JPS62225865A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS62225865A
JPS62225865A JP6911786A JP6911786A JPS62225865A JP S62225865 A JPS62225865 A JP S62225865A JP 6911786 A JP6911786 A JP 6911786A JP 6911786 A JP6911786 A JP 6911786A JP S62225865 A JPS62225865 A JP S62225865A
Authority
JP
Japan
Prior art keywords
temperature
pressure
indoor
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6911786A
Other languages
Japanese (ja)
Other versions
JPH0689963B2 (en
Inventor
譲 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP6911786A priority Critical patent/JPH0689963B2/en
Publication of JPS62225865A publication Critical patent/JPS62225865A/en
Publication of JPH0689963B2 publication Critical patent/JPH0689963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、1台の室外ユニットと、複数の室内ユニット
を有するヒートポンプ式冷暖房装置に関するもので、例
えばビル等のオフィス冷暖房空調に利用される。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to a heat pump type air-conditioning system having one outdoor unit and a plurality of indoor units. Used for air conditioning.

(従来の技術) 本発明に係る従来技術としiは、特公昭52−1657
7号公報にて記載されたものがある。
(Prior art) The prior art related to the present invention is Japanese Patent Publication No. 52-1657
There is one described in Publication No. 7.

この従来技術は第3図により説明すると、冷房時には圧
縮機32から吐出した高温高圧の冷媒ガスは、室外熱交
換器34に入り、外気に放熱し、凝縮液化した冷媒は液
分岐点42を通過した後、並列に構成された室内ユニッ
ト36a、36b内のキャピラリーチューブ39a、3
9bにて減圧され、室内側熱交換器37a、37bにて
室内空気より吸熱して蒸発し、分岐点43、四方弁33
の順に流れ、圧縮機32に吸入される。
This conventional technology will be explained with reference to FIG. 3. During cooling, high-temperature, high-pressure refrigerant gas discharged from the compressor 32 enters the outdoor heat exchanger 34 and radiates heat to the outside air, and the condensed and liquefied refrigerant passes through the liquid branch point 42. After that, the capillary tubes 39a and 3 in the indoor units 36a and 36b configured in parallel are
The pressure is reduced at 9b, the indoor heat exchangers 37a and 37b absorb heat from the indoor air and evaporate, and the branch point 43 and four-way valve 33
The air flows in this order and is sucked into the compressor 32.

一方暖房運転時には、圧縮機32より吐出した高温高圧
の冷媒ガスは、四方弁33より配管41、分岐点43を
経て、室内側熱交換器37a、37bにてこれを送風す
るモータ付ファン38a、38bにより送られる室内空
気に過熱して凝縮液化する。そしてキャピラリーチュー
ブ39a、39bにて減圧され分岐管40a、40b、
分岐点42の順に流れ、室外側熱交換器34にて吸熱し
て蒸発し、圧縮機32に吸入される。
On the other hand, during heating operation, the high-temperature, high-pressure refrigerant gas discharged from the compressor 32 passes through the four-way valve 33, the piping 41, and the branch point 43, and is blown by the indoor heat exchangers 37a and 37b. The indoor air sent by 38b is superheated and condensed into liquid. Then, the pressure is reduced in the capillary tubes 39a, 39b, and the branch pipes 40a, 40b,
It flows in the order of the branch point 42 , absorbs heat and evaporates in the outdoor heat exchanger 34 , and is sucked into the compressor 32 .

(発明が解決しようとする問題点) しかしこの従来技術においては、暖房運転時、室内ユニ
ットのモータ付ファンの風量が互いに異なる場合や、フ
ァンによって吸入される空気温度に差がある場合、キャ
ピラリー管に流入する冷媒の凝縮の度合や温度に大きな
差が生じる。これを第4図の圧力エンタルピ線図で説明
すると、Peは凝縮圧力、Pcは蒸発圧力である。Aは
圧縮機前の状態、Bは凝縮器入口の状態、Cはキャピラ
リー管筒の状態、Dは蒸発器前の状態である。ここで室
内温度に差がある場合、あるいはファン風量が異なる場
合、0点は夫々Ca、Cbの点に変化する。cbについ
てみると、ここでは冷媒は完全に凝縮しておらず、適性
な過冷却度とならず、蒸発器での外気からの吸熱が有効
に行なわれず、装置の成績係数を低下させる。またCa
についてみると過度の過冷却度となり、室内の暖房如求
に対して冷媒流量が相対的に不足している状態となる。
(Problem to be solved by the invention) However, in this prior art, during heating operation, if the air volumes of the motorized fans of the indoor units are different from each other, or if there is a difference in the air temperature sucked by the fans, the capillary tube A large difference occurs in the degree of condensation and temperature of the refrigerant flowing into the refrigerant. To explain this using the pressure enthalpy diagram shown in FIG. 4, Pe is the condensation pressure and Pc is the evaporation pressure. A is the state before the compressor, B is the state at the condenser inlet, C is the state of the capillary tube, and D is the state before the evaporator. Here, if there is a difference in indoor temperature or if the fan air volume is different, the 0 point changes to points Ca and Cb, respectively. Regarding cb, the refrigerant here is not completely condensed, does not achieve an appropriate degree of supercooling, and does not effectively absorb heat from the outside air in the evaporator, reducing the coefficient of performance of the device. Also Ca
In this case, the degree of supercooling becomes excessive, and the refrigerant flow rate becomes relatively insufficient for indoor heating requirements.

本発明はかかる問題にがんがみ、暖房時の成績係数を向
上させることを、その技術的課題とする。
The technical objective of the present invention is to solve this problem and improve the coefficient of performance during heating.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記課題を解決するために講じた技術的手段は、室外ユ
ニットに、圧縮機と、吐出圧力を検出する圧力センサー
と、該圧力センサーにより検出される圧力を一定に保持
すべく圧縮機の回転数を制御するコントローラと、原動
機とを設け、室内ユニットに、液配管中に配設される冷
房運転用の膨張弁と、該膨張弁と並列に配設される逆止
弁および感温流量制御弁とを設ける、ことである。
(Means for solving the problem) The technical means taken to solve the above problem is to provide an outdoor unit with a compressor, a pressure sensor that detects the discharge pressure, and a pressure sensor that detects the pressure detected by the pressure sensor. A controller for controlling the rotation speed of the compressor to keep it constant and a prime mover are provided, and the indoor unit is provided with an expansion valve for cooling operation disposed in the liquid piping, and an expansion valve disposed in parallel with the expansion valve. A check valve and a temperature-sensitive flow control valve are provided.

(作用) これによれば、暖房運転時、室内熱交換器内の圧力、即
ち凝縮圧力をファンモータの回転数や室内温度に関係せ
ず設定値に保ち、更に感温流量制御の働きにより、ここ
を通過する冷媒液の温度をあらかじめ設定された温度に
保つことにより、ヒートポンプサイクルの成績係数を常
に高い値に維持することができる。
(Function) According to this, during heating operation, the pressure inside the indoor heat exchanger, that is, the condensing pressure, is maintained at the set value regardless of the fan motor rotation speed or the indoor temperature, and furthermore, by the function of temperature-sensitive flow rate control, By maintaining the temperature of the refrigerant liquid passing through this at a preset temperature, the coefficient of performance of the heat pump cycle can always be maintained at a high value.

(実施例) 以下、本発明の実施例について第1図、第2図に基づき
説明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2.

1は室外ユニットであり、圧縮機2.圧縮機2から吐出
される高温高圧の冷媒ガスを検出する圧力センサー3.
圧縮機2の回転数をコントローラ4によって変化させる
原動機5.四方弁6.室外熱交換器7.室外交換器7に
送風するためのモータ付ファン8.膨張弁9.逆止弁1
0によって構成される。
1 is an outdoor unit, and a compressor 2. A pressure sensor 3 for detecting high temperature and high pressure refrigerant gas discharged from the compressor 2.
5. A prime mover that changes the rotation speed of the compressor 2 using a controller 4. Four-way valve6. Outdoor heat exchanger7. A fan with a motor for blowing air to the outdoor exchanger 7 8. Expansion valve9. Check valve 1
Consists of 0.

11a、llbは室内ユニットであり、室内熱交換器1
2a、12bと、この室内熱交換器12a、12bに送
風するためのモータ付ファン13a、13b、膨張弁1
4a、14b、膨張弁14a、14bと並列に感温流量
制御弁20a、20bおよび、逆止弁15a、15bに
よって構成される。
11a and llb are indoor units, and indoor heat exchanger 1
2a, 12b, motorized fans 13a, 13b for blowing air to the indoor heat exchangers 12a, 12b, and expansion valve 1.
4a, 14b, expansion valves 14a, 14b, temperature-sensitive flow control valves 20a, 20b, and check valves 15a, 15b.

前記室外ユニット1と室内ユニッ)lla、11bは配
管16.17と、途中分岐点18.19で分岐した分岐
管16a、16b、17a、17bより接続されている
The outdoor unit 1 and the indoor units) 11a and 11b are connected through pipes 16.17 and branch pipes 16a, 16b, 17a, and 17b branched at intermediate branch points 18.19.

感温流量制御弁20a、20bは、第2図に示すように
冷媒液の入口21を形成し、ケーシング22内には、設
定温度によって体積変化を起すワックス23を充填した
感温筒24と、ワックス23の体積変化に応じて揚程を
変化させる弁棒25、および弁棒25のガタを防ぐスプ
リング26によって構成される。
The temperature-sensitive flow control valves 20a and 20b form an inlet 21 for the refrigerant liquid, as shown in FIG. It is composed of a valve stem 25 that changes the lifting height according to changes in the volume of the wax 23, and a spring 26 that prevents the valve stem 25 from rattling.

上記構成により冷房運転を行なう場合、圧縮機2から吐
出した高温高圧のガスは四方弁6から室外熱交換器7に
て外気に放熱して凝縮し液化する。
When performing cooling operation with the above configuration, the high temperature and high pressure gas discharged from the compressor 2 radiates heat to the outside air through the four-way valve 6 and the outdoor heat exchanger 7, and is condensed and liquefied.

凝縮液化された冷媒は逆止弁10を通過し、分岐点18
で各室内ユニットlla、llbに分配され、分岐管1
6a、16bを経由して膨張弁14a、14bにて減圧
され、室内熱交換器12a。
The condensed and liquefied refrigerant passes through the check valve 10 and reaches the branch point 18.
The branch pipe 1 is distributed to each indoor unit lla and llb.
6a, 16b, the pressure is reduced by expansion valves 14a, 14b, and the indoor heat exchanger 12a.

12bにて室内空気から吸熱してガス状態となり室内冷
房を行い、更に分岐管17a、17bにより分岐点19
.四方弁6を経て圧縮機2に吸入される。
At 12b, it absorbs heat from the indoor air and becomes a gas, cooling the room.
.. It is sucked into the compressor 2 through the four-way valve 6.

ここで各室内ユニットlla、Ilbのファン風量、冷
房負荷により、圧縮機2の吸入圧力は変化するが圧力セ
ンサー3”により吸入圧力の変化を検出し、コントロー
ラ4にて原動機5の回転数即ち、圧縮機2の回転数を制
御して吸入圧力を設定値に、保つ。これにより室内側熱
交換器12a。
Here, the suction pressure of the compressor 2 changes depending on the fan air volume and cooling load of each indoor unit lla and Ilb, but the pressure sensor 3'' detects the change in suction pressure, and the controller 4 controls the rotation speed of the prime mover 5, that is, the rotation speed of the prime mover 5. The rotational speed of the compressor 2 is controlled to maintain the suction pressure at the set value.This causes the indoor heat exchanger 12a.

12bでの蒸発温度は設定値に保つことができるので冷
風吹き出し温度も、はぼ一定に保つことができる。この
とき感温流量制御弁20a、20bには、これと直列に
設置された逆止弁15a、15bの作用により冷媒は流
れない。
Since the evaporation temperature at 12b can be kept at the set value, the cold air blowout temperature can also be kept almost constant. At this time, the refrigerant does not flow through the temperature-sensitive flow control valves 20a, 20b due to the action of the check valves 15a, 15b installed in series therewith.

一方暖房運転を行う場合、圧縮機2から吐出した高温高
圧の冷媒ガスは四方弁6から分岐点19に入り、分岐管
17a、17bを経て室内側熱交換器12a、12bに
て室内空気に放熱し、凝縮して冷却液となる。この後、
感温流量制御弁20a、20b、逆止弁15a、15b
を通過して分岐管16a、16bを経て分岐点18で合
流し、膨張弁9にて減圧され、室外熱交換器7に流入し
て外気より吸熱蒸発し、四方弁6を経て、圧縮機2に吸
入される。
On the other hand, when performing heating operation, the high-temperature, high-pressure refrigerant gas discharged from the compressor 2 enters the branch point 19 from the four-way valve 6, passes through the branch pipes 17a and 17b, and radiates heat to the indoor air at the indoor heat exchangers 12a and 12b. It condenses and becomes a cooling liquid. After this,
Temperature-sensitive flow control valves 20a, 20b, check valves 15a, 15b
It passes through branch pipes 16a and 16b, joins at a branch point 18, is depressurized by an expansion valve 9, flows into an outdoor heat exchanger 7, absorbs heat from the outside air, evaporates, passes through a four-way valve 6, and then flows into a compressor 2. is inhaled.

前記感温流量制御弁20a、20bは、設定されだ液温
より高い冷媒が通路を絞り、室内側熱交換器12a、1
2bで液化した後、設定温度まで液温か下るように熱交
換器12a、12b内での液面レベルを上げ、設定値よ
り低い冷媒が通過すると入口を拡げて熱交換器12a、
12b内の液面レベルを下げて液での冷却を少なくし、
結果として個々を通過する液温度を一定に保つ働きをす
る。
The temperature-sensitive flow rate control valves 20a, 20b restrict the passage of the refrigerant higher than the set liquid temperature, and the indoor heat exchangers 12a, 1
After being liquefied in step 2b, the liquid level in the heat exchangers 12a, 12b is raised so that the liquid temperature drops to the set temperature, and when the refrigerant lower than the set value passes through, the inlet is widened and the heat exchanger 12a,
Lower the liquid level in 12b to reduce cooling with liquid,
As a result, it works to keep the temperature of the liquid passing through each part constant.

ここで室内側熱交換器12a、12bの圧力(凝縮圧力
)は、吐出圧力センサ−3、コントローラ4により原動
機5の回転数、即ち圧縮機2の回転数を制御することで
設定値に保たれているので結果として感温流量制御弁2
0a、20bを通過する冷媒のいわゆる過冷却度は一定
に保つことができる。
Here, the pressure (condensing pressure) of the indoor heat exchangers 12a and 12b is maintained at a set value by controlling the rotation speed of the prime mover 5, that is, the rotation speed of the compressor 2, using the discharge pressure sensor 3 and the controller 4. As a result, the temperature-sensitive flow control valve 2
The so-called degree of supercooling of the refrigerant passing through 0a and 20b can be kept constant.

〔発明の効果〕〔Effect of the invention〕

以上の如く、暖房時には凝縮圧力を圧縮機回転数の制御
により一定に保つとともに、冷媒凝縮液の温度を感温流
量制御弁によって一定に保つものであるから各部屋の室
温、ファン風量に関係せず、常に高い成績係数を保ち得
るとともに、室内ユニットの吹き出し空気温度をほとん
ど一定に保つことができる。
As mentioned above, during heating, the condensing pressure is kept constant by controlling the compressor rotation speed, and the temperature of the refrigerant condensate is kept constant by the temperature-sensitive flow rate control valve. In addition to always maintaining a high coefficient of performance, the temperature of the air blown from the indoor unit can be kept almost constant.

また1台の室内ユニットが運転を停止した場合、このユ
ニットにもガス状冷媒が循環するが、このユニットでの
放熱は小さく、ガス状のままで休止室内ユニット中に溜
り込むことになり、液状で冷媒が溜り込むことがないの
で循環冷媒量が不足することも、また過剰になることも
なく暖房運転ができる。
Furthermore, when one indoor unit stops operating, the gaseous refrigerant circulates through this unit as well, but the heat dissipation from this unit is small, and the gaseous refrigerant accumulates in the idle indoor unit, causing the refrigerant to become liquid. Since the refrigerant does not accumulate, heating operation can be performed without the amount of circulating refrigerant becoming insufficient or excessive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す冷媒回路図、第2
図は感温流量制御弁の断面図、第3図は従来装置の冷媒
回路図、第4図は圧力エンタルピ線図である。 1・・・室外ユニット、2・・・圧縮機、3・・・圧力
センサー、4・・・コントローラ、5・・・原動機、l
la、llb・・・室内ユニット。 13a、  13b−−−膨張弁、14a、14b・・
・逆止弁、20a、20b・・・感温流量制御弁
Fig. 1 is a refrigerant circuit diagram showing one embodiment of the device of the present invention;
The figure is a sectional view of a temperature-sensitive flow control valve, FIG. 3 is a refrigerant circuit diagram of a conventional device, and FIG. 4 is a pressure enthalpy diagram. 1... Outdoor unit, 2... Compressor, 3... Pressure sensor, 4... Controller, 5... Prime mover, l
la, llb...indoor unit. 13a, 13b --- expansion valve, 14a, 14b...
・Check valve, 20a, 20b...temperature-sensitive flow control valve

Claims (1)

【特許請求の範囲】[Claims] 1台の室外ユニットと、複数の室内ユニットを有するヒ
ートポンプ式冷暖房装置において、前記室外ユニットは
、圧縮機と、吐出圧力を検出する圧力センサーと、該圧
力センサーにより検出される圧力を一定に保持すべく圧
縮機の回転数を制御するコントローラと、原動機とを有
し、前記室内ユニットには、液配管中に配設される冷房
運転用の膨張弁と、該膨張弁と並列に配設される逆止弁
および感温流量制御弁とを有するヒートポンプ式冷暖房
装置。
In a heat pump air conditioning system having one outdoor unit and a plurality of indoor units, the outdoor unit includes a compressor, a pressure sensor that detects discharge pressure, and a pressure sensor that maintains the pressure detected by the pressure sensor constant. The indoor unit has an expansion valve for cooling operation disposed in the liquid piping, and an expansion valve disposed in parallel with the expansion valve. A heat pump type air-conditioning device having a check valve and a temperature-sensitive flow control valve.
JP6911786A 1986-03-27 1986-03-27 Heat pump type air conditioner Expired - Fee Related JPH0689963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6911786A JPH0689963B2 (en) 1986-03-27 1986-03-27 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6911786A JPH0689963B2 (en) 1986-03-27 1986-03-27 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS62225865A true JPS62225865A (en) 1987-10-03
JPH0689963B2 JPH0689963B2 (en) 1994-11-14

Family

ID=13393377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6911786A Expired - Fee Related JPH0689963B2 (en) 1986-03-27 1986-03-27 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0689963B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035643A (en) * 1989-06-01 1991-01-11 Hitachi Ltd Capacity control method for cold accumulator and its apparatus
WO2015025905A1 (en) * 2013-08-23 2015-02-26 サンデン株式会社 Vehicle air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035643A (en) * 1989-06-01 1991-01-11 Hitachi Ltd Capacity control method for cold accumulator and its apparatus
WO2015025905A1 (en) * 2013-08-23 2015-02-26 サンデン株式会社 Vehicle air conditioner
JP2015040019A (en) * 2013-08-23 2015-03-02 サンデン株式会社 Vehicular air conditioner
CN105473358A (en) * 2013-08-23 2016-04-06 三电控股株式会社 Vehicle air conditioner
US10047988B2 (en) 2013-08-23 2018-08-14 Sanden Holdings Corporation Vehicle air conditioner

Also Published As

Publication number Publication date
JPH0689963B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5689962A (en) Heat pump systems and methods incorporating subcoolers for conditioning air
US20090064711A1 (en) System and method for using hot gas reheat for humidity control
JPH01131851A (en) Air conditioner
US20190331380A1 (en) Condenser fan control system
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
JP2960218B2 (en) Control method of absorption air conditioner
KR102418488B1 (en) Method for controlling multi-type air conditioner
JP2005291553A (en) Multiple air conditioner
JPH074794A (en) Air-conditioning equipment
JP4074422B2 (en) Air conditioner and its control method
JPS62225865A (en) Heat pump type air conditioner
CN210154138U (en) Expansion valve assembly, bidirectional throttling system and air conditioner
JP3723824B2 (en) Air conditioner
JP2000055444A (en) Air conditioner
JP2008121995A (en) Air conditioner
JPH03164661A (en) Air conditioner
JP4420393B2 (en) Refrigeration air conditioner
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
KR20070038287A (en) Air conditioner having volume variableness type condenser and method of control thereof
CN220541218U (en) Constant temperature and humidity refrigerating air conditioning system
JPH10196984A (en) Air conditioner
CN212278706U (en) Constant temperature dehumidification refrigerating plant
JPH0798166A (en) Air-conditioner
WO2022215204A1 (en) Air conditioner
KR101404105B1 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees