=16313273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193755A Pending JPH0358474A (en) 1989-07-26 1989-07-26 Input protective device of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0358474A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147278A (en) * 1981-03-05 1982-09-11 Fujitsu Ltd Protecting device for mis integrated circuit
JPS63313851A (en) * 1987-06-16 1988-12-21 Nec Corp Protective device for mos integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147278A (en) * 1981-03-05 1982-09-11 Fujitsu Ltd Protecting device for mis integrated circuit
JPS63313851A (en) * 1987-06-16 1988-12-21 Nec Corp Protective device for mos integrated circuit

Similar Documents

Publication Publication Date Title
JP3342918B2 (en) Diode structure to protect pads against electrostatic discharge in integrated circuits
JPH037144B2 (en)
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JP3404036B2 (en) PISO electrostatic discharge protection device
US6433393B1 (en) Semiconductor protective device and method for manufacturing same
JPH0358474A (en) Input protective device of semiconductor device
JP3123489B2 (en) Electrostatic protection circuit in semiconductor integrated circuit and method of manufacturing the same
JP3446569B2 (en) Semiconductor device
JP2854900B2 (en) Semiconductor device
JPS63172468A (en) Input protective circuit
JPH06151716A (en) Semiconductor integrated circuit device
JPH0556657B2 (en)
JPS61295651A (en) Semiconductor input-protecting device
JPH0770707B2 (en) CMOS input protection circuit
JPH0374870A (en) Semiconductor device
JP2830092B2 (en) Electrostatic protection element for semiconductor device
JP3594725B2 (en) Semiconductor device protection circuit
JPH0471274A (en) Semiconductor integrated circuit
JPH06140576A (en) Ic protective device against electrostatic breakdown
JPH0774353A (en) Input-output protective circuit
JPS6355871B2 (en)
JPH05198801A (en) Semiconductor device
JPS607763A (en) Semiconductor device
JP2003188348A (en) Semiconductor device
JPS59200454A (en) Electrostatic breakdown protective element