JPS63313851A - Protective device for mos integrated circuit - Google Patents

Protective device for mos integrated circuit

Info

Publication number
JPS63313851A
JPS63313851A JP62150499A JP15049987A JPS63313851A JP S63313851 A JPS63313851 A JP S63313851A JP 62150499 A JP62150499 A JP 62150499A JP 15049987 A JP15049987 A JP 15049987A JP S63313851 A JPS63313851 A JP S63313851A
Authority
JP
Japan
Prior art keywords
well
region
integrated circuit
protected
shallow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62150499A
Other languages
Japanese (ja)
Inventor
Toshio Tsubota
坪田 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62150499A priority Critical patent/JPS63313851A/en
Publication of JPS63313851A publication Critical patent/JPS63313851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive an increase in the efficiency of the title device at low cost by a method wherein the collector and the base of a bipolar transistor formed of a semiconductor substrate, a well region and a diffused layer are connected to the protected part of a MOS integrated circuit. CONSTITUTION:A shallow P-type impurity diffused layer well 13 is provided in an N-type well 9 and a high-concentration N-type diffused region 10 is formed in the well 13. Moreover, a gate poly Si electrode 14 is connected to a low- potential terminal 6 with the aim of isolating the region 10 from a P<+> diffused layer region 8. When a positive static charge is applied to an input terminal 1, for example, against a high-potential terminal 5, the well 13 and the region 10 are forward-biased and minority carriers (electrons) injected in the shallow well 13 are drifted at this time in the strong electric field within the space charge region of the junction between the reverse-biased well 9 and the shallow well 13. That is, a low-impedance path is rapidly formed by a longitudinal bipolar operation and the SiO2 thin film of the part to be protected of a MOS integrated circuit is protected sufficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型電界効果トランジスタを用いた集
積回路、とくに相補型MOSデバイス(以下C−MOS
と称す)における入力等の保護装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to integrated circuits using insulated gate field effect transistors, particularly complementary MOS devices (hereinafter referred to as C-MOS).
related to protection devices for inputs, etc.

〔従来の技術〕[Conventional technology]

静電破壊に抗する保護装置は各種各様実用化されている
。第2図四は従来のこの種の入力保護装置の等価回路及
び同図(均はその断面を示す。入力端子lは入力保護抵
抗(一般にはポリシリ絶縁抵抗又は拡散層)2′t−介
して、集積回路の入力端子7に接続され、集積回路の入
力端子7と、低電位(通常GND)端子5及び高電位(
通常VDD又はVCC)端子6との間に、各々第1のダ
イオード3と第2のダイオード4が設けられて一つの保
護ネットワークが形成される。
Various protection devices for resisting electrostatic damage have been put into practical use. Figure 2-4 shows the equivalent circuit of a conventional input protection device of this type (the average shows its cross section). , is connected to the input terminal 7 of the integrated circuit, and is connected to the input terminal 7 of the integrated circuit, the low potential (usually GND) terminal 5 and the high potential (
A first diode 3 and a second diode 4 are respectively provided between the terminal 6 (usually VDD or VCC) to form a protection network.

次に、第2図(均において2例えば低濃度P型の半導体
基板(以下サブストレートと−う)12内に、低濃度N
型の拡散領域9(以下、ヘラエルとiう)が設けられ、
Nウェル9はサブストレート12とNウェル9に重なっ
て設けられた高濃度へ型拡散領域lO金介して、高電位
端子6に接続され、一方へウェル9中に、高濃度P型拡
散領域8を設けて、第1のダイオード4が形成されてい
る。
Next, as shown in FIG.
A mold diffusion region 9 (hereinafter referred to as Herael) is provided,
The N-well 9 is connected to the high-potential terminal 6 through a high-concentration type diffusion region IO gold provided overlapping the substrate 12 and the N-well 9, and a high-concentration P-type diffusion region 8 in the well 9 , and the first diode 4 is formed.

さらに、サブストレー1−12内の高濃度Nfi拡散領
域10によって第2のダイオード3が形成され、一方サ
ブストレート12は高濃度P型拡散領域8を介して、低
電位端子5に接続されている。又。
Furthermore, a second diode 3 is formed by a heavily doped Nfi diffusion region 10 in the substrate 1-12, while the substrate 12 is connected to a low potential terminal 5 via a heavily doped P-type diffusion region 8. or.

表面は選択形成された厚い絶縁jK11によって一部被
覆保護されている。
The surface is partially protected by a selectively formed thick insulation jK11.

かかる保護ネットワークは入力保護抵抗2の大きさやダ
イオード3,4の大きさ、耐圧(通例アバラン・シェ)
を適度に設定して、被保護集積回路、特にMOSIC−
i保護している。
Such a protection network depends on the size of the input protection resistor 2, the size of diodes 3 and 4, and the withstand voltage (usually avalanche).
be set appropriately to protect the protected integrated circuits, especially MOSIC-
iIt is protected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

次に、上述した従来の保護ネットワークの問題点全第2
図(C1、(Diを用いて説明する。第2図(C)にお
いて、下横軸は入力保護抵抗2の大きさ、上横軸は保護
ダイオード3,4の拡散層面積の相対比を、縦軸は静電
破壊耐圧を示す。図に示す通り耐量の同上を計るには抵
抗2の抵抗値の増大、抵抗2のIC上での面積の増大、
従ってICチップの面積増大を免れ得ない。又、高速性
の要求から抵抗2の抵抗値は余り大きく出来な−という
ケースもめる。第2図(至)においてはダイオードの応
答速度tDおよびダイオードの内部抵抗Rniの影響を
示すものである。ダイオードの応答速度tDおよびダイ
オードの内部抵抗RDiによってはたとえ。
Next, we will discuss the second problem of the conventional protection network mentioned above.
This will be explained using Figures (C1 and (Di). In Figure 2 (C), the lower horizontal axis represents the size of the input protection resistor 2, and the upper horizontal axis represents the relative ratio of the diffusion layer areas of the protection diodes 3 and 4. The vertical axis shows the electrostatic breakdown voltage.As shown in the figure, to measure the same withstand voltage, increase the resistance value of resistor 2, increase the area of resistor 2 on the IC,
Therefore, an increase in the area of the IC chip cannot be avoided. In addition, there is a case where the resistance value of the resistor 2 cannot be made too large due to the requirement for high speed. FIG. 2 (to) shows the influence of the response speed tD of the diode and the internal resistance Rni of the diode. For example, depending on the response speed tD of the diode and the internal resistance RDi of the diode.

低クランプ電圧に設定しても薄膜8i02の真性破壊耐
量を越える電圧がかかってしまい破壊に至る。
Even if a low clamp voltage is set, a voltage exceeding the intrinsic breakdown withstand capacity of the thin film 8i02 is applied, leading to breakdown.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の0MOSデバイスにおける入力保護装置は一導
電型の半導体基板に他の導電型のウェル領域を有し、こ
のウェル領域に一導電型の半導体拡散層を設け、これら
によって縦型バイポーラトランジスタを形成し、かかる
縦型バイポーラトランジスタのベースおよびコレクタを
入力端子等に接続したMOS集積回路の保護装置を得る
The input protection device in the 0MOS device of the present invention has a semiconductor substrate of one conductivity type and a well region of another conductivity type, and a semiconductor diffusion layer of one conductivity type is provided in this well region, thereby forming a vertical bipolar transistor. A protection device for a MOS integrated circuit is obtained in which the base and collector of such a vertical bipolar transistor are connected to an input terminal or the like.

〔実施例〕〔Example〕

次に1図面を参照して本発明をより詳細に説明する。 The invention will now be explained in more detail with reference to one drawing.

第1図(5)、(B)は不発明の一実施例を示す入力保
護装置の等価回路図及び構造断面図である。なお本図に
おいて、同一構成部分の記号は前記第2図と同一のもの
全使用した。
FIGS. 1(5) and 1(B) are an equivalent circuit diagram and a structural sectional view of an input protection device showing an embodiment of the invention. In this figure, all the symbols for the same constituent parts are the same as in the above-mentioned FIG. 2.

この第1図の(5)、(B)の実施例は第2図の従来例
と異なってNウェル9内に濃度1×10cIrL 程度
の浅−P型不純物拡散層ウェル13(以下Pウェル13
とする)が設けられて−る。Pウェル13はNウェル9
に含まれることは言う迄もない。さらにPウェル13内
に、高濃度へ型拡散領域10が形成される。また、ゲー
トポリシリ電極14は4散層領域10と一拡散層領域8
との分離を目的とし低電位端子6に接続される。
The embodiment shown in (5) and (B) of FIG. 1 differs from the conventional example shown in FIG.
) is provided. P well 13 is N well 9
Needless to say, it is included in Furthermore, a heavily doped diffusion region 10 is formed in the P-well 13. Furthermore, the gate polysilicon electrode 14 has four diffused layer regions 10 and one diffused layer region 8.
It is connected to the low potential terminal 6 for the purpose of separation from the

上記構造による動作を9例えば入力端子1に高電位端子
5I/c対して正の静電荷が加わった場合について述べ
る。この時、Pウェル13と高濃度り型拡散領域10は
順バイアスされ、浅−Pウェル13に注入された少数キ
ャリア(電子)は、この時逆バイアスされfcNウェル
9と浅−Pウェル13との接合のを間電荷領域内の強電
界によりドリフトされる。すなわち本構造によれば縦の
バイポーラ動作によって、低インピーダンス経路が迅速
に形成され、被保護M(J8の薄膜b i 02は十分
保護される。
The operation of the above structure will be described below, for example, when a positive static charge is applied to the input terminal 1 with respect to the high potential terminal 5I/c. At this time, the P well 13 and the heavily doped diffusion region 10 are forward biased, and the minority carriers (electrons) injected into the shallow P well 13 are reverse biased and transferred to the fcN well 9 and the shallow P well 13. of the junction due to the strong electric field in the charge region. That is, according to this structure, a low impedance path is quickly formed due to the vertical bipolar operation, and the thin film b i 02 of the protected M (J8) is sufficiently protected.

第1図0.(均は本発明の他の実施例である。同図はN
型基板にPウェルを形成してなるe、MOf!(入力保
護構成例である。かかるC−MOS人力保護装置は特に
深−Pウェル9内に濃度1×10cIIL程度の浅いN
−ウェル13がイオン注入等の手段によって形成され、
縦型高速バイポーラトランジスタのペースとなる点であ
る。特に低電位端子5に対してθの静電荷が入った時に
保護効果がある。
Figure 1 0. (Hitoshi is another embodiment of the present invention. The figure shows N
e, MOf! formed by forming a P-well on a mold substrate. (This is an example of an input protection configuration. Such a C-MOS human protection device has a shallow N with a concentration of about 1×10 cIIL in the deep P well 9.
- the well 13 is formed by means such as ion implantation;
This is the starting point for vertical high-speed bipolar transistors. Particularly, there is a protective effect when an electrostatic charge of θ is applied to the low potential terminal 5.

〔発明の効果〕〔Effect of the invention〕

次に、本発明に記載した構成によって生じる効果につい
て述べる。まず第1に本構造による縦型バイポーラトラ
ンジスタは高速でるる事すなわち実効ベース巾が小さい
ことおよびエミッタ面積が小さ−ため寄生容量(エミッ
ターペース間)、寄生抵抗中)が小さi点である。従っ
て応答時間の遅延tDni(<tDDi ) t−小さ
く出来る。第2に内部等価抵抗比Biは〜100Ω程度
に低減される。ゆえに静電荷の吸収効果は第1図(qに
示すようにダイオードの場合に比べ大きくなる。
Next, effects produced by the configuration described in the present invention will be described. First of all, the vertical bipolar transistor of this structure operates at high speed, that is, the effective base width is small, and the emitter area is small, so that the parasitic capacitance (between emitter and paste) and parasitic resistance (inside) is small. Therefore, the response time delay tDni (<tDDi) can be made smaller. Second, the internal equivalent resistance ratio Bi is reduced to about 100Ω. Therefore, the effect of absorbing static charges is greater than in the case of a diode, as shown in FIG. 1 (q).

ここで重要なことは、例えば第1図四、中)の実施例に
おいて洩いペース領域のPウェル13が。
What is important here is that, for example, in the embodiment shown in FIG. 1, the P-well 13 in the leaky space area.

ボロン原子をエネルギー150keV、ドーズ量L5X
IO(1m  程度でイオン注入し、その後の熱処理に
よシ容易に形成され、しかも0MOSの標準プロセスに
何ら特別な工程全付加する必要がないので安価で高性能
の保護素子が実現される点にるる。
Boron atom with energy 150 keV and dose L5X
IO (Ion implantation with a thickness of about 1 m) is easily formed by subsequent heat treatment, and there is no need to add any special steps to the standard 0MOS process, making it possible to realize a low-cost, high-performance protection element. Ruru.

以上のように、本発明は既存プロセスを併用して、高速
な縦型バイポーラトランジスタ金有する高性能な入力保
護装置全安価に提供するものである。
As described above, the present invention uses existing processes in combination to provide a high-performance input protection device including a high-speed vertical bipolar transistor at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1ll(5)、(B)は本発明の一実施例の等価回路
及びその断面図、第1図(CJは本発明の効果を示す過
渡応答特性のグラフ、第1図(D) 、 (EJは本発
明の他の実施例の等価回路及びその断面図、第2回向。 申)は従来例の入力保護装置の等価回路図及びその断面
図、第2図(C)は人力保護抵抗及びダイオードの面積
と耐圧の相関関係を示すグラフ、第2図(勾は従来のダ
イオードの耐圧の過渡応答特性を示すグラフである。 1・・・入力端子、2・・・入力保護抵抗、3・・・第
一のダイオード、4・・・第二のダイオード、訃−低電
位端子、6・・・高電位端子、7・・・被保護ICの入
力端子、8・・・2拡散領域、9・・・Nウェル、10
・・・N旭散領域、11・・・厚い酸化膜、12・・・
P型基板、13・・・浅いPウェル、14・・・分離用
ゲートポリシリ電極、15・・・匣ウェル、16・・・
N型基板l5浅℃・N−’)エル 第2図(B) ブ 第2図(C)          第2図CD)ダイオ
ードfl第1   vs λ力仔慣おJk、  ESD耐・圧−123−戴的よ■
ダイオード面矛に比          ダイオードの
逼ト尼・答特性    夕′イ#−)’/8[づ”二 効果 −85rox       イ ノブ 北−o、8t″ 4/゛cLP 1−・′           I  Iy     
 屓−1,1′−。
1ll(5), (B) is an equivalent circuit of an embodiment of the present invention and its sectional view, FIG. 1 (CJ is a graph of transient response characteristics showing the effect of the present invention, FIG. 1(D), ( EJ is an equivalent circuit diagram and its sectional view of another embodiment of the present invention, the second edition. EJ is an equivalent circuit diagram and its sectional diagram of a conventional input protection device, and Figure 2 (C) is a human power protection resistor. and a graph showing the correlation between the area of the diode and the breakdown voltage, Figure 2 (the slope is a graph showing the transient response characteristics of the breakdown voltage of a conventional diode. 1... input terminal, 2... input protection resistor, 3) ... first diode, 4... second diode, low potential terminal, 6... high potential terminal, 7... input terminal of protected IC, 8... 2 diffusion region, 9...N well, 10
...N Asahi scattering region, 11...Thick oxide film, 12...
P type substrate, 13... Shallow P well, 14... Isolation gate polysilicon electrode, 15... Box well, 16...
N-type substrate 15 shallow °C/N-') Figure 2 (B) Figure 2 (C) Figure 2 CD) Diode fl 1 vs. Target!
Compared to a diode mask Diode's response characteristics Yu'i#-)'/8
屓-1,1'-.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板に逆導電型のウェル領域を有し、
該ウェル領域内に前記一導電型の拡散層を有し、これら
半導体基板、ウェル領域および拡散層でバイポーラトラ
ンジスタを形成し、もって該バイポーラトランジスタの
コレクタおよびベースをMOS集積回路の被保護部に接
続したことを特徴とするMOS集積回路の保護装置。
Having a well region of an opposite conductivity type in a semiconductor substrate of one conductivity type,
The diffusion layer of one conductivity type is provided in the well region, and the semiconductor substrate, the well region, and the diffusion layer form a bipolar transistor, thereby connecting the collector and base of the bipolar transistor to the protected portion of the MOS integrated circuit. A protection device for a MOS integrated circuit, which is characterized by:
JP62150499A 1987-06-16 1987-06-16 Protective device for mos integrated circuit Pending JPS63313851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150499A JPS63313851A (en) 1987-06-16 1987-06-16 Protective device for mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150499A JPS63313851A (en) 1987-06-16 1987-06-16 Protective device for mos integrated circuit

Publications (1)

Publication Number Publication Date
JPS63313851A true JPS63313851A (en) 1988-12-21

Family

ID=15498197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150499A Pending JPS63313851A (en) 1987-06-16 1987-06-16 Protective device for mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS63313851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358474A (en) * 1989-07-26 1991-03-13 Nissan Motor Co Ltd Input protective device of semiconductor device
JPH04349661A (en) * 1991-05-27 1992-12-04 Toshiba Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115854A (en) * 1981-01-09 1982-07-19 Toshiba Corp Input protective circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115854A (en) * 1981-01-09 1982-07-19 Toshiba Corp Input protective circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358474A (en) * 1989-07-26 1991-03-13 Nissan Motor Co Ltd Input protective device of semiconductor device
JPH04349661A (en) * 1991-05-27 1992-12-04 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5502317A (en) Silicon controlled rectifier and method for forming the same
US6448123B1 (en) Low capacitance ESD protection device
US7285458B2 (en) Method for forming an ESD protection circuit
US6445044B2 (en) Apparatus improving latchup immunity in a dual-polysilicon gate
US8035190B2 (en) Semiconductor devices
US7217984B2 (en) Divided drain implant for improved CMOS ESD performance
JP3090081B2 (en) Semiconductor device
US5504362A (en) Electrostatic discharge protection device
JPH03224263A (en) Static charge protective construction for cmos integrated circuit
JP3537035B2 (en) Silicon-on-insulator network
JP3317345B2 (en) Semiconductor device
JPH0282533A (en) Bipolar transistor
JPS63313851A (en) Protective device for mos integrated circuit
JPS5921170B2 (en) MOS type semiconductor device
JPH08102498A (en) Semiconductor device
JP2783191B2 (en) Semiconductor device protection circuit
US8941959B2 (en) ESD protection apparatus
US6512663B1 (en) Electrostatic protection device and electrostatic protection circuit
JP3425574B2 (en) I / O protection device for semiconductor integrated circuit
JPS63228667A (en) Semiconductor device
US11967639B2 (en) SCR structure for ESD protection in SOI technologies
US7279753B1 (en) Floating base bipolar ESD devices
WO2023236377A1 (en) Electrostatic protection structure, silicon controlled rectifier, and semiconductor memory
JPH0671199B2 (en) Semiconductor device
JP2000232203A (en) Lateral bipolar input-output protecting device