JPH0356021B2 - - Google Patents

Info

Publication number
JPH0356021B2
JPH0356021B2 JP56183297A JP18329781A JPH0356021B2 JP H0356021 B2 JPH0356021 B2 JP H0356021B2 JP 56183297 A JP56183297 A JP 56183297A JP 18329781 A JP18329781 A JP 18329781A JP H0356021 B2 JPH0356021 B2 JP H0356021B2
Authority
JP
Japan
Prior art keywords
signal
satellite
beacon
transmission power
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56183297A
Other languages
Japanese (ja)
Other versions
JPS5884547A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18329781A priority Critical patent/JPS5884547A/en
Priority to DE8282110584T priority patent/DE3273703D1/en
Priority to EP82110584A priority patent/EP0079612B1/en
Priority to AU90605/82A priority patent/AU553961B2/en
Priority to CA000415642A priority patent/CA1196961A/en
Publication of JPS5884547A publication Critical patent/JPS5884547A/en
Priority to US06/725,528 priority patent/US4567485A/en
Publication of JPH0356021B2 publication Critical patent/JPH0356021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control

Description

【発明の詳細な説明】 本発明は衛星通信地球局送信電力制御方式に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a satellite communications earth station transmission power control system.

衛星通信、特に準ミリ波帯等の高い周波数を用
いる衛星通信においては、降雨による減衰が大き
く、これに対する適当な対策が必要である。
Satellite communications, especially satellite communications that use high frequencies such as sub-millimeter wave bands, are subject to significant attenuation due to rain, and appropriate countermeasures are required to deal with this.

ダウンリングに対しては、減衰を補うだけ地球
局受信装置にマージンを持たせるか、又はサイト
ダイバシテイ方式を用いて降雨による影響を除去
するのが適切な方法と考えられる。
For downring, it is considered appropriate to provide a margin in the earth station receiver to compensate for the attenuation, or to use a site diversity method to eliminate the effects of rain.

一方、アツプリンクに対しては、サイトダイバ
シテイ方式をとる場合は別として、降雨減衰に対
してあらかじめ定めた特定のマージンを持つ送信
電力を用いることは、晴天時に衛星の送信電力を
その分だけ不必要に消費することとなり、衛星送
信電力の有効利用の観点から非常に不利である。
そこでアツプリンクの降雨の減衰量に応じて地球
局からの送信電力を制御する方法が考えられ、こ
れを一般に地球局送信電力制御と呼んでいる。
On the other hand, for uplinks, apart from using the site diversity method, using a transmission power with a certain predetermined margin against rain attenuation means that the satellite's transmission power is reduced by that amount during clear skies. This results in unnecessary consumption, which is very disadvantageous from the viewpoint of effective use of satellite transmission power.
Therefore, a method of controlling the transmission power from the earth station according to the amount of attenuation of uplink rainfall has been considered, and this method is generally called earth station transmission power control.

このような目的の送信電力制御方式は、例えば
昭和53年度電子通信学会総合全国大会予稿・論文
番号S10−11「準ミリ波車載局通信方式」(ページ
8−293、294)、および昭和53年度電子通信学会
光・電波部門全国大会予稿・論文番号182「BS主
局の上り回線降雨減衰の補償方法について」(ペ
ージ182)にすでに提案されてはいるが、前者は
回線品質(S/N)測定用のパイロツト回線を相
手局との間に2回線設定するため、相手局を必要
とする上にこのために周波数を専用するという欠
点がある。又、後者の1つの方法は衛星側で受信
電力を検出してテレメータ信号に乗せて送出する
ため衛星側にあらかじめ特定の施設を必要とし、
他の方法は自局から送信し衛星で折返された受信
信号のレベル低下から、アツプリンクの周波数と
ダウンリンクの周波数との降雨減衰の相関関係を
用いてアツプリンクの減衰を推定して制御するも
ので、個々のケースのばらつきによる制御誤差は
避けられないという欠点がある。
Transmission power control systems for such purposes are described, for example, in the 1981 Institute of Electronics and Communication Engineers General National Conference Proceedings, Paper No. S10-11 "Semi-millimeter wave vehicle-mounted station communication system" (pages 8-293, 294), and Although it has already been proposed in Proceedings of the National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers, Paper No. 182 "Compensation method for uplink rain attenuation of BS main station" (Page 182), the former is based on line quality (S/N). Since two pilot lines for measurement are set up between the partner station and the partner station, there are disadvantages in that the partner station is required and a frequency is dedicated for this purpose. In addition, the latter method requires specific facilities on the satellite side in advance because it detects the received power on the satellite side and sends it out on a telemeter signal.
Another method is to estimate and control uplink attenuation using the correlation of rain attenuation between uplink and downlink frequencies based on the drop in the level of the received signal transmitted from the own station and reflected back by the satellite. However, the disadvantage is that control errors due to variations in individual cases cannot be avoided.

本発明の目的は上述の従来方法の欠点を除去
し、特定の相手局や、制御のための専用周波数
や、衛星側の特定の施設を必要とせず、相関デー
タのばらつきによる推定誤差の発生しない衛星通
信地球局送信電力制御方式を提供することであ
る。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods, do not require a specific partner station, a dedicated frequency for control, or specific facilities on the satellite side, and do not cause estimation errors due to variations in correlation data. An object of the present invention is to provide a satellite communication earth station transmission power control method.

本発明の衛星通信地球局送信電力制御方式は、
衛星を介して通信を行う衛星通信地球局におい
て、前記衛星から放射されるビーコン信号を受信
するビーコン受信手段と、パイロツト信号もしく
は通信用信号またはその両方を前記衛星に向けて
送出する送信電力制御の可能な送信手段と、前記
パイロツト信号または通信用信号が前記衛星を介
して折返された折返し信号を受信する折返し受信
手段と、前記ビーコン信号および前記折返し信号
のレベル又は搬送波対雑音電力比(C/N)を比
較してその値があらかじめ定められた値と一致す
るよう前記送信手段の送信電力を制御する制御信
号を発生する比較制御手段とを備えることによつ
て構成される。
The satellite communication earth station transmission power control method of the present invention includes:
A satellite communication earth station that communicates via a satellite includes a beacon receiving means for receiving a beacon signal emitted from the satellite, and a transmission power control means for transmitting a pilot signal or a communication signal or both toward the satellite. and loop-receiving means for receiving a return signal obtained by returning the pilot signal or communication signal via the satellite; N) and a comparison control means for generating a control signal for controlling the transmission power of the transmission means so that the value thereof matches a predetermined value.

次に図面を参照して本発明を詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例のブロツク図で、シ
ングル・チヤンネル・パー・キヤリア(SCPC)
方式を用いる地球局の実施例である。1は送受共
用のアンテナ、10は低雑音増幅器(LNA)、1
1は信号を二分岐するハイブリツド(H)、12
はビーコン信号を中間周波数に変換するダウンコ
ンバータ(D/C)、13はビーコン信号を受け
てアンテナ制御信号(ANT CONT)およびビ
ーコンレベル出力101を発生するビーコン受信
部(BCN REC)で、上述の5要素によりビーコ
ン受信手段が構成されている。又、20はSCPC
方式の基準周波数となるパイロツト信号発振器
(PIL OSC)、21はパイロツト信号と通信用信
号(TX SIG)とを合成するコンバイナ
(COMB)、22は制御信号によつて利得制御可
能な中間周波増幅器(V.G. AMP)、23は中間
周波数信号を送信周波数に変換するアツプコンバ
ータ(U/C)、24はU/Cの出力を増幅して
必要な送信電力を得るための送信電力増幅器
(HPA)であつて、アンテナ1と共にパイロツト
信号および通信用信号を送出する送信電力制御の
可能な送信手段を構成している。更に、14は衛
星を介して折返されたパイロツト信号を含む通信
用信号を中間周波数に変換する通信用のダウンコ
ンバータ、15はその出力を増幅する中間周波増
幅器(IF AMP)、16はIF AMPの出力(RX
SIG)に方向性結合器を介して結合されたパイロ
ツト信号のみを分離して検出し、AFC用信号を
D/C14の局部発振器に、AGC用信号をIF
AMP15にパイロツトレベル出力102を比較
器17に供給するパイロツト信号受信部(PIL
REC)で、アンテナ1、LNA10、ハイブリツ
ド11と共に折返し受信手段を構成し、BCN
REC13のレベル出力101とPIL REC16の
レベル出力102とを比較してその比を出力する
比較器(COMP)17と、その出力が常に一定
値を保つようにV.G AMP22の利得を制御する
制御信号103を発生する送信電力制御盤
(TPC CONT)18とが比較制御手段を構成し
ている。
FIG. 1 is a block diagram of one embodiment of the present invention, which is a single channel per carrier (SCPC).
This is an example of an earth station using the method. 1 is an antenna for both transmitting and receiving, 10 is a low noise amplifier (LNA), 1
1 is a hybrid (H) that branches the signal into two, 12
13 is a down converter (D/C) that converts the beacon signal to an intermediate frequency; 13 is a beacon receiver (BCN REC) that receives the beacon signal and generates an antenna control signal (ANT CONT) and a beacon level output 101; The beacon receiving means is composed of five elements. Also, 20 is SCPC
A pilot signal oscillator (PIL OSC) serves as the reference frequency of the system, a combiner (COMB) 21 combines the pilot signal and a communication signal (TX SIG), and an intermediate frequency amplifier (22) whose gain can be controlled by a control signal. AMP), 23 is an up converter (U/C) that converts the intermediate frequency signal to a transmission frequency, and 24 is a transmission power amplifier (HPA) that amplifies the output of the U/C to obtain the necessary transmission power. Together with the antenna 1, it constitutes a transmitting means capable of transmitting power control for transmitting pilot signals and communication signals. Furthermore, 14 is a communication down converter that converts communication signals including pilot signals returned via the satellite into intermediate frequencies, 15 is an intermediate frequency amplifier (IF AMP) that amplifies the output, and 16 is an IF AMP. Output (RX
SIG) via a directional coupler, the AFC signal is sent to the local oscillator of the D/C14, and the AGC signal is sent to the IF.
A pilot signal receiving section (PIL) supplies the pilot level output 102 to the comparator 17 in the AMP15.
REC) constitutes a return receiving means together with antenna 1, LNA 10, and hybrid 11, and BCN
A comparator (COMP) 17 that compares the level output 101 of the REC 13 and the level output 102 of the PIL REC 16 and outputs the ratio, and a control signal 103 that controls the gain of the VG AMP 22 so that its output always maintains a constant value. A transmission power control panel (TPC CONT) 18 that generates the power and the transmission power control panel (TPC CONT) 18 constitutes a comparison control means.

第2図は本発明の動作原理の説明図で、アツプ
リンク、ダウンリンクの降雨減衰と送受信電力の
関係を示している。地球局(E/S)2から実効
放射電力P0で放射されたアツプリンクのパイロ
ツト信号4は晴天時は衛星局(S/S)3に電力
Pr(降雨時はPr′)で受信され、衛星トランスポン
ダで周波数変換および増幅された後、実効放射電
力P1(降雨時P1′)で衛星から放射される。衛星で
折返されたこのダウンリンクのパイロツト信号5
は晴天時には受信電力P2(降雨時はP2′)でE/S
2で受信される。このダウンリンクのパイロツト
信号と同じ周波数帯のビーコン信号6は衛星から
実効放射電力(EIRP)B1で放射され、E/S2
で受信電力B2(降雨時はB2′)で受信される。ア
ツプリンクの降雨減衰をΔα、ダウンリンクの降
雨減衰をΔβとすると、これまでに公表された多
くの研究結果によれば、一般に周波数帯の異なる
アツプリンクとダウンリンクではΔα≠Δβであり
両者の相関も完全ではなくてある程度のばらつき
があるが、アツプリンク又はダウンリンクの周波
数帯域内では降雨減衰は周波数にかかわらずほぼ
同じであり相関も殆ど1に近いと考えて差支えな
い。従つて、、降雨時のパイロツト信号およびビ
ーコン信号の地球局における受信電力B2′、P2′は
晴天時のダウンリンクのパイトツト信号5及びビ
ーコン信号6の伝ぱん損失をβ1及びβ2、地球局ア
ンテナの各周波数における受信利得をG1及びG2
とすると B2′=B1・β1・Δβ・G1=Δβ・B2 P2′=P1′・β2・Δβ・G2 =Δα・P1・β2・Δβ・G2= Δα・Δβ・P2 で与えられ、その比を取ると P2′/B2′=Δα・(P2/B2) となつて、降雨時のパイロツト信号とビーコン信
号の受信電力比の晴天時からの変化からアツプリ
ンクの降雨減衰が求められる。いま、降雨時の受
信電力比が晴天時と同じ値となるように送信電力
を制御すると、ビーコン信号6のEIRPは晴雨に
拘らず一定であるのでダウンリンク・パイロツト
信号5のEIRPが晴天時と同じ値となるように制
御されることとなる。
FIG. 2 is an explanatory diagram of the operating principle of the present invention, showing the relationship between uplink and downlink rain attenuation and transmission and reception power. The uplink pilot signal 4 radiated from the earth station (E/S) 2 with an effective radiated power P 0 provides power to the satellite station (S/S) 3 during clear weather.
It is received at P r (P r ′ during rain), frequency converted and amplified by the satellite transponder, and then radiated from the satellite with effective radiated power P 1 (P 1 ′ during rain). This downlink pilot signal returned by the satellite 5
is E/S with received power P 2 in sunny weather (P 2 ′ in rainy weather)
Received at 2. The beacon signal 6 in the same frequency band as this downlink pilot signal is radiated from the satellite with an effective radiated power (EIRP) of B 1 , and the E/S2
The signal is received with received power B 2 (B 2 ′ during rain). If the uplink rain attenuation is Δα and the downlink rain attenuation is Δβ, then according to many research results published so far, Δα ≠ Δβ for uplink and downlink, which have different frequency bands, and the difference between the two is Δα. Although the correlation is not perfect and there is some variation, it can be safely assumed that within the uplink or downlink frequency band, the rain attenuation is almost the same regardless of the frequency, and the correlation is almost 1. Therefore, the reception power B 2 ', P 2 ' of the pilot signal and beacon signal at the earth station during rainy days is calculated by β 1 and β 2 , The receiving gain at each frequency of the earth station antenna is G 1 and G 2 ,
Then, B 2 ′=B 1・β 1・Δβ・G 1 =Δβ・B 2 P 2 ′=P 1 ′・β 2・Δβ・G 2 =Δα・P 1・β 2・Δβ・G 2 = It is given by Δα・Δβ・P 2 , and when you take the ratio, it becomes P 2 ′/B 2 ′=Δα・(P 2 /B 2 ), and the received power ratio of the pilot signal and beacon signal during rainy weather is The uplink rainfall attenuation can be determined from the change over time. Now, if we control the transmission power so that the received power ratio during rainy days is the same as when it is sunny, the EIRP of beacon signal 6 is constant regardless of rain or shine, so the EIRP of downlink pilot signal 5 will be the same as when it is sunny. It will be controlled to have the same value.

第1図の実施例の回路においては、ビーコン信
号の受信電力に対応した出力をBCN REC13の
出力101から、パイロツト信号の受信電力に対
応した出力をPIL REC16の出力102から得
て、受信電力比の晴天時の値に対する大小を判定
し制御信号を発生するため、BCN REC13を含
むビーコン受信系およびPIL REC16を含むパ
イロツト受信系は共にデシベル入力に対してリニ
ヤーな出力特性を持ち、COMP17で両方の特
性が一致するよう適宜増幅した後差電圧を取り出
すよう構成されている。ビーコンとパイロツトの
受信電力比に対応するこの電圧はTPC CONT1
8に加えられ、晴天時の受信電力比に対応する電
圧と比較の上制御出力103を発生し、パイロツ
ト信号の衛星におけるEIRPが常に一定となるよ
う自動制御する。降雨による減衰の時間的変動は
それ程急激なものではなく、電波が衛星折返しに
要する約0.3秒の時間に対して制御系の応答時間
を長く選んでも充分効果を上げることができる。
In the circuit of the embodiment shown in FIG. 1, an output corresponding to the received power of the beacon signal is obtained from the output 101 of the BCN REC 13, an output corresponding to the received power of the pilot signal is obtained from the output 102 of the PIL REC 16, and the received power ratio is calculated. The beacon receiving system including BCN REC13 and the pilot receiving system including PIL REC16 both have linear output characteristics with respect to decibel input, and COMP17 generates a control signal by determining the magnitude of The configuration is such that the differential voltage is extracted after being appropriately amplified so that the characteristics match. This voltage, which corresponds to the received power ratio of the beacon and the pilot, is TPC CONT1.
8 and compares it with the voltage corresponding to the received power ratio under clear weather conditions, and generates a control output 103, thereby automatically controlling the EIRP of the pilot signal at the satellite to always be constant. Temporal fluctuations in attenuation due to rain are not so sudden, and even if the response time of the control system is selected to be long compared to the approximately 0.3 seconds required for radio waves to return to the satellite, sufficient effects can be achieved.

上述の実施例においては、SCPC通信を行なう
地球局でパイロツト信号を用いているが、FM多
重通話路方式の地球局において、自局送信の通信
用信号波を折返し受信しても同様の送信電力制御
を行なうことができる。又、監視制御専用局で通
信を行わない局が特定のパイトツト信号のみを発
射し一定EIRPのパイトツト信号を提供すること
もできる。なお、パイロツト信号とビーコン信号
の受信電力比を検出する方法や送信電力を制御す
る方法も実施例の回路に限らないことは言うまで
もない。
In the above embodiment, the pilot signal is used at the earth station that performs SCPC communication, but in the earth station using the FM multiple channel method, even if the communication signal wave transmitted by the own station is received back, the same transmission power will be required. can be controlled. Furthermore, a station dedicated to monitoring and control that does not perform communication can emit only a specific pitch signal and provide a pitch signal with a constant EIRP. It goes without saying that the method of detecting the reception power ratio of the pilot signal and beacon signal and the method of controlling the transmission power are not limited to the circuits of the embodiments.

更に、これまでの説明ではビーコン信号および
衛星で折返されたパイロツト信号または通信用信
号のレベル即ち受信電力の比を一定とする方法を
述べたが、受信電力比の代りに両信号のC/Nの
比を用いてもほぼ同様の動作が可能である。地球
局受信系の雑音は一般にアンテナ系及び広帯域受
信を行うLNAによつて支配され、ビーコン信号
およびパイロツト信号に対しては殆ど同じ雑音温
度を持つている。又、降雨減衰と共に伝ぱん路の
等価雑音温度も上昇するが、これも降雨減衰と同
様受信帯域内の周波数に対しては殆んど同じ影響
を与える。アツプリンクにおいても降雨減衰と共
に伝ぱん路の雑音温度が上昇するが、衛星受信機
の雑音温度は一般に地球局の雑音温度に比べて相
当高く、降雨減衰はアツプリンクの総合雑音温度
に殆ど影響に与えない。一般にアツプリンクの雑
音寄与はダウンリンクの雑音より少ないが、折返
し信号にはアツプリンク雑音が加わるに対してビ
ーコン信号にはこれがないため、C/Nを用いた
場合は、両信号のC/Nを晴天時と同じに制御す
ることは衛星のEIRPを一定にすることにはなら
ないが、その変動を充分に圧縮する効果がある。
更に、C/Nを用いる場合には、第1図に示した
ハイブリツド11で分岐した後の両受信系の利得
やAGC特性に制約がなく、COMP17も簡単に
なる利点がある。
Furthermore, in the previous explanation, a method was described in which the level of the beacon signal and the pilot signal or communication signal reflected by the satellite, that is, the ratio of the received power, is made constant, but instead of the received power ratio, the C/N of both signals is Almost the same operation is possible using the ratio of . Noise in the earth station reception system is generally dominated by the antenna system and the LNA that performs broadband reception, and has almost the same noise temperature for beacon signals and pilot signals. In addition, the equivalent noise temperature of the propagation path increases with rain attenuation, but this has almost the same effect on frequencies within the reception band as does rain attenuation. In the uplink as well, the noise temperature of the propagation path increases with rainfall attenuation, but the noise temperature of satellite receivers is generally much higher than that of the earth station, and rain attenuation has little effect on the total noise temperature of the uplink. I won't give it. In general, uplink noise contribution is less than downlink noise, but while uplink noise is added to the return signal, beacon signals do not have this noise, so when C/N is used, the C/N of both signals is Although controlling the satellite's EIRP to be the same as on clear skies does not make the satellite's EIRP constant, it does have the effect of sufficiently compressing its fluctuations.
Furthermore, when C/N is used, there are no restrictions on the gains and AGC characteristics of both receiving systems after branching at the hybrid 11 shown in FIG. 1, and there is an advantage that the COMP 17 is also simplified.

なお、C/Nを用いる場合に、ビーコン信号の
C/N又はレベルによつてアツプリンクの雑音寄
与分に対するあらかじめ定められた一定の補正を
併用し衛星EIRPの変動を更に圧縮することも可
能である。
In addition, when using C/N, it is also possible to further compress the fluctuations in satellite EIRP by using a certain predetermined correction for the uplink noise contribution based on the C/N or level of the beacon signal. be.

以上説明した如く、本発明によれば、特定の相
手局や制御のための専用周波数や衛星側の特定の
施設を必要とせず、相関データのばらつきによる
推定誤差の発生しない衛星通信地球局送信電力制
御方式を実現できるという効果がある。
As explained above, according to the present invention, there is no need for a specific partner station, a dedicated frequency for control, or specific facilities on the satellite side, and the transmission power of a satellite communications earth station is free from estimation errors due to variations in correlation data. This has the effect of realizing a control method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロツク図、第2
図は本発明の動作原理の説明図である。 1……アンテナ、2……地球局、3……衛星
局、4,5……パイロツト信号、6……ビーコン
信号、10……低雑音増幅器、11……ハイブリ
ツド、12,14……ダウンコンバータ、13…
…ビーコン受信部、15……中間周波増幅器、1
6……パイロツト信号受信部、17……比較器、
18……送信電力制御盤、20……パイロツト信
号発振器、21……コンバイナ、22……中間周
波増幅器、23……アツプコンバータ、24……
送信電力増幅器。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the operating principle of the present invention. 1... Antenna, 2... Earth station, 3... Satellite station, 4, 5... Pilot signal, 6... Beacon signal, 10... Low noise amplifier, 11... Hybrid, 12, 14... Down converter , 13...
... Beacon receiving section, 15 ... Intermediate frequency amplifier, 1
6...Pilot signal receiving section, 17...Comparator,
18... Transmission power control board, 20... Pilot signal oscillator, 21... Combiner, 22... Intermediate frequency amplifier, 23... Up converter, 24...
Transmission power amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 衛星を介して通信を行う衛星通信地球局にお
いて、前記衛星から放射されるビーコン信号を受
信するビーコン受信手段と、パイロツト信号もし
くは通信用信号またはその両方を前記衛星に向け
て送出する送信電力制御の可能な送信手段と、前
記パイロツト信号または通信用信号が前記衛星を
介して折返された折返し信号を受信する折返し受
信手段と、前記ビーコン信号および前記折返し信
号のレベル又は搬送波対雑音電力比を比較してそ
の値があらかじめ定められた値と一致するよう前
記送信手段の送信電力を制御する制御信号を発生
する比較制御手段とを備えたことを特徴とする衛
星通信地球局送信電力制御方式。
1. In a satellite communication earth station that communicates via a satellite, a beacon receiving means that receives a beacon signal emitted from the satellite, and a transmission power control that sends a pilot signal, a communication signal, or both toward the satellite. Compare the level or carrier-to-noise power ratio of the beacon signal and the return signal with a return reception means for receiving a return signal obtained by returning the pilot signal or communication signal via the satellite. and comparison control means for generating a control signal for controlling the transmission power of the transmission means so that the value thereof matches a predetermined value.
JP18329781A 1981-11-16 1981-11-16 Transmission power control system of earth station for satellite communication Granted JPS5884547A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP18329781A JPS5884547A (en) 1981-11-16 1981-11-16 Transmission power control system of earth station for satellite communication
DE8282110584T DE3273703D1 (en) 1981-11-16 1982-11-16 Earth station transmission power control system
EP82110584A EP0079612B1 (en) 1981-11-16 1982-11-16 Earth station transmission power control system
AU90605/82A AU553961B2 (en) 1981-11-16 1982-11-16 Satellite earth station output control
CA000415642A CA1196961A (en) 1981-11-16 1982-11-16 Earth station transmission power control system for keeping an eirp of down link signals constant irrespective of weather
US06/725,528 US4567485A (en) 1981-11-16 1985-04-23 Earth station transmission power control system for keeping an EIRP of down link signals constant irrespective of weather

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18329781A JPS5884547A (en) 1981-11-16 1981-11-16 Transmission power control system of earth station for satellite communication

Publications (2)

Publication Number Publication Date
JPS5884547A JPS5884547A (en) 1983-05-20
JPH0356021B2 true JPH0356021B2 (en) 1991-08-27

Family

ID=16133199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18329781A Granted JPS5884547A (en) 1981-11-16 1981-11-16 Transmission power control system of earth station for satellite communication

Country Status (1)

Country Link
JP (1) JPS5884547A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591765B2 (en) * 1987-12-25 1997-03-19 株式会社日立製作所 Transmission power control method
JPH0244928A (en) * 1988-08-05 1990-02-14 Nec Corp Control system for transmission power of satellite communication earth station
JP5943272B2 (en) * 2012-03-26 2016-07-05 国立研究開発法人情報通信研究機構 Channelizer for frequency division multiplexed signals
WO2021199217A1 (en) * 2020-03-30 2021-10-07 日本電信電話株式会社 Method for confirming transmitted radio wave in satellite communication system, portable station device, and transmitted radio wave confirmation program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101616A (en) * 1978-01-27 1979-08-10 Nippon Telegr & Teleph Corp <Ntt> Satellite communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101616A (en) * 1978-01-27 1979-08-10 Nippon Telegr & Teleph Corp <Ntt> Satellite communication system

Also Published As

Publication number Publication date
JPS5884547A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
CA1196961A (en) Earth station transmission power control system for keeping an eirp of down link signals constant irrespective of weather
US6253077B1 (en) Downstream power control in point-to-multipoint systems
US5257029A (en) Transmission power control method and apparatus in satellite communication
US5828335A (en) Spacecraft communication channel power control system
JPH0356021B2 (en)
JPS583613B2 (en) Satellite communication method
EP0991198B1 (en) Transmitter/Receiver apparatus with an antenna for use of both signal transmission and reception
JPS6322743B2 (en)
JPS58200640A (en) Controlling system of electric power for transmitting satellite communication
JPS5810937A (en) Transmission power controlling system for earth station of satellite communication
JPS62188438A (en) Transmission power control system
JPH0870274A (en) Mobile communication system and mobile station equipment
JPS5884544A (en) Transmission power control system for satellite communication
JPS6343020B2 (en)
JPH0666719B2 (en) Transmission power control device for satellite communication earth station
JP2842596B2 (en) Earth station transmission power control method
JPH0356020B2 (en)
EP1487125B1 (en) Transmitter/receiver apparatus with an antenna for use of both signal transmission and reception
JPH05218924A (en) Transmission power control system
JPS61195028A (en) Repeater for communication satellite
JPH0767092B2 (en) Transmission power control device for satellite communication earth station
JP3038899B2 (en) Automatic frequency / gain control circuit
JPS6313377B2 (en)
JPS6341250B2 (en)
JPS6313617B2 (en)