JPH035643A - Capacity control method for cold accumulator and its apparatus - Google Patents

Capacity control method for cold accumulator and its apparatus

Info

Publication number
JPH035643A
JPH035643A JP13755389A JP13755389A JPH035643A JP H035643 A JPH035643 A JP H035643A JP 13755389 A JP13755389 A JP 13755389A JP 13755389 A JP13755389 A JP 13755389A JP H035643 A JPH035643 A JP H035643A
Authority
JP
Japan
Prior art keywords
solution
heat exchanger
heat
room
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13755389A
Other languages
Japanese (ja)
Other versions
JP2713766B2 (en
Inventor
Hisafumi Yoshizaki
吉崎 尚史
Toshisuke Onoda
小野田 利介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1137553A priority Critical patent/JP2713766B2/en
Publication of JPH035643A publication Critical patent/JPH035643A/en
Application granted granted Critical
Publication of JP2713766B2 publication Critical patent/JP2713766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To obtain a capacity control device for a cold accumulator minimizing wasteful energy release by installing capacity control means at a room heating and concentrating solution and a primary side of a solution dispersion and circulation system for the room, that is, a heat accumulating system using temp. difference. CONSTITUTION:The load condition is detected by a detecting element 41 for cold water temp. attached at the outlet part of cold water of a load 40 and is response to the load a flow control valve 42 for solution is opened and closed to change the dispersion amount of the solution from a solution spray nozzle 32A and the capacity is controlled by changing the absorption amount of refrigerant vapor into the solution in a primary room 23A. Here, the opening and closing of the valve 42 for the solution causes the discharge pressure of a solution pump 30 to change, however, at this time the revolution of the pump 30 is controlled by a revolution control device 44 so that the discharge pressure is constant at the pressure detecting element of the discharge part of the pump 30. Thus, wasteful pump power is saved and the control of the discharge pressure contributes to the stable supply of the solution to a high location and is also utilized for heat reserve.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蓄冷熱装置の容量制御方法およびその装置に
係り、特に、温度差蓄熱システムの蓄冷熱装置における
溶液散布量可変による省エネルギー容量制御に好適な蓄
冷熱装置の容量制御方法およびその装置に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and device for controlling the capacity of a cold storage heat storage device, and in particular to energy-saving capacity control by varying the amount of solution sprayed in a cold storage heat storage device of a temperature difference heat storage system. The present invention relates to a capacity control method of a cold storage heat storage device suitable for

[従来の技術] 従来の温度差蓄熱システムは、例えば、特開昭62−2
18773号公報に記載されているように、圧縮式冷凍
サイクルと、この圧縮式冷凍サイクルの第1熱交換器と
熱の授受を行なう溶液を収容した第1の部屋と、第2熱
交換器と熱の授受を行う溶液を収容した第2の部屋とを
有し、これら第1.第2の部屋とは溶液中に含まれてい
る冷媒の蒸気を通す蒸気通路によって連絡されており、
前記第1熱交換器、第2熱交換器によって、第1および
第2の部屋のいずれか一方の部屋の溶液を加熱濃縮し、
蒸発した冷媒蒸気を蒸気通路を介して他方の部屋に導入
し、他方の部屋で液化させ、第1.第2の部屋の溶液に
濃度差を生じさせて熱を蓄えるものであった。
[Prior art] A conventional temperature difference heat storage system is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-2
As described in Japanese Patent No. 18773, a compression refrigeration cycle, a first chamber containing a solution that exchanges heat with the first heat exchanger of the compression refrigeration cycle, and a second heat exchanger. and a second chamber containing a solution that transfers heat. It is connected to the second chamber by a vapor passageway through which the vapor of the refrigerant contained in the solution passes.
Heating and concentrating the solution in either the first or second chamber by the first heat exchanger and the second heat exchanger,
The evaporated refrigerant vapor is introduced into the other chamber through the vapor passage and liquefied in the other chamber. This created a concentration difference in the solution in the second chamber and stored heat.

[発明が解決しようとする課題] 上記従来技術は、濃度差蓄熱システム全体の系統につい
て開示されているが、容量制御の方式については何ら記
載されていなかった。
[Problems to be Solved by the Invention] The above-mentioned prior art discloses the entire system of the concentration difference heat storage system, but does not disclose any capacity control method.

上記特開昭62−218773号公報記載の技術では、
第1.第2の部屋における、例えば第2の部屋に設けた
第2熱交換コイルを流通する冷水側(例えば空調設備へ
供給する冷水の系統で負荷側に当る)、すなわち温度差
蓄熱システムにおける二次側に何らかの調整装置を設置
する程度のことしか行われていなかった。
In the technique described in the above-mentioned Japanese Patent Application Laid-Open No. 62-218773,
1st. In the second room, for example, the cold water side that flows through the second heat exchange coil provided in the second room (for example, the load side in a cold water system that supplies air conditioning equipment), that is, the secondary side in a temperature difference heat storage system The only thing that had been done was to install some sort of adjustment device.

本発明は、蒸気従来技術における課題を解決するだめに
なされたもので、溶液を加熱濃縮する部屋およびその部
屋側の溶液散布循環系(これらを溶液側という)、すな
わち温度差蓄熱システムの一次側に容量制御手段を設け
、無駄なエネルギー放出を最小限にする蓄冷熱装置の容
量制御方法およびその装置を提供することを、その目的
とするものである。
The present invention was made to solve the problems in the conventional steam technology, and includes a room for heating and concentrating a solution and a solution distribution circulation system on the side of the room (these are referred to as the solution side), that is, the primary side of a temperature difference heat storage system. It is an object of the present invention to provide a capacity control method and device for a cold storage heat storage device that minimizes wasteful energy release by providing capacity control means in the device.

なお、ここでシステムの二次側とは、第1.第2の熱交
換コイルの管内側をいう。つまり蓄熱装置側から伝熱管
を通しである熱量をもらい、設備側の空調機器(負荷側
)へ冷水または冷却水として供給するものであるから、
蓄冷熱装置から見ると、第1.第2の熱交換コイルの管
内を流れる流体は熱交換する相手となり、したがって二
次側と称している。
Note that the secondary side of the system here refers to the first side. This refers to the inside of the tube of the second heat exchange coil. In other words, it receives a certain amount of heat from the heat storage device through the heat transfer tube and supplies it to the equipment's air conditioning equipment (load side) as cold water or cooling water.
From the perspective of the cold storage heat device, the first. The fluid flowing in the tubes of the second heat exchanger coil is the partner with which heat is exchanged and is therefore referred to as the secondary side.

これに対し前記の第1.第2の熱交換コイルの管内側以
外の蓄冷熱装置を一次側と称している。
On the other hand, the above-mentioned 1. The cold storage heat device other than the tube inner side of the second heat exchange coil is referred to as the primary side.

[課題を解決するための手段] 蒸気目的を達成するために1本発明に係る蓄冷熱装置の
容量制御装置の構成は、 内部に、冷媒、吸収剤、またはこれらを混合した溶液が
注入されてる密閉容器状の第1および第2の部屋と、こ
れら第1および第2の部屋同士を連絡する蒸気通路と、
第1の部屋内に設置された第1熱交換器および第2の部
屋内に設置された第2熱交換器と、第1および第2の熱
交換器に連結された圧縮機と、第1および第2の部屋に
それぞれ別々に設置された散布装置ならびに熱媒体流通
伝熱管とを備え、前記第1熱交換器、第2熱交換器によ
って、第1および第2の部屋のいずれかを一方の部屋の
溶液を加熱濃縮し、蒸発した冷媒蒸気を蒸気通路を介し
て他方の部屋に導入して他方の部屋で液化させ、第1.
第2の部屋の溶液に濃度差を生じさせて熱を蓄えるよう
に制御回路を構成した蓄冷熱装置の制御装置において、
前記溶液を加熱濃縮する部屋の側の溶液散布装置を構成
する溶液配管系に1回転数制御装置を具備した溶液ポン
プと、負荷変動に対応して溶液量を変化せしめる流量調
整バルブとを備えたものである。
[Means for Solving the Problems] In order to achieve the purpose of steam, the capacity control device for the cold storage heat storage device according to the present invention has the following configuration: A refrigerant, an absorbent, or a solution of a mixture thereof is injected into the inside. first and second chambers in the shape of a sealed container; a steam passage connecting the first and second chambers;
a first heat exchanger installed in the first room; a second heat exchanger installed in the second room; a compressor connected to the first and second heat exchangers; and a dispersion device and a heat medium distribution heat exchanger tube installed separately in the second room, and the first heat exchanger and the second heat exchanger provide one of the first and second rooms. The solution in the first chamber is heated and concentrated, and the evaporated refrigerant vapor is introduced into the other chamber through the vapor passage and liquefied in the other chamber.
In a control device for a cold storage heat device, the control circuit is configured to store heat by creating a concentration difference in the solution in the second room,
A solution piping system constituting a solution dispersion device on the side of the room in which the solution is heated and concentrated is equipped with a solution pump equipped with a rotation speed control device and a flow rate adjustment valve that changes the amount of solution in response to load fluctuations. It is something.

また、上記目的を達成するために、本発明に係る蓄冷熱
装置の容量制御方法の構成は、内部に、冷媒、吸収剤、
またはこれらを混合した溶液が注入されている密閉容器
状の第1および第2の部屋と、これら第1および第2の
部屋同士を連絡する蒸気通路と、第1の部屋内に設置さ
れた第1熱交換器および第2の部屋内に設置された第2
熱交換器と、第1および第2の熱交換器に連結された圧
縮機と、第1および第2の部屋にそれぞれ別々に設置さ
れた散布装置ならびに熱媒体流通伝熱管とを備え、第1
熱交換器および第2熱交換器の一方の熱交換器に圧縮機
で圧縮された冷媒蒸気を循環させ、他方の熱交換器に冷
却媒体として一方の熱交換器を出た後の冷媒液を循環さ
せて、一方の熱交換器では、部屋内の溶液を加熱して冷
媒蒸気を発生させて溶液を濃縮し、この溶液の吸収能力
を高くシ、他方の熱交換器では、一方の熱交換器で発生
した冷媒蒸気を冷却液化させて、部屋内の溶液の濃度を
稀薄にし、この溶液の蒸発能力を高くし、熱エネルギを
蓄熱する蓄冷熱装置の容量制御方法において。
In addition, in order to achieve the above object, the configuration of the capacity control method for a cold storage heat storage device according to the present invention includes a refrigerant, an absorbent,
Alternatively, a first and second chamber shaped like a closed container into which a mixed solution of these is injected, a steam passage connecting the first and second chambers, and a steam passage installed in the first chamber. 1 heat exchanger and a 2nd heat exchanger installed in the second room.
A heat exchanger, a compressor connected to the first and second heat exchangers, a dispersion device and a heat medium circulation heat exchanger tube installed separately in the first and second rooms, and the first
The refrigerant vapor compressed by the compressor is circulated through one of the heat exchangers and the second heat exchanger, and the refrigerant liquid after leaving one heat exchanger is used as a cooling medium in the other heat exchanger. One heat exchanger heats the solution in the chamber to generate refrigerant vapor and concentrate the solution, increasing the absorption capacity of this solution, while the other heat exchanger heats the solution in one chamber and concentrates the solution. In a capacity control method for a cold heat storage device that stores thermal energy by cooling and liquefying refrigerant vapor generated in a chamber to dilute the concentration of a solution in a room and increasing the evaporation capacity of this solution.

溶液を濃縮する部屋の側の溶液散布装置を構成する溶液
配管系に1回転数制御装置を具備した溶液ポンプと流量
調整バルブとを備え、負荷側に負荷変動検知手段を設け
、その検知した負荷に応じて溶液の流量調整バルブを開
閉するとともに、前記流量調整バルブの開閉にもとなう
前記溶液ポンプの吐出圧力の変動を圧力検知手段により
検知し、当該吐出圧力を一定となるように前記溶液ポン
プを回転数制御するものである。
The solution piping system that constitutes the solution dispersion device on the side of the room where the solution is concentrated is equipped with a solution pump equipped with a rotation speed control device and a flow rate adjustment valve, and a load fluctuation detection means is provided on the load side, and the detected load is The flow rate adjustment valve of the solution is opened and closed according to the flow rate adjustment valve, and the pressure detection means detects the fluctuation in the discharge pressure of the solution pump, which is caused by the opening and closing of the flow rate adjustment valve, and the discharge pressure is adjusted to be constant. This controls the rotation speed of the solution pump.

[作用] 上記技術的手段による働き、特に容量制御方法は次のと
おりである。
[Operation] The operation of the above technical means, especially the capacity control method, is as follows.

本発明の容量制御方法は、まず負荷変動を検知した冷水
温度検出端が、負荷変動の大きさに応じて、溶液ライン
に設置された流量調整バルブに開閉信号を送る。それに
よって、流量調整バルブは開閉を行う、これにともない
バルブ−次側圧力が上昇するが、溶液ポンプに取り付け
られた回転数制御装置が働いて圧力が一定となり、省エ
ネ容量制御を行うことができる。
In the capacity control method of the present invention, first, a cold water temperature detection end that detects a load change sends an open/close signal to a flow rate adjustment valve installed in a solution line depending on the magnitude of the load change. As a result, the flow rate adjustment valve opens and closes, and as a result, the pressure on the downstream side of the valve increases, but the rotation speed control device attached to the solution pump works to keep the pressure constant, enabling energy-saving capacity control. .

[実施例] 以下1本発明の一実施例を図面を参照して説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

図面は、本発明の一実施例に係る蓄冷熱装置の系統図で
ある。
The drawing is a system diagram of a cold storage heat device according to an embodiment of the present invention.

図に示す圧縮式冷凍サイクルは、ターボ形、スクリュー
形、往復形のいずれかの圧縮機1、この圧縮機1に結合
され圧縮機1のロータを駆動する駆動機2、前記圧縮機
1のガス出入口II、1oに連結された四方切換え弁3
、この四方切換え弁3に連結された第1熱交換器4およ
び第2熱交換器5、これら第1.第2の熱交換器4.5
間に設置された空冷熱交換器6、これら圧縮機1、四方
切換弁3、第1.第2熱交換器4,5、および空冷熱交
換器6を互いに作動的に連結する配管7,8゜9.10
,11,12,13,14,15,16、配管9,10
,11,12,13,15,16の途中に具備された弁
17,18,19,20,21.22から構成されてい
る。
The compression type refrigeration cycle shown in the figure includes a turbo type, screw type, or reciprocating type compressor 1, a drive unit 2 connected to this compressor 1 and driving the rotor of the compressor 1, and a gas of the compressor 1. Four-way switching valve 3 connected to inlet/outlet II, 1o
, a first heat exchanger 4 and a second heat exchanger 5 connected to this four-way switching valve 3; Second heat exchanger 4.5
The air-cooled heat exchanger 6 installed between them, the compressor 1, the four-way switching valve 3, the first . Piping 7, 8°9.10 that operatively connects the second heat exchangers 4, 5 and the air-cooled heat exchanger 6 to each other
, 11, 12, 13, 14, 15, 16, piping 9, 10
, 11, 12, 13, 15, 16, and valves 17, 18, 19, 20, 21, and 22.

前記第1.第2熱交換器4,5は、密閉状の容器23に
納められている。この密閉容器23は。
Said 1st. The second heat exchangers 4 and 5 are housed in a sealed container 23. This airtight container 23 is.

第1.第2の部屋23A、23Bに断熱壁24によって
区画され、内部には、吸収液と冷媒液たとえば臭化リチ
ウムと水、エチレンゲルコールとフレオンの混合液(以
下単に溶液という)が注入されている0区画壁24の上
方側には、両室23Aと23Bとを連通ずる開口25が
形成されている。
1st. The second chambers 23A and 23B are divided by a heat insulating wall 24, into which an absorbing liquid and a refrigerant liquid such as a mixed liquid of lithium bromide, water, ethylene gelcole and Freon (hereinafter simply referred to as a solution) are injected. An opening 25 is formed on the upper side of the zero section wall 24 to communicate the two chambers 23A and 23B.

開口25には必要に応じ冷媒蒸気中の液滴を分離するた
めのエリミネータなどの気液分離素子を配置する。
A gas-liquid separation element such as an eliminator for separating droplets in the refrigerant vapor is arranged in the opening 25 as necessary.

第1.第2の部屋23A、23B内の上方部に熱媒体流
通電熱管に係る第1.第2熱交換コイル26.27が配
設されている。
1st. The first section related to the heating tube through which the heat medium flows is located in the upper part of the second chambers 23A and 23B. A second heat exchange coil 26,27 is arranged.

また、第1.第2の部屋23A、23Bの底部に、それ
ぞれタンク28.29と吸込管を連結した溶液ポンプ3
0.冷媒ポンプ31が配設されている。
Also, 1st. A solution pump 3 is connected to a tank 28, 29 and a suction pipe at the bottom of the second chambers 23A and 23B, respectively.
0. A refrigerant pump 31 is provided.

第1.第2熱交換コイル26,27の上部には溶液スプ
レーノズル32A、冷媒スプレーノズル32Bが設けら
れ、前記溶液ポンプ30.冷媒ポンプ31の吐出側とを
結ぶ配管33.34とで第1、第2の散布装置35.3
6が構成されている。
1st. A solution spray nozzle 32A and a refrigerant spray nozzle 32B are provided above the second heat exchange coils 26 and 27, and the solution pump 30. A pipe 33.34 connecting the discharge side of the refrigerant pump 31 connects the first and second dispersion devices 35.3.
6 are configured.

第1熱交換コイル26には、熱媒体に係る1例えば冷却
水が流通し、この冷却水系に冷却水ポンプ37、空気熱
交換器38が装備されている。また、第2熱交換コイル
27には、熱媒体に係る、例えば冷水が流通し、この冷
水系に冷水ポンプ39が装備されている。40は、例え
ば空調設備等の負荷を示している。
A heat medium, such as cooling water, flows through the first heat exchange coil 26, and this cooling water system is equipped with a cooling water pump 37 and an air heat exchanger 38. Furthermore, a heat medium, such as cold water, flows through the second heat exchange coil 27, and this cold water system is equipped with a cold water pump 39. 40 indicates the load of, for example, air conditioning equipment.

41は、負荷40の負荷変動を検知する冷水温度検出端
、42は、溶液ラインに係る配管33に具備された流量
調整バルブで、この流量調整バルブ42は冷水温度検出
端41の検出する負荷変動に応じてバルブ開度を調整す
るものである。
Reference numeral 41 denotes a cold water temperature detection end that detects load fluctuations in the load 40; 42 represents a flow rate adjustment valve provided in the piping 33 related to the solution line; The valve opening degree is adjusted accordingly.

また、前記溶液ポンプ30は、圧力検出端43はからの
信号で回転数を可変できる回転数制御装置44を装備し
ている。
Further, the solution pump 30 is equipped with a rotation speed control device 44 that can vary the rotation speed based on a signal from a pressure detection end 43.

次に動作を説明する。Next, the operation will be explained.

蓄冷熱運転: 弁17,18,19,20を開(弁18または弁19を
小開として膨張弁として機能させる)、弁22.21を
閉、四方切換弁3の連通方向が実線矢印Aとなるように
する。また、第1の部屋23Aには溶液が注入されてい
る。
Cold storage heat operation: Valve 17, 18, 19, 20 is opened (valve 18 or valve 19 is opened slightly to function as an expansion valve), valve 22, 21 is closed, and the communication direction of the four-way switching valve 3 is aligned with the solid line arrow A. I will make it happen. Further, a solution is injected into the first chamber 23A.

圧縮機1による圧縮によって冷媒蒸気(一般にはフロン
系)は高温高圧となり、配管8.四方切換弁3.配管9
.弁17を経て第1熱交換器4に流れ、ここを流れる間
に第1の部屋23A内の溶液を加熱し、溶液から冷媒を
蒸発させ、溶液の吸収液濃度を高くする。溶液を加熱し
た結果、第1熱交換器4の冷媒は液化し、配管10.弁
18゜空冷熱交換器6.配管11.配管12.弁19を
経由し、弁18または弁19にて減圧されて第2熱交換
器5に流入する。
By compression by the compressor 1, the refrigerant vapor (generally fluorocarbon-based) becomes high temperature and high pressure, and the pipe 8. Four-way switching valve 3. Piping 9
.. The solution flows through the valve 17 to the first heat exchanger 4, and while flowing there, heats the solution in the first chamber 23A, evaporates the refrigerant from the solution, and increases the absorption liquid concentration of the solution. As a result of heating the solution, the refrigerant in the first heat exchanger 4 liquefies and the pipe 10. Valve 18° Air-cooled heat exchanger 6. Piping 11. Piping 12. It passes through the valve 19, is depressurized by the valve 18 or 19, and flows into the second heat exchanger 5.

この冷媒液は、第2熱交換器5内で蒸発し1周囲(第2
の部屋23B)から蒸発潜熱を奪い、第1の部屋23A
で蒸発し開口25を通って流れ込んでくる第2の部屋2
3B内の冷媒蒸気を液化させタンク29に溜める。第2
熱交換器5内で蒸発した冷媒蒸気は、配管13.弁20
.配管14゜四方切換弁3.配管7を経由して圧縮機1
に戻り、再び圧縮機1で圧縮される。
This refrigerant liquid evaporates in the second heat exchanger 5 and evaporates in the second heat exchanger 5.
The latent heat of vaporization is removed from the first room 23B) and the first room 23A
The second chamber 2 is evaporated and flows into the second chamber 2 through the opening 25.
The refrigerant vapor in 3B is liquefied and stored in a tank 29. Second
The refrigerant vapor evaporated in the heat exchanger 5 is transferred to the pipe 13. valve 20
.. Piping 14° Four-way switching valve 3. Compressor 1 via piping 7
, and is again compressed by compressor 1.

上述の過程において、第1の部屋23A内の溶液は、タ
ンク28を経て溶液ポンプ30により加圧され、配管3
3、第1の散布装置35を経由し、溶液スプレーノズル
32から散布され、第1熱交換器4を加熱することもで
きる。このとき、流量調整バルブ42は全開とし、単位
時間当りの蓄熱量が最大となるようにする。
In the above process, the solution in the first chamber 23A passes through the tank 28, is pressurized by the solution pump 30, and is pumped into the pipe 3.
3. The solution can also be sprayed from the solution spray nozzle 32 via the first spraying device 35 to heat the first heat exchanger 4 . At this time, the flow rate adjustment valve 42 is fully opened so that the amount of heat stored per unit time is maximized.

上述の動作を継続する間に、第1の部屋23A内の溶液
は濃縮され、吸収液濃度がより高くなり、第2の部屋2
3Bには、第1の部屋23Aで蒸発させられた冷媒蒸気
を凝縮させた冷媒液が溜められる。これによって、第1
の部屋23A内の溶液は吸収能力が大きくなりこれに冷
媒蒸気を吸収させれば吸収熱を発生する状態、言い換え
れば、蓄熱していることになる。また、第2の部屋23
Bの冷媒液は、液の状態にあるから蒸発する能力を有し
ており、そのため、蒸発の際の蒸発潜熱に相当する冷力
を貯えている、すなわち蓄冷していることになる。
While the above-mentioned operation continues, the solution in the first chamber 23A becomes concentrated and the absorbent concentration becomes higher, and the solution in the second chamber 23A becomes concentrated.
3B stores a refrigerant liquid obtained by condensing refrigerant vapor evaporated in the first chamber 23A. This allows the first
The solution in the room 23A has a large absorption capacity, and if it absorbs refrigerant vapor, it will generate absorption heat, in other words, it will be storing heat. Also, the second room 23
Since the refrigerant liquid B is in a liquid state, it has the ability to evaporate, and therefore stores cooling power corresponding to the latent heat of evaporation during evaporation, that is, stores cold.

蓄冷熱取り出し運転: 前述の運転で行なった蓄冷熱を取り出す場合、第1.第
2の散布装置35.36を運転し、第1゜第2熱交換コ
イル26,27に熱媒体(冷却水。
Cold storage heat extraction operation: When extracting the cold storage heat performed in the operation described above, 1. The second dispersion device 35, 36 is operated, and the heat medium (cooling water) is supplied to the first and second heat exchange coils 26, 27.

冷水)を循環させる。このとき、冷凍機は停止しておく
、もし、蓄冷熱だけでは熱量が不足するような場合には
、冷凍機を運転しながら蓄冷熱を取り出すようにするこ
ともできる。
(cold water) is circulated. At this time, the refrigerator is stopped. If the stored cold heat alone is insufficient for the amount of heat, it is also possible to extract the stored cold heat while operating the refrigerator.

第2の部屋23Bの冷媒液は、タンク29を経て冷媒ポ
ンプ31によって冷媒スプレーノズル33から第2熱交
換コイル27に散布されて蒸発する。
The refrigerant liquid in the second chamber 23B passes through the tank 29, is sprayed by the refrigerant pump 31 from the refrigerant spray nozzle 33 to the second heat exchange coil 27, and evaporates.

冷媒が蒸発する際、第2熱交換コイル27内を流通する
冷水から蒸発潜熱を奪い冷水を冷やす。
When the refrigerant evaporates, latent heat of evaporation is removed from the cold water flowing through the second heat exchange coil 27, thereby cooling the cold water.

これによって冷力が取り出せる。第2の部屋23Bで蒸
発した冷媒蒸気は開口25を通って第1の部屋23Aに
流れ込む。
This provides cooling power. The refrigerant vapor evaporated in the second chamber 23B flows into the first chamber 23A through the opening 25.

また、第1の部屋23A内の吸収液濃度の高い溶液は、
溶液ポンプ30によって溶液スプレーノズル32から第
1熱交換コイル26に散布され、第2の部屋23Bで蒸
発した冷媒蒸気を吸収する。
In addition, the solution with high absorption liquid concentration in the first chamber 23A is
The refrigerant vapor is sprayed from the solution spray nozzle 32 to the first heat exchange coil 26 by the solution pump 30 and absorbs the refrigerant vapor evaporated in the second chamber 23B.

第1熱交換コイル26内を通る冷却水は、吸収の際に発
生する吸収熱によって加熱され温度が上昇する。これに
よって蓄熱された熱が取り出せる。
The cooling water passing through the first heat exchange coil 26 is heated by the absorption heat generated during absorption, and its temperature increases. This allows the stored heat to be extracted.

次に、冷力取り出し量可変運転を説明する。Next, the variable cooling power extraction amount operation will be explained.

まず、冷力を空調設備用と考え負荷40とする。First, assuming that the cooling power is for air conditioning equipment, a load of 40 is assumed.

負荷40の冷水出口部に取り付けられた冷水温度検出端
41により負荷状態を検知し、負荷に応じて溶液の流量
調整バルブ42を開閉し、溶液スプレーノズル32Aか
らの溶液散布量を変化させ。
The load condition is detected by a cold water temperature detection end 41 attached to the cold water outlet of the load 40, and the solution flow rate adjustment valve 42 is opened and closed according to the load to change the amount of solution sprayed from the solution spray nozzle 32A.

第1の部屋23Aでの冷媒蒸気の溶液への吸収量を変え
て容量を制御する。ここで、溶液の流量調整バルブ42
を開閉することにより溶液ポンプ30の吐出圧力が変動
するが、このとき、溶液ポンプ30の吐出部の圧力検出
端にて吐出圧力が一定になるよう、回転数制御装置44
を用いて溶液ポンプ30を回転数制御する。
The capacity is controlled by changing the amount of refrigerant vapor absorbed into the solution in the first chamber 23A. Here, the solution flow rate adjustment valve 42
The discharge pressure of the solution pump 30 fluctuates by opening and closing, but at this time, the rotation speed control device 44 is operated so that the discharge pressure is constant at the pressure detection end of the discharge section of the solution pump 30.
The rotation speed of the solution pump 30 is controlled using.

上記の如くすることによって、無駄なポンプ動力を省き
、また、吐出圧力の制御により高位置への溶液の安定供
給にも大きく寄与する。
By doing as described above, unnecessary pump power is saved, and controlling the discharge pressure greatly contributes to stable supply of solution to high positions.

また、上記方法は、蓄熱にも利用することができる。Furthermore, the above method can also be used for heat storage.

本実施例によれば、溶液の流量調整バルブの開度調整に
より、溶液ラインにおける負荷に応じた溶液量を制御す
るだけでなく、同時に溶液ポンプの回転数をも制御する
ので、運転動力の効率的運用が可能である。
According to this embodiment, by adjusting the opening degree of the solution flow rate adjustment valve, not only the amount of solution according to the load in the solution line is controlled, but also the rotation speed of the solution pump is controlled at the same time, resulting in efficiency of operating power. It is possible to use it in a variety of ways.

また、溶液スプレーノズルへの溶液供給圧力を一定に保
てるため、ノズルの特性を有効に利用できる。
Furthermore, since the pressure for supplying the solution to the solution spray nozzle can be kept constant, the characteristics of the nozzle can be effectively utilized.

[発明の効果コ 以上詳細に説明したように、本発明によれば、溶液を加
熱濃縮する部屋およびその部屋側の溶液散布循環系(溶
液側)、すなわち温度差蓄熱システムの一次側に容量制
御手段を設け、無駄なエネルギー放出を最小限にする蓄
冷熱装置の容量制御方法およびその装置を提供すること
ができる。
[Effects of the Invention] As explained in detail above, according to the present invention, capacity control is provided in the room for heating and concentrating the solution and the solution distribution circulation system (solution side) on the side of the room, that is, on the primary side of the temperature difference heat storage system. It is possible to provide a capacity control method and device for a cold storage heat storage device that minimizes wasteful energy release by providing means.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施例に係る蓄冷熱装置の系統図で
ある。 1・・・圧縮機、4・・・第1熱交換器、5・・・第2
熱交換器、23A・・・第1の部屋、23B・・・第2
の部屋、24・・・区画壁、25・・・開口、26・・
・第1熱交換コイル、27・・・第2熱交換コイル、3
0・・・溶液ポンプ、31・・・冷媒ポンプ、35・・
・第1の散布装置、36・・・第2の散布装置、40・
・・負荷、41・・・冷水温度検出端、42・・・流量
調整バルブ、43・・・圧力検出端、44・・・回転数
制御装置。
The drawing is a system diagram of a cold storage heat device according to an embodiment of the present invention. 1... Compressor, 4... First heat exchanger, 5... Second
Heat exchanger, 23A...first chamber, 23B...second
room, 24... partition wall, 25... opening, 26...
・First heat exchange coil, 27...Second heat exchange coil, 3
0...Solution pump, 31...Refrigerant pump, 35...
・First spreading device, 36... Second spreading device, 40・
...Load, 41...Cold water temperature detection end, 42...Flow rate adjustment valve, 43...Pressure detection end, 44...Rotation speed control device.

Claims (1)

【特許請求の範囲】 1、内部に、冷媒、吸収剤、またはこれらを混合した溶
液が注入されている密閉容器状の第1および第2の部屋
と、これら第1および第2の部屋同士を連絡する蒸気通
路と、第1の部屋内に設置された第1熱交換器および第
2の部屋内に設置された第2熱交換器と、第1および第
2の熱交換器に連結された圧縮機と、第1および第2の
部屋にそれぞれ別々に設置された散布装置ならびに熱媒
体流通伝熱管とを備え、 前記第1熱交換器、第2熱交換器によって、第1および
第2の部屋のいずれか一方の部屋の溶液を加熱濃縮し、
蒸発した冷媒蒸気を蒸気通路を介して他方の部屋に導入
して他方の部屋で液化させ、第1、第2の部屋の溶液に
濃度差を生じさせて熱を蓄えるように制御回路を構成し
た蓄冷熱装置の制御装置において、 前記溶液を加熱濃縮する部屋の側の溶液散布装置を構成
する溶液配管系に、 回転数制御装置を具備した溶液ポンプと、 負荷変動に対応して溶液量を変化せしめる流量調整バル
ブとを 備えたことを特徴とする蓄冷熱装置の容量制御装置。 2、内部に、冷媒、吸収剤、またはこれらを混合した溶
液が注入されている密閉容器状の第1および第2の部屋
と、これら第1および第2の部屋同士を連絡する蒸気通
路と、第1の部屋内に設置された第1熱交換器および第
2の部屋内に設置された第2熱交換器と、第1および第
2の熱交換器に連結された圧縮機と、第1および第2の
部屋にそれぞれ別々に設置された散布装置ならびに熱媒
体流通伝熱管とを備え、 第1熱交換器および第2熱交換器の一方の熱交換器に圧
縮機で圧縮された冷媒蒸気を循環させ、他方の熱交換器
に冷却媒体として一方の熱交換器を出た後の冷媒液を循
環させて、一方の熱交換器では、部屋内の溶液を加熱し
て冷媒蒸気を発生させて溶液を濃縮し、この溶液の吸収
能力を高くし、他方の熱交換器では、一方の熱交換器で
発生した冷媒蒸気を冷却液化させて、部屋内の溶液の濃
度を稀薄にし、この溶液の蒸発能力を高くし、熱エネル
ギを蓄熱する蓄冷熱装置の容量制御方法において、 溶液を濃縮する部屋の側の溶液散布装置を構成する溶液
配管系に、回転数制御装置を具備した溶液ポンプと流量
調整バルブとを備え、 負荷側に負荷変動検知手段を設け、その検知した負荷に
応じて溶液の流量調整バルブを開閉するとともに、 前記流量調整バルブの開閉にともなう前記溶液ポンプの
吐出圧力の変動を圧力検知手段により検知し、当該吐出
圧力を一定となるように前記溶液ポンプを回転数制御す
ることを特徴とする蓄冷熱装置の容量制御方法。 3、内部に、冷媒、吸収剤、またはこれらを混合した溶
液が注入されている密閉容器状の第1および第2の部屋
と、これら第1および第2の部屋同士を連絡する蒸気通
路と、第1の部屋内に設置された第1熱交換器および第
2の部屋内に設置された第2熱交換器と、第1および第
2の熱交換器に連結された圧縮機と、第1および第2の
部屋にそれぞれ別々に設置された散布装置ならびに熱媒
体流通電熱管とを備え、 第1熱交換器および第2熱交換器の一方の熱交換器に圧
縮機で圧縮された冷媒蒸気を循環させ、他方の熱交換器
に冷却媒体として一方の熱交換器を出た後の冷媒液を循
環させて、一方の熱交換器では、部屋内の溶液を加熱し
て冷媒蒸気を発生させて溶液を濃縮し、この溶液の吸収
能力を高くし、他方の熱交換器では、一方の熱交換器で
発生した冷媒蒸気を冷却液化させて、部屋内の溶液の濃
度を稀薄にし、この溶液の蒸発能力を高くし、熱エネル
ギを蓄熱する蓄冷熱装置の容量制御方法において、 溶液を濃縮する部屋の側の溶液散布装置を構成する溶液
配管系に、回転数制御装置を具備した溶液ポンプと流量
調整バルブとを備え、 前記流量調整バルブを全開とし、 前記溶液ポンプにより、溶液散布装置を介して溶液を熱
交換器に散布して、溶液を濃縮する部屋における溶液の
加熱濃縮を行うことを特徴とする蓄冷熱装置の容量制御
方法。
[Claims] 1. A first and second chamber shaped like a closed container into which a refrigerant, an absorbent, or a solution of a mixture thereof is injected, and the first and second chambers are connected to each other. a first heat exchanger installed in the first chamber, a second heat exchanger installed in the second chamber, and connected to the first and second heat exchangers; It is equipped with a compressor, a dispersion device and a heat medium distribution heat exchanger tube installed separately in a first and second room, and the first and second heat exchangers Heat and concentrate the solution in one of the chambers,
The control circuit was configured to introduce the evaporated refrigerant vapor into the other chamber through the vapor passage and liquefy it in the other chamber, thereby creating a concentration difference between the solutions in the first and second chambers and storing heat. In the control device for the cold storage heat device, the solution piping system constituting the solution distribution device on the side of the room where the solution is heated and concentrated includes a solution pump equipped with a rotation speed control device and a solution pump that changes the amount of solution in response to load fluctuations. 1. A capacity control device for a cold storage heat storage device, comprising a flow rate adjustment valve for controlling the flow rate. 2. First and second chambers in the form of a closed container into which a refrigerant, an absorbent, or a solution of a mixture thereof is injected, and a steam passageway communicating between the first and second chambers; a first heat exchanger installed in the first room; a second heat exchanger installed in the second room; a compressor connected to the first and second heat exchangers; and a dispersion device and a heat medium distribution heat exchanger tube installed separately in the second room, and the refrigerant vapor compressed by the compressor is supplied to one of the first heat exchanger and the second heat exchanger. The refrigerant liquid after leaving one heat exchanger is circulated as a cooling medium to the other heat exchanger, and the one heat exchanger heats the solution in the room to generate refrigerant vapor. In the other heat exchanger, the refrigerant vapor generated in one heat exchanger is cooled and liquefied to dilute the concentration of the solution in the room. In a method for controlling the capacity of a cold heat storage device that increases the evaporation capacity of a liquid and stores thermal energy, a solution pump equipped with a rotation speed control device and a solution piping system that constitutes a solution distribution device on the side of the room where the solution is concentrated are added. A flow rate adjustment valve is provided, and a load change detection means is provided on the load side, and the flow rate adjustment valve of the solution is opened and closed according to the detected load, and the discharge pressure of the solution pump is changed due to the opening and closing of the flow rate adjustment valve. 1. A capacity control method for a cold storage heat storage device, comprising: detecting the discharge pressure by a pressure detection means, and controlling the rotation speed of the solution pump so that the discharge pressure is constant. 3. first and second chambers in the form of a sealed container into which a refrigerant, an absorbent, or a solution of a mixture thereof is injected; and a steam passageway that communicates the first and second chambers; a first heat exchanger installed in the first room; a second heat exchanger installed in the second room; a compressor connected to the first and second heat exchangers; and a dispersion device and a heating medium distribution heating tube installed separately in the second room, and the refrigerant vapor compressed by the compressor is supplied to one of the first heat exchanger and the second heat exchanger. The refrigerant liquid after leaving one heat exchanger is circulated as a cooling medium to the other heat exchanger, and the one heat exchanger heats the solution in the room to generate refrigerant vapor. In the other heat exchanger, the refrigerant vapor generated in one heat exchanger is cooled and liquefied to dilute the concentration of the solution in the room. In a method for controlling the capacity of a cold heat storage device that increases the evaporation capacity of a liquid and stores thermal energy, a solution pump equipped with a rotation speed control device and a solution piping system that constitutes a solution distribution device on the side of the room where the solution is concentrated are added. and a flow rate adjustment valve, the flow rate adjustment valve is fully opened, and the solution pump is used to spray the solution onto the heat exchanger via the solution spraying device to heat and concentrate the solution in the solution concentration chamber. A method for controlling the capacity of a cold storage heat storage device.
JP1137553A 1989-06-01 1989-06-01 Cooling heat storage device capacity control method and device Expired - Fee Related JP2713766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137553A JP2713766B2 (en) 1989-06-01 1989-06-01 Cooling heat storage device capacity control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137553A JP2713766B2 (en) 1989-06-01 1989-06-01 Cooling heat storage device capacity control method and device

Publications (2)

Publication Number Publication Date
JPH035643A true JPH035643A (en) 1991-01-11
JP2713766B2 JP2713766B2 (en) 1998-02-16

Family

ID=15201405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137553A Expired - Fee Related JP2713766B2 (en) 1989-06-01 1989-06-01 Cooling heat storage device capacity control method and device

Country Status (1)

Country Link
JP (1) JP2713766B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206559A (en) * 1981-06-16 1982-12-17 Fuji Electric Co Ltd Control method for flow rate of secondary cooling water of continuous casting installation
JPS6246910U (en) * 1985-08-27 1987-03-23
JPS62218773A (en) * 1986-03-20 1987-09-26 株式会社日立製作所 Cold and heat accumulator
JPS62225865A (en) * 1986-03-27 1987-10-03 アイシン精機株式会社 Heat pump type air conditioner
JPS6419268A (en) * 1987-07-10 1989-01-23 Hitachi Ltd Defroster for heat pump type refrigerating equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206559A (en) * 1981-06-16 1982-12-17 Fuji Electric Co Ltd Control method for flow rate of secondary cooling water of continuous casting installation
JPS6246910U (en) * 1985-08-27 1987-03-23
JPS62218773A (en) * 1986-03-20 1987-09-26 株式会社日立製作所 Cold and heat accumulator
JPS62225865A (en) * 1986-03-27 1987-10-03 アイシン精機株式会社 Heat pump type air conditioner
JPS6419268A (en) * 1987-07-10 1989-01-23 Hitachi Ltd Defroster for heat pump type refrigerating equipment

Also Published As

Publication number Publication date
JP2713766B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP4982713B2 (en) Energy efficiency improvement device for refrigeration cycle
CN105588356B (en) A kind of refrigeration system and its control method
EP1207360B1 (en) Suction line heat exchanger with a storage tank for a transcritical vapor compression cycle
CN106152840B (en) Heat pipe system, refrigeration system and control method thereof
CN107965853B (en) Outdoor unit of three-pipe multi-split air conditioner system and control method
US5018367A (en) Cooling energy generator with cooling energy accumulator
KR102226194B1 (en) Hybrid free-cooling thermosiphon multi-chiller type constant temperature and dehumidification air conditioning system
JPH035643A (en) Capacity control method for cold accumulator and its apparatus
JPS62218773A (en) Cold and heat accumulator
CN110108056A (en) The regulating device of refrigeration system
JPH1183234A (en) Combined heat transfer equipment
JP3007708B2 (en) Cooling / hot air direct-blowing absorption air conditioner and absorption air conditioning system
JP2004169988A (en) Two-stage/single-stage switchable absorption refrigerator and refrigerating system
JPH03164670A (en) Cold heat storage device and its operation
JP3434279B2 (en) Absorption refrigerator and how to start it
JPH0712848Y2 (en) Absorption refrigerator
JP3086594B2 (en) Single double effect absorption refrigerator
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP3451538B2 (en) Absorption type cold heat generator
JP2002277091A (en) Absorption refrigerator and method for operating the same
JPH086207Y2 (en) Direct air conditioning heat pump device
JPH02197774A (en) Cooling device
JP3429905B2 (en) Absorption refrigerator
JPH0257872A (en) Absorption refrigerator
JP2517421B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees